El blog del Dr. Enrique Rubio

Categoría: GENES (Página 1 de 4)

EPIGENÉTICA

EPIGENÉTICA

Cada célula con todo su ADN espera instrucciones externas, las cuales vienen en forma de un grupo METILO, un compuesto hecho de carbono e hidrógeno. Estos grupos metilo se unen a los genes, haciéndoles saber cuándo expresarse y cuándo permanecer inactivos, y se unen de manera diferente dependiendo de en qué parte del cuerpo se encuentra el ADN. Además hay otras moléculas que son las HISTONAS que también juegan un papel muy importante en cómo se expresan los genes, pues las histonas son las proteínas alrededor de las cuales se enrolla el ADN. La forma en que este el ADN empaquetado alrededor de la histona

Investigadores del Hospital Monte Sinaí han realizado el mayor análisis de variaciones epigenéticas en el genoma humano hasta la fecha, que proporciona una herramienta que podría mejorar el diagnóstico genético de algunas enfermedades.

epivariaciones Los mecanismos epigenéticos, que regulan la expresión de los genes sin modificar la secuencia de ADN también pueden contribuir al desarrollo de enfermedades. Imagen: Rosario García, Genotipia.

“Debido a que las variantes epigenéticas que identificamos no serían detectadas por la secuenciación genómica a pesar de poder conducir a la desregulación y silenciamiento de genes relacionados con enfermedades hereditarias, nuestro trabajo muestra que algunos tipos de mutaciones causantes de enfermedades serán omitidos por las pruebas genéticas estándar que solo analizan la secuencia de ADN”, señala Andrew Sharp, profesor de genética y genómica en la Facultad de Medicina de la Universidad Monte Sinaí y director del trabajo.

En las últimas décadas, numerosos estudios han abordado el análisis del ADN a la búsqueda de aquellos cambios que influyen en las características humanas y tienen un papel relevante en la salud.  Además de la secuencia del ADN existen otros mecanismos de regulación de la expresión que también pueden repercutir en mayor o menor grado en el desarrollo de enfermedades, los denominados mecanismos epigenéticos.

En el estudio, los investigadores han analizado de forma extensa uno de estos mecanismos, la metilación del ADN, con el objetivo de determinar hasta qué punto son frecuentes y cuál es la distribución de las variaciones epigenéticas (epivariaciones)  en el genoma humano. Además, el equipo ha combinado la información obtenida con datos de expresión génica, lo que ha permitido identificar cómo afectan las epivariaciones a la actividad de los genes.

Tras analizar la metilación del genoma en más de 23 000 personas, los investigadores han detectado 4452 epivariaciones en los cromosomas no sexuales. Este resultado implica que las epivariaciones son un suceso frecuente en el genoma humano.  Dentro de los cambios epigenéticos identificados se incluyen 384 localizados en regiones reguladoras de genes relacionados con enfermedades humanas que podrían influir negativamente en su expresión. De hecho, a partir de los datos de expresión, los investigadores han estimado que muchas de las epivariaciones identificadas están relacionadas con cambios de expresión fuera de lo habitual.

No obstante, al igual que ocurre con los cambios en la secuencia del ADN, no todas las epivariaciones tienen un efecto negativo. Por ejemplo, la segunda epivariación más común, presente en aproximadamente 1 de cada 325 personas, es una hipermetilación del promotor del gen FRA10AC1 producida por una expansión CGG que se considera una variante benigna. De hecho, los investigadores señalan que las epivariaciones que pueden causar enfermedades, como por ejemplo, una hipermetilación en el gen BRCA1, son muy poco frecuentes.

A partir de estudios con gemelos, el equipo también ha analizado algunas de las causas y mecanismos por los que se producen las epivariaciones. Los gemelos idénticos, tienen la misma composición genética de origen de forma que es posible detectar si un cambio concreto se ha producido tras la formación de los dos embriones. En este caso, los investigadores han podido estimar que dos tercios de las epivariaciones se producen como consecuencia de cambios en la secuencia que afectan a elementos reguladores (y por lo tanto probablemente son hereditarios) y un tercio se produce por cambios somáticos.

El estudio proporciona un catálogo de cambios epigenéticos poco frecuentes en el genoma humano que podría representar una herramienta de interés para el diagnóstico en algunas ocasiones en las que la secuenciación del genoma de un paciente no ha obtenido resultados definitivos. “En una era en la que la secuenciación del genoma está siendo aplicada a millones de personas, nuestros resultados muestran que el estudio de la variación epigenética pueden proporcionar perspectivas de la función del genoma”, concluyen los autores.

 

Cancer y gen metilado

La epigenética es un campo de la ciencia, todavía incipiente, que tendrá implicaciones muy importantes sobre cómo abordamos nuestra salud y la de las generaciones futuras.

La palabra epigenética significa literalmente «por encima de los genes», y eso resume perfectamente el epigenoma.

Todos tenemos nuestro ADN único, siempre y cuando no se tenga un gemelo idéntico. Y casi todas las células de nuestro cuerpo contienen todo nuestro ADN y todos los genes que nos hacen ser quienes somos. Esto se conoce como el genoma. Pero, no todas las células son iguales, por ejemplo, nuestras células cerebrales hacen cosas diferentes a las del corazón, que a su vez se comportan de manera diferente a las células de la piel.

Nuestras células tienen todas la misma información, en forma de ADN, ¿pero hacen cosas diferentes?

Aquí es donde entra en juego la epigenética. Básicamente es una capa de instrucción por encima del ADN al que le dice qué activar, cómo actuar, etc.

Esto es similar a una orquesta en la que nuestro ADN serían los músicos y el epigenoma sería el director, que les dice a las células qué deben hacer y cuándo hacerlo. La orquesta de cada persona es diferente. Por eso, aunque el epigenoma nEpigenética | Oryzono cambia nuestro ADN, si que es el responsable de decidir qué genes se expresarán y cuales no.

Referencias

Amparo Tolosa

Garg P, et al. A Survey of Rare Epigenetic Variation in 23,116 Human Genomes Identifies Disease-Relevant Epivariations and CGG Expansions. Am J Hum Gen. 2020. DOI: https://doi.org/10.1016/j.ajhg.2020.08.019

Mount Sinai study shows widespread epigenetic defects in the human genome. https://www.eurekalert.org/pub_releases/2020-09/tmsh-mss090920.php

 

En resumen, los grupos metilo le dicen a la célula qué es, por ejemplo «eres una célula de la piel, y esto es loque tienes que hacer», y las histonas deciden como va a comportarse esa célula de la piel . Cada célula tiene esta combinación de metil e histona, que le indica qué hacer y en que medida.

Sin el epigenoma dando instruccionesal genoma de las células, nuestro cuerpo no sabría qué hacer.

Nuestro genoma es el mismo desde que nacemos hasta que morimos, nuestro epigenoma va cambiando a lo largo de nuestra vida, decidiendo qué genes se activan o desactivan.

En ocasiones, estos cambios suceden cuando se producen cambios físicos importantes en nuestro cuerpo, como puede ser la pubertad o durante el embarazo. Pero, como la ciencia está comenzando a descubrir, existen otros factores externos que también pueden provocar cambios epigenéticos. Cosas como cuánta actividad física realizamos, qué y cuánto comemos, nuestro nivel de estrés, fumar o beber mucho entre otras cosas, pueden provocar cambios en nuestro epigenoma y afectar la forma en que los grupos metilo se unen a las células.

Estos cambios pueden causar errores, y conducen a enfermedades y otros trastornos.

Debido a que el epigenoma cambia constantemente, sería lógico pensar, que cuando nacemos cada uno de nosotros comenzaríamos con una digamos una pizarra limpia, en blanco, es decir, que nuestros padres no nos pasarían sus epigenomas. Y si bien eso es lo que debería suceder, a veces estos cambios epigenéticos se atascan en los genes y se transmiten a los hijos.

Un ejemplo de esto es el Síndrome de Invierno del Hambre Holandés. Los bebés expuestos a la hambruna prenatal durante la Segunda Guerra Mundial en los Países Bajos tenían un mayor riesgo de enfermedad metabólica más adelante en la vida y tenían diferente metilación del ADN de un gen en particular en comparación con sus hermanos del mismo sexo que no estaban expuestos a la hambruna.

“Estos cambios persistieron seis décadas después.“ Las firmas epigenéticas del dolor crónico - Genotipia Metilacion en el dolor

”Otro estudio encontró que, si bien los gemelos idénticos son en gran medida indiferenciables entre sí cuando nacen, a medida que envejecen, existen grandes diferencias en sus grupos metilo e histonas, lo que afecta la forma en que sus genes se expresan y explican las diferencias en su salud. El ADN dañado o debilitado que se replica puede inevitablemente crear estados de expresión epigenética alternativos que pueden afectar a varias generaciones. Además, la alteración de la replicación del ADN durante el desarrollo embrionario o prenatal tiene consecuencias epigenéticas para un gen, o el conjunto completo de ADN del organismo.

Si bien la epigenética está todavía en pañales, hay muchas cosas que hacen que parezcan apasionantes.

En primer lugar podría cambiar la forma en que tratamos las enfermedades pues si el epigenoma controla cómo se comportan los genes, un epigenoma erróneo puede comportarse como una mutación genética. Esto nos podría conducir a tener un mayor riesgo de enfermedades autoinmunes o el cáncer, incluso aunque los genes sean perfectamente normales. A medida que se sepan más cosas sobre las causas de los errores epigenéticos, sería posible desarrollar medicamentos que modifiquen los grupos metilo o las histonas que estén causando esos errores, pudiendo desarrollarse una cura para esas enfermedades causadas por epigenética.

En segundo lugar podría cambiar la forma en que tratamos las adicciones. Pues como es bien sabido algunas personas son más vulnerables a las adicciones que otras. Pero no hay un gen de la adicción, pues es una combinación de factores heredados y ambientales lo que conducen a una adicción.

Los mecanismos epigenéticos juegan un papel muy importante en lo que se refiere a las adicciones, pues influyen en cómo se expresan los genes para desarrollar una adicción y también cómo esa predisposición a la adicción se transmite a la descendencia. Una mejor comprensión de cómo el epigenoma afecta la adicción podría significar cambiar la forma en que se trata para evitar que la descendencia tenga un mayor riesgo de padecerla.

En tercer lugar podría cambiar la forma en que abordamos los traumas.

Una de las teorías sobre la epigenética trata de explicar cómo un evento traumático, como podría ser sobrevivir al Holocausto, podrían cambiar el epigenoma de una persona y el de su descendencia.

Un pequeño estudio sugiere que los hijos de los supervivientes del Holocausto heredaron una respuesta específica al estrés.

Otro estudio mostró que los hijos de mujeres embarazadas durante los ataques de septiembre en las torres de New York tenían niveles más bajos de cortisol, lo que podría hacerlos más vulnerables al trastorno de estrés postraumático. Estos estudios al ser muy pequeños tienen sus detractores, pero si bien pueden no ser concluyentes, no es difícil pensar que eventos traumáticos mayores podrían encontrar una manera de alterar el epigenoma de alguien lo suficiente como para transmitirlo a su descendencia.

La epigenética es por ahora un campo de investigación muy joven y muchos de los estudios sobre el tema son muy muy pequeños, por lo que es difícil afirmar que sean concluyentes. Además nadie está seguro en que medida influye lo que hacemos en el epigenoma. Si bien tener unos buenos hábitos, como llevar una dieta saludable, hacer ejercicio regularmente no consumir alcohol se sabe que influye positivamente en tu salud, ¿Pueden estos buenos hábitos revertir cualquier daño anterior que ya hayamos causado al epigenoma?

Pues esto no está claro en humanos. La mayor parte de los trabajos llevados a cabo en epigenética hasta ahora han sido hechos en animales, y aún queda por ver cómo se comporta en humanos. Múltiples cosas influyen en la epigenética como son, el entorno, los medicamentos, la dieta, la edad, a medida que se envejece se producen mas daño en el ADN, pero hay que tener en cuenta que todos los factores epigenéticos funciona de manera conjunta y también que no hay nada que podamos hacer por el momento para evitar morir cuando toque. Lo que si es cierto es que las decisiones que tomemos en cuanto a alimentación o entorno pueden ayudar a retrasar o acelerar el envejecimiento. Un alto nivel de emociones afecta a cómo se expresan los genes.

De igual forme la mala nutrición también modifica la forma en que los genes van a expresarse.

La remisión espontánea de ciertas enfermedades , donde alguien que tiene una enfermedad, de repente sana posiblemente la epigenetica tiene aquí también una acción apasionante.

Este sorprendente y grandioso descubrimiento, le queda mucho por ver.

Pero si esta clara que las lesiones del genoma pueden ser evitables y reparables.

Queda un capitulo por entender, el de las enfermedades psiquiátricas, que posiblemente son producidas por daños genómicos en cadena.

Pero seguro que también los encontraremos.

Referencias

Iridoy Zulet, Marina; Pulido Fontes, Laura; Ayuso Blanco, Teresa; Lacruz Bescos, F.; Mendioroz Iriarte, Maite (septiembre de 2017). «Modificaciones epigenéticas en neurología: alteraciones en la metilación del ADN en la esclerosis múltiple». Neurología (en inglés) (Elsevier España, S.L.U.) 32 (7): 463-468. doi:10.1016/j.nrl.2015.03.011. Consultado el 10 de octubre de 2018.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. ‘Genes Dev 2009;23:781-783.

Waddington CH. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci USA 1939;25:299-307.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. ‘Genes Dev 2009;23:781-783.

Michael Mosley (16 de septiembre de 2015). «El extraordinario impacto para tu salud de lo que comía tu madre en el embarazo». BBC News, Mundo. Consultado el 20 de mayo de 2022.

Epigenética, mucho más que genes, ADC Murcia, 30 de enero de 2014.

José Luis García-Giménez (2012). Epigenética. La gramática del código genético: Journal of Feelsynapsis, ISSN 2254-3651. 4:34-38.

García Azkonobieta, T.(2005). Evolución, desarrollo y (auto)organización. Un estudio sobre los principios filosóficos de la evo-devo Archivado el 12 de abril de 2012 en Wayback Machine.: tesis doctoral dirigida por Miren Arantzazu Etxeberria Agiriano. Universidad del País Vasco, Donostia-San Sebastián.

«Epigenética». www.revistaeidon.es. Archivado desde el original el 21 de septiembre de 2016. Consultado el 10 de septiembre de 2016.

Gilbert, S. F., & Epel, D. (2009). Ecological Developmental Biology. Sunderlad: Sinauer Associates Inc.

Watt, W. B. (1969). Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. PNAS, 63 (3), 767-774.

Nijhout, H. F. (1999). Control mechanisms of polymorphic development in insects. BioScience, 42, 181-192.

Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution and Development, 5, 9-18.

Woodward, D. E., & Murray, J. D. (1993). On the effects of temperature-dependent sex determination on sex ratio and survivorship in crocodilians. Proceedings of the Royal Society of London, 252, 149-155.

Kroon, F. J., Munday, P. L., Westcott, D. A., Hobbs, J. P., & Liley, N. R. (2005). Aromatase pathway mediates sex change in each direction. Proceedings. Biological Sciences, 272, 1399-1405.

Plowright, R. C., & Pendrel, B. A. (1977). Larval growth in bumble bees. The Canadian Entomologist, 109, 967-973.

Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional Control of Reproductive Status in Honeybees via DNA Methylation. Science, 319, 1827-1830.

Emlen, D. J. (1997). Alternative reproductive tactics and male dimorphism in the horned beetle Ontophagus acuminatus (Coleoptera:Scarabaeidae). Behavioral ecology and sociobiology, 141, 335-341.

Emlen, D. J., & Nijhout, H. F. (1999). Hormonal control of male horn length dimorphism on the horned beetle Ontophagus taurus. Journal of Insect Physiology, 45, 45-53.

Emlen, D. J. (2000). Integrating development with evolution: a case study with beetle horns. BioScience, 50, 403-418.

 Mardones L.; Villagrán M.; Lanuza F.; Leiva A.M.; Troncoso C.; Martínez-Sanguinetti M.A.; Peterman-Rocha F.; Celis-Morales C. (2019). «La trascendencia de la alimentación prenatal: Desde la hambruna holandesa hasta la realidad chilena». Rev. chil. pediatr. (Santiago) 90 (4).

Black, M. P., Moore, T. B., Canario, A. V., Ford, D., Reavis, R. H., & Grober, M. S. (2005). Reproduction in context:Field-testing a lab model of socially controlled sex change in Lythrypnus dalli. Journal of Experimental Marine Biology and Ecology, 318, 127-143

Mark A. Dawson, Tony Kouzarides, and Brian J.P. Huntly. Targeting epigenetic readers in cancer. N Engl J Med, 2012; 367:647-657, August 16, 2012.

Geutjes E, Bajpe P, Bernards R. Targeting the epigenome for treatment of cancer. ‘Oncogene 2012; 31(34): 3827-3844, Agust 23, 2012.

Paoloni-Giacobino, Ariane (2014).

 

JANET KELSO Investiga el cromosoma numero 4

JANET KELSO

Con sus 47 años lleva 20 investigando sobre genética y genética de nuestros viejos antepasados que además prometen beneficiar a la humanidad ya que al parecer los antiguos neandertales no sufrían el Covi o al menos no con tanta gravedad cómo lo estamos haciendo

Dice la doctora qué la genética de nuestros ancestros, nos está dando claves para mejorar nuestra inmunidad. Mis dos hijos se beneficiarán. Vamos a descubrir otra especie de homínidos antepasados nuestros.

Colabora en la Alianza SOMMa con el Barcelona Supercomputing Center

Los genes neandertales aún nos protegen de virus?

En esos genes que han llegado hasta nosotros desde los neandertales, los denisovanos y otros ancestros está la respuesta a por qué algunos humanos se infectan y mueren de virus como la covid, o la malaria, y otros no.

¿De fósiles diminutos podemos deducir cómo actúa nuestro sistema inmune?

Eso es lo que ha premiado el Nobel este año: nuestro trabajo de los últimos 20 años en perfeccionar métodos para extraer el ADN de esas especies extintas, incluso de Homo erectus .

En el Instituto Max Planck, Svante Pääbo, ganador del Nobel, fue el descubridor de la paleogenómica y el primer científico que demostró que podía extraer el ADN de los neandertales de hace 40.000 años. Y también describió cómo los sapiens nos distribuimos desde África por todo el planeta y nos mezclamos con los neandertales, de los que aún portamos genes.

¿Logra trazar esa ruta solo con el ADN de un fósil de hace 40.000 años?

Nos han ayudado la tecnología bioquímica y la inteligencia artificial, por eso estoy en el Barcelona Supercomputing Center, y hemos logrado aplicarlas para descodificar el ADN de esos fósiles y demostrar su relación con el nuestro.

Cráneo neandertal

RYAN SOMMA
08/11/2019

Cráneo neandertal

 

Esperamos descubrir una nueva especie de homínidos antepasados nuestros aún ignota y anterior a los neandertales y a los denisovanos. Esa especie explicaría que seamos como somos.

En la región del cromosoma 4 de algunos humanos apreciamos mucha herencia neandertal…

En el 60% de los que evolucionaron ya fuera de África. Y nos preguntamos: ¿por qué detectamos tanta genética neandertal solo en ellos, si lo habitual en el resto de humanos hoy es que tengamos tan solo un 2%?

¿Tal vez mantengan ese 60% porque aún les protege de algunos virus?

Esa herencia les ha estado protegiendo, en efecto, de algunos patógenos, por eso la mantienen, y ahora estamos investigando cuáles.

Cromosoma 4 (humano)

Par de cromosoma 4

Par de cromosoma 4 tomados usando una cariograma

Cromátida del cromosoma 4.

El cromosoma 4 es uno de los 23 pares de cromosomas del cariotipo humano. La población posee, en condiciones normales, dos copias de este cromosoma, uno heredado de la madre y uno del padre durante la reproducción sexual. El cromosoma 4 tiene más de 186 millones de pares de bases (el material que compone el ADN y representa entre el 6 y el 6,5 por ciento del total del ADN en la célula). La identificación de genes en cada uno de los cromosomas es obtenida por medio de diferentes métodos, lo que da lugar a pequeñas variaciones en el número de genes estimados en cada cromosoma, según el método utilizado. Se estima que el cromosoma 4 contiene entre 700 y 1100 genes.

Las siguientes son algunas de las enfermedades relacionadas con genes localizados en el cromosoma 4

Acondroplasia

Leucemia linfática crónica

Síndrome de Ellis-van Creveld

Fibrodisplasia osificante progresiva

Hemofilia C

Enfermedad de Huntington

Síndrome de Wolfram

Síndrome hemolítico urémico

Enfermedad de Parkinson

Querubismo

.

¿Y si ya no evolucionamos por genes sino por memes, por cultura?

Ahora evolucionamos por genes y por cultura. Es verdad que si tienes el meme cultural de la calefacción ya no necesitas el gen de tener más pelo; pero sí que en cambio el ataque de patógenos, virus, bacterias…hace que nuestro sistema inmunológico siga evolucionando para frenarlos.

¿Con ayuda de vacunas, que son evolución cultural, no?

Si hay en la misma especie de humanos quien apenas percibe que ha contraído la covid y otros que mueren sin remisión al contraerla, es precisamente porque la evolución cultural no ha sido suficiente para adaptarnos. Los virus siguen haciendo que evolucionemos.

Tratamos de desentrañar, porque si averiguamos los mecanismos genéticos que han hecho que nuestros ancestros superaran unos virus, sabremos cómo superar otros tal vez aún desconocidos.

¿Analizando ADN de hace 50.000 años sabrán mejorar el nuestro?

Sabremos cómo se van adaptando nuestros genes a los desafíos cambiantes de los patógenos de cada momento. Y no solo en cuanto a enfermedades, sino también considerando la civilización, los hábitos, las amenazas que van variando…

¿Hay virus invencibles?

La malaria, por ejemplo, desafía las vacunas, pero el mismo mecanismo de inmunidad que te protege de ella puede hacerte, en cambio, más propenso a otras enfermedades. Sabemos, por ejemplo, que los sistemas inmunológicos muy robustos nos hacen propensos a las alergias.

¿No hay un sistema inmunológico mejor que otro?

Tener una variante genética puede inmunizarte frente a una epidemia, pero cuando pasa te puede dejar más expuesto a otra. Y ahora podemos apreciar esos procesos en nuestros genomas.

Confieso que me gusta mucho La Vanguardia y los artículos de contraportada, a veces me cuesta creerlo que se pueda conseguir el ADN en de un neandertal que vivió hace 50000 años, y deducir de ellos que algunos sabían luchar contra los virus.

Esto no solo es apasionante sí lo sería de una utilidad extraordinaria.

Múltiples de los errores que cometemos en biología son debidos a que nuestro conocimiento es parcial, solo cuando se concluye el estudio se pueden aclarar cosas insospechadas.

La defensa contra los virus la tenían nuestros ancestros y seguro que la tienen también muchos seres vivos y nosotros tenemos que fabricar complicada vacunas que evidentemente son útiles en muchos casos y no en otro y aunque los investigadores llegan al límite de conocimiento que nos conmueve, lo hacen después de muchos años y ensayos.

Este es el inconveniente de leer e informarse por ,libros antiguos, es necesario tener información de primea línea y reciente, porque cualquier consecución en biología, queda obsoleta en poco tiempo tras nuevas consecuenciones.

Un ejemplo en nuestros días en la enfermedad de Alzheimer y la proteína beta amniloide, que no sabemos si ayuda o hace enfermar, y ello repito es debido al conocimieto parcial del proceso

Referencias

JANET KELSO

Goldfrank D, Schoenberger E, Gilbert F (2003). «Disease genes and chromosomes: disease maps of the human genome. Chromosome 4». Genet Test 7 (4): 351-72. PMID 15000816.

VV.AA (2005). «Generation and annotation of the DNA sequences of human chromosomes 2 and 4». Nature 434 (7034): 724-31. PMID 15815621

Ryan Somma Europa Press /

LLUIS AMIGET

 

CÉLULAS IPS, REPROGRAMACIÓN CELULAR Y EPIGENETICA:

CÉLULAS IPS, REPROGRAMACIÓN CELULAR Y EPIGENETICA:

En 2006, Shinya Yamanaka hizo un descubrimiento sorprendente que le llevó a ganar el Premio Nobel en Fisiología o Medicina tan solo 6 años después: encontró una nueva manera de “reprogramar” células especializadas adultas para convertirlas en células madre. Éstas células madre de laboratorio son pluripotentes – pueden dar lugar a cualquier tipo de célula del cuerpo – y se llaman células madre pluripotentes inducidas, o células iPS. Sólo las células madre embrionarias son de naturaleza pluripotente. El descubrimiento de Yamanaka significa que cualquier célula del cuerpo en division puede ahora convertirse en una célula madre pluripotente.

Yamanaka añadió cuatro genes a células de la piel provenientes de ratón. Este hecho inició un proceso en el interior de las células llamado reprogramación y, en un periodo de 2-3 semanas, las células de las piel se transformaron en células madre pluripotentes.

La institución ha galardonado al científico británico John B. Gurdon y el japonés Shinya Yamanaka

Los premios nobel de medicina 2012 John B. Gurdon y Shinya Yamanaka

EL CIENTÍFICO BRITÁNICO JOHN B. GURDON Y EL APONÉS SHINYA YAMANAKA HAN GANADO EL PREMIO NOBEL DE MEDICINA 2012 POR SUS INVESTIGACIONES PIONERAS EN CLONACIÓN Y CÉLULAS MADRE.

Estos avances «han creado nuevas oportunidades para investigar enfermedades y desarrollar métodos para diagnósticos y terapias.

Gurdon, de la Universidad de Cambridge (Reino Unido), sentó las bases de la clonación en experimentos realizados en ranas en 1962. Sus investigaciones fueron claves para la clonación de la oveja Dolly y, posteriormente, de mamíferos de otras especies.

Yamanaka, de la Universidad de Kioto, sentó las bases de las investigaciones actuales con células madre al demostrar en 2006 cómo se pueden obtener las llamadas células madre pluripotentes a partir de células adultas. Las células pluripotentes tienen el potencial de diferenciarse en cualquier otra célula del organismo, por lo que se espera poder utilizarlas en un futuro próximo para regenerar órganos y tejidos dañados.

Según el acta del premio, Gurdon (Dippenhall, 1933) y Yamanaka (Osaka, 1962) reciben en Nobel «por el descubrimiento de que las células maduras se pueden reprogramar para convertirse en pluripotentes».

Reprogramar: este es el concepto clave que une los trabajos de Gurdon y de Yamanaka.

Gurdon reprogramó organismos enteros y Yamanaka, células individuales. A raíz de sus trabajos, destaca la Asamblea Nobel,  “se han reescrito los libros de texto y se han creado nuevos campos de investigación”.

Antes de estos descubrimientos, biólogos y medicos pensaban que el desarrollo de un organismo es un viaje en sentido único. Desde la concepción hasta la muerte, las células se transforman para formar unos tejidos u otros. Una vez transformadas, se pensaba, no pueden volver atrás. Es decir, no pueden reprogramarse.

Gurdon fue el primero que cuestionó este dogma al demostrar, en 1962, que la especialización de las células es reversible. En su experimento, extrajo el núcleo de un óvulo de rana y lo sustituyó por el núcleo de una célula intestinal, también de rana.

Se pensaba entonces, la célula intestinal no hubiera podido volver atrás para ser de nuevo un óvulo. Pero Gurdon observó que, a partir del óvulo en que había introducido el núcleo de una célula intestinal, se desarrolló un renacuajo perfectamente normal. Por lo tanto, sí podía volver atrás. Había reprogamado el óvulo.

Yamanaka, por su parte, se preguntó por qué las células de un embrión tienen la capacidad de convertirse en cualquier tejido del organismo. Razonó que esta capacidad tenía que estar regulada por algunos genes y empezó a buscar genes candidatos .

Yamanaka, penso si se pudieran crear células madre a partir de células de los propios pacientes, no serían rechazadas por el sistema inmunitario. Y tampoco serían rechazadas por los sectores religiosos contrarios a utilizar células embrionarias.

Yamanaka descubrió que sólo cuatro genes eran suficientes para transformar células adultas en células como las de un embrión –a las que llamó células madre plutipotentes  inducidas, más conocidas como células iPS-. A diferencia del descubrimiento de Gurdon, que había sido recibido con escepticismo, el de Yamanaka fue reconocido inmediatamente como un hito.

“Estos descubrimientos han proporcionado nuevas herramientas a científicos de todo el mundo y como ejemplo, que “se pueden obtener células de la piel de pacientes con distintas enfermedades; estas células se pueden reprogramar y examinar en el laboratorio para observar en qué difieren de las células de personas sanas. Estas células representan herramientas muy valiosas para comprender los mecanismos de las enfermedades y, por lo tanto, abren nuevas oportunidades para desarrollar tratamientos médicos”.

A partir de aquí empieza la epigenetica. Un 80m% del genoma modifica y dirige la multiplicación celular hasta donde la biología la necesita, pero su alteración conduce a graves desordenes.

La palabra epigenética significa literalmente «por encima de los genes», y eso resume perfectamente el epigenoma.

Todos tenemos nuestro ADN único, siempre y cuando no se tenga un gemelo idéntico. Y casi todas las células de nuestro cuerpo contienen todo nuestro ADN y todos los genes que nos hacen ser quienes somos. Esto se conoce como el genoma. Pero, no todas las células son iguales, por ejemplo, nuestras células cerebrales hacen cosas diferentes a las del corazón, que a su vez se comportan de manera diferente a las células de la piel.

Nuestras células tienen todas la misma información, en forma de ADN, ¿pero hacen cosas diferentes?

Aquí es donde entra en juego la epigenética. Básicamente es una capa de instrucción por encima del ADN al que le dice qué activar, cómo actuar, etc.

Esto es similar a una orquesta en la que nuestro ADN serían los músicos y el epigenoma sería el director, que les dice a las células qué deben hacer y cuándo hacerlo. La orquesta de cada persona es diferente. Por eso, aunque el epigenoma no cambia nuestro ADN, si que es el responsable de decidir qué genes se expresarán y cuales no. Epigenética | Oryzon

Resumiendo, cada célula con todo su ADN espera instrucciones externas, las cuales vienen en forma de un grupo METILO, un compuesto hecho de carbono e hidrógeno. Estos grupos metilo se unen a los genes, haciéndoles saber cuándo expresarse y cuándo permanecer inactivos, y se unen de manera diferente dependiendo de en qué parte del cuerpo se encuentra el ADN. Además hay otras moléculas que son las HISTONAS que también juegan un papel muy importante en cómo se expresan los genes, pues las histonas son las proteínas alrededor de las cuales se enrolla el ADN. La forma en que este el ADN empaquetado alrededor de la histona juega un papel importante en la fuerza con que se expresa un gen.

Genotipia

Investigadores del Hospital Monte Sinaí han realizado el mayor análisis de variaciones epigenéticas en el genoma humano hasta la fecha, que proporciona una herramienta que podría mejorar el diagnóstico genético de algunas enfermedades.

epivariaciones Los mecanismos epigenéticos, que regulan la expresión de los genes sin modificar la secuencia de ADN también pueden contribuir al desarrollo de enfermedades. Imagen: Rosario García, Genotipia.

“Debido a que las variantes epigenéticas que identificamos no serían detectadas por la secuenciación genómica a pesar de poder conducir a la desregulación y silenciamiento de genes relacionados con enfermedades hereditarias, nuestro trabajo muestra que algunos tipos de mutaciones causantes de enfermedades serán omitidos por las pruebas genéticas estándar que solo analizan la secuencia de ADN”, señala Andrew Sharp, profesor de genética y genómica en la Facultad de Medicina de la Universidad Monte Sinaí y director del trabajo.

En las últimas décadas, numerosos estudios han abordado el análisis del ADN a la búsqueda de aquellos cambios que influyen en las características humanas y tienen un papel relevante en la salud.  Además de la secuencia del ADN existen otros mecanismos de regulación de la expresión que también pueden repercutir en mayor o menor grado en el desarrollo de enfermedades, los denominados mecanismos epigenéticos.

En el estudio, los investigadores han analizado de forma extensa uno de estos mecanismos, la metilación del ADN, con el objetivo de determinar hasta qué punto son frecuentes y cuál es la distribución de las variaciones epigenéticas (epivariaciones)  en el genoma humano. Además, el equipo ha combinado la información obtenida con datos de expresión génica, lo que ha permitido identificar cómo afectan las epivariaciones a la actividad de los genes.

Tras analizar la metilación del genoma en más de 23 000 personas, los investigadores han detectado 4452 epivariaciones en los cromosomas no sexuales. Este resultado implica que las epivariaciones son un suceso frecuente en el genoma humano.  Dentro de los cambios epigenéticos identificados se incluyen 384 localizados en regiones reguladoras de genes relacionados con enfermedades humanas que podrían influir negativamente en su expresión. De hecho, a partir de los datos de expresión, los investigadores han estimado que muchas de las epivariaciones identificadas están relacionadas con cambios de expresión fuera de lo habitual.

No obstante, al igual que ocurre con los cambios en la secuencia del ADN, no todas las epivariaciones tienen un efecto negativo. Por ejemplo, la segunda epivariación más común, presente en aproximadamente 1 de cada 325 personas, es una hipermetilación del promotor del gen FRA10AC1 producida por una expansión CGG que se considera una variante benigna. De hecho, los investigadores señalan que las epivariaciones que pueden causar enfermedades, como por ejemplo, una hipermetilación en el gen BRCA1, son muy poco frecuentes.

A partir de estudios con gemelos, el equipo también ha analizado algunas de las causas y mecanismos por los que se producen las epivariaciones. Los gemelos idénticos, tienen la misma composición genética de origen de forma que es posible detectar si un cambio concreto se ha producido tras la formación de los dos embriones. En este caso, los investigadores han podido estimar que dos tercios de las epivariaciones se producen como consecuencia de cambios en la secuencia que afectan a elementos reguladores (y por lo tanto probablemente son hereditarios) y un tercio se produce por cambios somáticos.

El estudio proporciona un catálogo de cambios epigenéticos poco frecuentes en el genoma humano que podría representar una herramienta de interés para el diagnóstico en algunas ocasiones en las que la secuenciación del genoma de un paciente no ha obtenido resultados definitivos. “En una era en la que la secuenciación del genoma está siendo aplicada a millones de personas, nuestros resultados muestran que el estudio de la variación epigenética pueden proporcionar perspectivas de la función del genoma”, concluyen los autores.

EPIGENÉTICA

Cancer y gen metilado

La epigenética es un campo de la ciencia, todavía incipiente, que tendrá implicaciones muy importantes sobre cómo abordamos nuestra salud y la de las generaciones futuras.

La palabra epigenética significa literalmente «por encima de los genes», y eso resume perfectamente el epigenoma.

Todos tenemos nuestro ADN único, siempre y cuando no se tenga un gemelo idéntico. Y casi todas las células de nuestro cuerpo contienen todo nuestro ADN y todos los genes que nos hacen ser quienes somos. Esto se conoce como el genoma. Pero, no todas las células son iguales, por ejemplo, nuestras células cerebrales hacen cosas diferentes a las del corazón, que a su vez se comportan de manera diferente a las células de la piel.

Nuestras células tienen todas la misma información, en forma de ADN, ¿pero hacen cosas diferentes?

Aquí es donde entra en juego la epigenética. Básicamente es una capa de instrucción por encima del ADN al que le dice qué activar, cómo actuar, etc.

Esto es similar a una orquesta en la que nuestro ADN serían los músicos y el epigenoma sería el director, que les dice a las células qué deben hacer y cuándo hacerlo. La orquesta de cada persona es diferente. Por eso, aunque el epigenoma no cambia nuestro ADN, si que es el responsable de decidir qué genes se expresarán y cuales no. Epigenética | Oryzon

Resumiendo, cada célula con todo su ADN espera instrucciones externas, las cuales vienen en forma de un grupo METILO, un compuesto hecho de carbono e hidrógeno. Estos grupos metilo se unen a los genes, haciéndoles saber cuándo expresarse y cuándo permanecer inactivos, y se unen de manera diferente dependiendo de en qué parte del cuerpo se encuentra el ADN. Además hay otras moléculas que son las HISTONAS que también juegan un papel muy importante en cómo se expresan los genes, pues las histonas son las proteínas alrededor de las cuales se enrolla el ADN. La forma en que este el ADN empaquetado alrededor de la histona juega un papel importante en la fuerza con que se expresa un gen.

Referencias

Shinya Yamanaka 2006, John B. Gurdon reprogramación celular

Amparo Tolosa

Garg P, et al. A Survey of Rare Epigenetic Variation in 23,116 Human Genomes Identifies Disease-Relevant Epivariations and CGG Expansions. Am J Hum Gen. 2020. DOI: https://doi.org/10.1016/j.ajhg.2020.08.019

Mount Sinai study shows widespread epigenetic defects in the human genome. https://www.eurekalert.org/pub_releases/2020-09/tmsh-mss090920.php

 

 

GENES OCULTOS EN EL ADN ‘BASURA

GENES OCULTOS EN EL ADN ‘BASURA’:

He tenido cierta adversion a Watson y Crick sobre la doble hélice que en 1953 revolucionó la biología : “Deseamos sugerir una estructura para la sal del ácido desoxirribonucleico (ADN)”. Rosalind Franklin

No mencionan a la Dra Franklin que en una fotografía , la numero 51, pudo fotografiar la doble hélice del ADN; y le robaron la idea de una manera deshonesta y a ella no la mencionó nadie. Fotografía número 51 del ADN

pero Watson y Crick, sabian la capacidad de codificar que tenia el ADN : “Proponemos que se requiere una reevaluación del genoma codificante humano (…) que podría tener grandes implicaciones en la salud y en las enfermedades humanas”.

Una porción de el 80%, no tenia función proyectiva, no fabricaba aminoácidos y se consideraban ‘basura’

 

Esta es la proteína Aw112010 que ha sorprendido a los biólogos. Procede de ADN catalogado como no codificante y, además, tiene funciones claras relacionadas con la inflamación en ratones. / Nature

El genoma, es todavía un país algo desconocido Aunque hace ya casi dos décadas que se publicó la primera secuencia prácticamente completa de nuestro ADN, los expertos no se ponen de acuerdo aún sobre cuántos genes tenemos con exactitud. Y la cosa acaba de complicarse un poco más: científicos de la universidad de Yale han confirmado en ratones la existencia de al menos un gen con su proteína asociada en lo que tiempo atrás se consideraba mero ADN basura.

En el año 2000 el Instituto Europeo de Bioinformática, el británico Ewan Birney, en el concurso GeneSweep ofrecia 3.000 dólares para quien acertara cuántos genes tenemos , todavía no se había publicado el primer borrador del Proyecto Genoma y participaron más de mil investigadores de todo el mundo: en promedio dijeron que teníamos 40.000, desde alguno que dijo unos 26.000 hasta otro que se fue más allá de los 312.000.

La definición de gen ha ido cambiando, se considera que es un segmento de ADN con la información necesaria para fabricar una proteína (previo paso intermedio por una molécula de ARN). Con esa asunción, ahora mismo se acepta que hay alrededor de 20.000 genes. Sin embargo, según un trabajo reciente firmado por varios investigadores españoles, seguramente haya un mínimo de 2.000 menos.

En algunos casos, lo que se llamó ‘ADN basura’ no solo marca el ritmo de la película, sino que también la protagoniza

Para filtrar de entre todo el ADN las partes candidatas a ser un gen, los científicos asumen al menos dos criterios: que comience por tres letras concretas y que tenga una longitud mínima antes de que aparezca una información de stop (un buen marco de lectura, en la jerga).

“Estos criterios eran muy restrictivos para predecir con precisión los genes codificadores de todo el genoma, una gran empresa que ha sido muy exitosa. Se necesitaban reglas fuertes para evitar cantidades enormes de errores”, comenta Ruahidri Jackson, primer firmante del nuevo trabajo. “Las reglas clásicas eran excelentes —añade—, pero, como con todas las reglas en biología, hay algunas excepciones”.

Desde hace tiempo se sospechaba que podía haber otras regiones del ADN dando lugar a lo que, por salirse de las reglas clásicas, se llamaron ‘productos proteináceos’. Ahora se ha demostrado por primera vez.

Si buena parte de lo que se llamó ‘ADN basura’ estaba en realidad activo y funcionaba regulando la acción de los genes a la manera de un director, resulta que hay casos en que los que no solo marca el ritmo de la película, sino que también la protagoniza. Contra la tendencia a la poda en el número de genes, aparecen ahora nuevos actores y funciones en lugares antes ignorados.

La universidad de Yale realizó lo que se conoce como una aproximación libre de hipótesis. Primero infectaron ratones de laboratorio con bacterias del tipo Salmonella y aislaron sus macrófagos, los glóbulos blancos de la sangre. Después hicieron el camino inverso a la investigación de búsqueda convencional.

.

El pilar central de la biología molecular dice que el ADN se transcribe a ARN y que este se traduce en proteínas dentro de los ribosomas, las verdaderas fábricas de la célula. En este caso, en lugar de estudiar directamente el ADN, se aprovecharon de una nueva técnica que permite aislar todo el ARN que ha llegado hasta estas fábricas y después desanduvieron el camino. Se trataba de observar, más que de predecir. Y eso puede acarrear sorpresas.

Cuando analizaron todo lo que pasaba, los números se agitaron. Hasta el 10 % del ARN tenía su origen en ADN no codificante. Para empezar, nunca debería haber llegado hasta allá. Pero eso no significa que esté dando lugar a proteínas, podría no ser funcional o degradarse nada más fabricarse.

En el ADN no codificante encontraron un gen que no solo daba lugar a una proteína, sino que esta era un mediador fundamental de la inflamación

Para buscar candidatos fiables en los que bucear, aplicaron unos criterios más laxos que los convencionales: fijaron una longitud mínima menor que la tradicional y se quedaron con aquellos que comenzaban con las cuatro combinaciones de letras más probables (en lugar de solo una).

Resultaron más de 200 candidatos y escogieron uno con el nombre (nada sexy) de Aw112010. Aprovechando las posibilidades de CRISPR —la nueva herramienta de edición genética— le hicieron todas las preguntas posibles y las respuestas fueron contundentes: no solo daba lugar a una proteína claramente identificable, sino que esta era un mediador fundamental de la inflamación, clave para que los ratones respondieran a la presencia de bacterias.

Si se impedía que esa proteína se formase, los animales acumulaban colonias de microorganismos que se diseminaban hacia el hígado y el bazo. Y al contrario: si se les provocaba una respuesta inflamatoria, como la que se produce en la enfermedad de Crohn o la colitis ulcerosa, su ausencia funcionaba como un factor protector. Aw112010 parece ser, realmente, un actor principal en una región antes olvidada.

“Este trabajo demuestra un caso concreto en que un ARN no codificante da lugar a una proteína y que esta tiene una función”, y reducia  el número de genes en humanos a unos 2000.

Ampliación del campo de búsqueda

Aunque solo lo han demostrado en ratones, es muy probable que sea cierto para la mayoría animales y plantas, creen los investigadores

 

Los candidatos podrían ser incluso más. El análisis se ha hecho en un solo tipo de células y ante un estímulo concreto, por lo que otras variantes podrían despertar respuestas y genes diferentes.

Jackson reconoce que “se necesitarán nuevos y grandes estudios para determinar el significado del trabajo más allá de este gen”, pero trasluce optimismo: “Los estudios de proteómica han hallado durante mucho tiempo grandes cantidades de material proteico que no corresponde con lo conocido. Creo que este es un gran descubrimiento”.

Jesús Méndez 

David Juan, investigador en el Instituto de Biología Evolutiva de Barcelona

27/7/2019 08:00 CEST

 

REGULADOR EPIGENÉTICO EN NEUROBLASTOMA

REGULADOR EPIGENÉTICO EN NEUROBLASTOMA

Secuenciar masivamente genomas tumorales ha permitido observar la trascendencia de los reguladores epigenéticos en el desarrollo del cáncer, puesto que están entre las proteínas más recurrentemente mutadas o alteradas en él.

El grupo de Cáncer y Enfermedades Hematológicas Infantiles del Vall d’Hebron Instituto de Investigación (VHIR) de Barcelona, en base a toda esa nueva evidencia en la literatura médica internaciomal, ha realizado un estudio con que concluye proponiendo, a modo de nueva estrategia terapéutica, bloquear mediante la reprogramación epigenética de las células tumorales el proceso de metástasis en pacientes pediátricos con neuroblastoma. Miembros del equipo del VHIR autor del estudio sobre el neuroblastoma. Foto: VHIR

¿Qué es la regulacion epigenética?

La regulación epigenética es la regulación de la expresión génica que no implica alteraciones en la secuencia de ácido desoxirribonucleico (ADN) ni en ninguno de sus productos transcritos.

La «regulación epigenética» se puede dar por cambios en la conformación de la cromatina según la interacción de esta con las histonas. Este es un nivel clave de regulación, ya que el estado en el que se encuentre la cromatina determina el momento, el lugar y la forma en que un gen puede ser expresado o no Louis Unger, el primer superviviente a una recaída de neuroblastoma en el  cerebro

Louis Unger, el primer superviviente a una recaída de neuroblastoma en el cerebro

En un artículo que han publicado en Molecular Cancer y en el que han colaborado grupos del Instituto de Investigación Biomédica de Barcelona (IRB) y del Instituto de Investigación Biomédica de Bellvitge (IDIBELL), han identificado el papel clave en la evolución del neuroblastoma de un regulador epigenético altamente alterado, el complejo remodelador de la cromatina BAF (o complejo BAF). Los resultados demuestran el relevante papel que tiene el citado complejo en el mantenimiento de un programa de expresión génica que permite a las células del neuroblastoma invadir y crecer en órganos diana del proceso metastásico.

La epigenética, también epigenoma1​ (del griego epien o sobre, –genética) es el estudio de los mecanismos que regulan la expresión de los genes sin una modificación en la secuencia del ADN que los compone. Establece la relación entre las influencias genéticas y ambientales que determinan un fenotipo.2

El término epigenética fue acuñado por C.H. Waddington en 1942 para referirse al estudio de las interacciones entre los genes y el ambiente que se producen en los organismos.3​ 4​ El biólogo definió como «el estudio de todos los eventos que llevan al desenvolvimiento del programa genético del desarrollo o el complejo proceso de desarrollo que media entre genotipo y fenotipo.3​ Se refiere al estudio de los factores que, sin corresponderse a elementos de la genética clásica, juegan un papel muy importante en la genética moderna interactuando con estos.
Los factores genéticos que son determinados por el ambiente celular —en lugar de por la herencia—, intervienen en la determinación de las etapas de desarrollo (ontogenia), desde la fecundación del cigoto y que igualmente interviene en la regulación heredable de la expresión génica sin corresponder a un cambio en la secuencia de nucleótidos.
Se puede decir que la epigenética es el conjunto de reacciones químicas y demás procesos que modifican la actividad del ADN, pero sin alterar su secuencia. Los cambios epigenéticos también pueden ocurrir en los humanos en respuesta a un cambio en la dieta.5​Las «marcas epigenéticas» se consideran como factores no genéticos. Las marcas epigenéticas no son genes, pero la genética moderna nos enseña que no solo los genes influyen en la genética de los organismos.6

Finalizado el Proyecto Genoma Humano en el 2003, los científicos se han dado cuenta de que hay mucho más en las bases moleculares del funcionamiento celular, el desarrollo, el envejecimiento y muchas enfermedades.7​ La idea que se tenía hace pocos años de que los seres humanos y los demás organismos son solo predominantemente lo que está escrito en nuestros genes desde la concepción, está cambiando rápidamente, y la ciencia avanza para lograr descifrar el lenguaje que codifica pequeñas modificaciones químicas capaces de regular la expresión de multitud de genes.8

La epigenética reinterpreta los conceptos clásicos y reconoce nuevos mecanismos a través de los cuales la información contenida en el ADN de cada individuo es traducida.9​Se está descifrando un nuevo lenguaje del genoma, al tiempo que debe introducirse la noción de que nuestras propias experiencias pueden marcar nuestro material genético de una forma hasta ahora desconocida, y que estas «marcas» pueden ser transmitidas a generaciones futuras.10
Se han distinguido mecanismos epigenéticos en una gran variedad de procesos fisiológicos y patológicos, que incluyen por ejemplo varios tipos de cáncer, patologías cardiovasculares, neurológicas, reproductivas e inmunes.

Explica el investigador responsable del laboratorio de Tumores Neurales del VHIR, que todas las células tienen el mismo ADN y hay un mecanismo que le dice a cada una de ellas qué tiene que expresar para que pueda hacer su función de manera adecuada. Ese es exactamente el papel de los complejos remodeladores de la cromatina, de los que hay tres; uno de ellos, el BAF. Esos complejos, dentro de la célula tumoral, hacen una función aberrante: le hacen creer a la célula ‘enferma’ que es lo que no es; de ahí que sus propiedades sean tan agresivas, hasta el punto de que puede saltar de unos tejidos y órganos a otros y sobrevivir en ellos aunque no sea su ambiente original. Apunta Segura que, por ejemplo, se ha comprobado en estudios en adultos que si el complejo BAF está mutado, y no funciona bien, provoca cáncer de pulmón.

Recuerda el especialista que el neuroblastoma es, como todos los tipos de cáncer pediátricos, un tumor raro; y dentro de los que afectan a los niños, supone entre el 8-10%. Es un tumor del sistema nervioso periférico (no aparece en el cerebro sino en riñones y ganglios) y es muy heterogéneo: hay niños que se curan solos y otros, con tumores muy agresivos, que no tienen cura. Se clasifican, en concreto, en función del riesgo y, de acuerdo con eso, el 85% de los casos de riesgo bajo o intermedio se curan, lo mismo que el 50% de los de alto riesgo, aunque en este caso con efectos secundarios de las terapias oncológicas a largo plazo.

El grupo del VHIR se ha centrado para su investigación en del 50% de niños con riesgo alto que, a pesar de la quimioterapia, radioterapia e inmunoterapia, van a recaer, situación para la que, por ahora, no hay alternativa más allá de ensayos clínicos de nuevas terapias.

Asegura que su equipo ha sido el primero en estudiar el complejo BAF en el neuroblastoma, lo que les ha permitido concluir que “tiene  papel oncogénico y puede servir de diana terapéutica”.

Su idea de nueva terapia consiste en abordar el complejo BAF en las células tumorales para bloquearlo genéticamente de tal forma que la célula cancerosa sí pueda llegar a otros órganos pero al llegar a ellos, muera, al no poderse adaptar a su nuevo ambiente. Es decir, buscan un fármaco que reproduzcan la disrupción estructural del complejo remodelador de la cromatina. Ese fármaco ‘destructor’ del complejo BAF no crearía efectos secundarios importantes puesto que ese complejo no funciona ya en el neuroblastoma.

De hecho, el grupo está buscando en librerías de fármacos un compuesto químico que tenga esa capacidad, y ya dispone de un listado de hasta 50 moléculas con potencial para la función que se precisa. Indica Segura que buscan un fármaco químico porque, en este caso, el complejo BAF funciona en el interior de la célula, en el núcleo, y actuar ahí sería bastante más complicado con una terapia biológica.

El equipo del VHIR ha demostrado en ratones que el complejo BAF es “muy necesario para colonizar otros órganos”, por lo que la terapia que buscan ahora sería exclusivamente para evitar metástasis. “Los tratamientos en oncología funcionan relativamente bien en cánceres primarios, pero no en metástasis”, recuerda Segura.

Su idea de nueva estrategia parece interesante para otros tumores. Segura confirma que quizá pacientes con glioblastoma, cáncer colorrectal o melanoma podrían beneficiarse, pero insiste en que su equipo se dedica a la oncología pediátrica.

El estudio ha contado con financiación de la Acción Estratégica en Salud del Instituto de Salud Carlos III y cn ayudas para la contratación de personal investigador predoctoral en formación (FI) de la Generalitat de Catalunya y el Fondo Social Europeo. El equipo investigador también destaca el apoyo de asociaciones de familiares de pacientes como la Asociación NEN, la Fundación Joan Petit, la Asociación Pulseras Candela, y a la Fundación Rotary.

El equipo del VHIR ha informado hoy de que llevó a cabo un estudio completo del complejo BAF en células de neuroblastoma, integrando datos proteómicos, transcriptómicos y de accesibilidad de la cromatina. “Hasta ahora, el papel de este regulador epigenético en neuroblastoma era muy enigmático, pero nuestros resultados arrojan luz sobre sus funciones como regulador del epigenoma de las células de estos tumores, y nos han permitido descubrir que es necesario para la expresión de un amplio conjunto de genes esenciales para el proceso de metástasis”, indica Carlos Jiménez, investigador postdoctoral del laboratorio de Tumores Neuronales y primer autor del trabajo.

Destaca asimismo que la inhibición de dos subunidades estructurales de este complejo multiproteico produce su desintegración estructural, lo que permite inactivar epigenéticamente un programa de expresión génica, reprimiendo simultáneamente múltiples efectores clave de la invasión metastásica. “Hemos identificado algo parecido a un interruptor epigenético que nos permite inactivar a la vez múltiples integrinas y cadherinas, proteínas de membrana que permiten a las células interactuar con su entorno e invadir nuevos órganos”, añade.

Los efectos de esta reprogramación epigenética se testaron en modelos de ratón, traduciéndose en un fuerte bloqueo de la invasión de órganos diana por parte de las células de neuroblastoma y del posterior crecimiento de las metástasis, y permitiendo ampliar de forma casi total la supervivencia de los animales.

Bibliografía

Gilbert, S.F., & Epel, D. (2009). Ecological Developmental Biology. Sunderlad: Sinauer Associates Inc.

De Baun, M., Niemitz, E. & Feinberg, A. P. 2003. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet. 72: 156-160.

Godfrey, K., Lillycrop, K., Burdge, G., Gluckman, P. & Hanson M. 2007. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 61:5R-10R.

Grabher, C., Von Boehmer, H. & Look, A. 2006. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 6:347–59.

Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. 33:245-54.

Jirtle R. & Skinner,M. 2007Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8(4):253-62.

Kaminker, P. (2007). «Epigenética, ciencia de la adaptación biológica heredable». Arch Argent Pediatr. 105 (6): 529-531.

O’Driscoll, L. 2006. The emerging world of microRNAs. Anticancer Res. 26(6):4271-8.

Rivenbark, A. G. & Coleman, W. B. 2007. The Use of Epigenetic Biomarkers for Preclinical Detection of Hepatocellular Carcinoma: Potential for Noninvasive Screening of High-Risk Populations. Clinical Cancer Research. 13: 2309-2312.

Ting A.; McGarvey, K.; Baylin, S. (2006). «The cancer epigenome components and functional correlates»Genes Dev. 20 (23): 3215-3231.

Toledo, S. 2020. Epigenética.EL ADN de la madre gestante. Cómo Mejorar Tus Genes y Dar a Luz un Super Bebé Concebido Naturalmente o por Donación de Ovulos.0-60 pag

Bedregal P.; Shand B.; Santos M.J.; Ventura-Juncá P. (2010). «Aportes de epigenetica en la comprensión del desarrollo humano»Rev Med Chile (Revisión) (Santiago: SciELO) 138 (3): 366-372.

Carmen Fernández. Barcelona

 

ADN PREHISTÓRICO QUE ACLARA LA EVOLUCIÓN HUMANA

ADN PREHISTÓRICO QUE ACLARA LA EVOLUCIÓN HUMANA

Svante Pääbo, con un modelo de cráneo de neandertal

Svante Pääbo, con un modelo de cráneo de neandertal

 

Los análisis de ADN prehistórico que han cambiado la comprensión de la evolución humana han sido galardonados con el premio Nobel de Medicina de este año. En 2014, se secuenció por primera vez el genoma de un neandertal, entre otras modificaciones genéticas se identificaron 96 aminoácidos (los componentes básicos que forman las proteínas) que difieren entre los neandertales y los humanos modernos. Desde entonces, se han estudiado todas para averiguar cuáles de ellas ayudaron a los humanos modernos a superar a los neandertales y a otros homininos.

La Asamblea Nobel del Instituto Karolinska de Estocolmo ha concedido el premio al sueco Svante Pääbo, del Instituto Max Planck de Antropología Evolutiva en Leipzig (Alemania).

Pääbo ha sido reconocido «por sus descubrimientos sobre los genomas de homininos extinguidos y sobre la evolución humana», según el veredicto de la Asamblea Nobel.

«A través de su investigación pionera, Svante Pääbo logró algo aparentemente imposible: secuenciar el genoma del neandertal, un familiar extinguido de los humanos actuales». «También realizó el descubrimiento sensacional de un hominino anteriormente desconocido, el denisovano».

Pääbo descubrió asimismo que los Homo sapiens y los neandertales se aparearon y tuvieron descendencia en común. Por ello, entre el 1% y el 4% del genoma de todas las personas de ascendencia europea o asiática es de origen neandertal.

El propio Pääbo se ha mostrado hoy sorprendido tras recibir la noticia del premio. «No pensaba que esto realmente cumpliera los requisitos para un premio Nobel.

«Sus descubrimientos sientan las bases para explorar lo que nos hace singularmente humanos».

Pääbo es hijo del bioquímico sueco Sune Bergström, que también ganó el premio Nobel de Medicina -lo hizo en 1982 por el descubrimiento de las prostaglandinas-.

Pääbo ha mantenido relación con investigadores españoles en las dos útimas décadas. De las seis investigaciones que la Asamblea Nobel cita como «publicaciones clave» en la carrera de Pääbo, dos tienen coautores españolas.

La primera fue la publicación del genoma completo de los neandertales en Science en 2010, que se basó en parte en restos hallados en la cueva del Sidrón en Asturias y en la que participaron el paleontólogo Antonio Rosas (director de las excavaciones del Sidrón, del Museo Nacional de Ciencias Naturales en Madrid), los especialistas en genómica Carles Lalueza-Fox y Tomàs Marquès-Bonet (del Institut de Biologia Evolutiva en Barcelona), y los prehistoriadores Javier Fortea y Marco de la Rasilla (de la Universidad de Oviedo). Todos ellos aparecen citados en el comunicado de la Asamblea Nobel que anuncia la concesión del premio a Pääbo.

Cita de nuevo a Tomàs Marquès-Bonet como coautor de la investigación sobre los denisovanos que Pääbo publicó en Nature en 2010.

EVOLUCIÓN HUMANA

La mutación de un gen impulsó la evolución del cerebro de los humanos modernos

Un pequeño cambio en el gen TKTL1  impulsó el crecimiento neuronal.

Sara Reardon

Cráneos de un humano moderno y de un neandertal [hairymuseummatt/

Hace más de 500.000 años, cuando los antepasados de los neandertales y los humanos modernos se dispersaron por el mundo, una mutación genética provocó que los cerebros de algunos de ellos mejorasen repentinamente. Esta mutación, de la que se informa en Science, incrementó drásticamente el número de células cerebrales en los homininos anteriores a los humanos modernos. Eso les pudo conferir una ventaja cognitiva sobre sus primos neandertales.

Arnold Kriegstein, neurólogo de la Universidad de California en San Francisco, señala que «este gen es sorprendentemente importante». Espera que resulte ser una de las muchas alteraciones genéticas que confirieron una ventaja evolutiva a los humanos sobre otros homininos. «Creo que arroja nueva luz sobre la evolución humana.»

Anneline Pinson y Wieland Huttner, neurocientíficos del Instituto Max Planck de Biología Celular Molecular y Genética de Dresde, afirman que un gen en concreto es uno de los posibles responsables. El gen TKTL1 codifica una proteína que se fabrica cuando el cerebro del feto se desarrolla. Una única mutación genética en la versión humana de TKTL1 cambió un aminoácido, lo que dio lugar a una proteína diferente de las encontradas en los ancestros de los homínidos, los neandertales y los primates no humanos.

Esta proteína impulsa la proliferación de células progenitoras neuronales a medida que se desarrolla el cerebro, concretamente en una zona llamada neocorteza, implicada en la función cognitiva.

Esto, dio a los humanos modernos de una ventaja cognitiva sobre sus antepasados.

Para comprobarlo, Pinson y su equipo insertaron el gen TKTL1 en el cerebro de embriones de ratón y hurón; en unos, introdujeron la versión humana, y en otros, la versión ancestral. Los animales con el gen humano desarrollaron un número significativamente mayor de células progenitoras neuronales. Cuando los investigadores modificaron las células de la neocorteza de un feto humano para que produjeran la versión ancestral, descubrieron que en el tejido fetal había menos células progenitoras y menos neuronas de las que tendría en circunstancias normales. Lo mismo ocurrió cuando insertaron la versión ancestral de TKTL1 en organoides cerebrales (estructuras similares a un minicerebro cultivadas a partir de células madre humanas).

Los registros fósiles indican que los humanos y los neandertales tenían aproximadamente el mismo tamaño cerebral. Esto significa que la neocorteza de los humanos modernos es más densa u ocupa una mayor parte del cerebro. A Huttner y a Pinson les sorprendió que un cambio genético tan pequeño pudiera afectar al desarrollo de la neocorteza de forma tan drástica.

Según Huttner, «fue una mutación casual que tuvo enormes consecuencias».

Alysson Muotri, neurocientífica de la Universidad de California en San Diego, es más escéptica, añade, el genoma neandertal se comparó con el de un europeo moderno, pero las poblaciones humanas de otras partes del mundo podrían compartir algunas variantes genéticas con los neandertales.

Pinson señala que la versión neandertal de TKTL1 es muy rara entre los humanos modernos y añade que se desconoce si causa alguna enfermedad o provoca diferencias cognitivas.

Según Huttner, la única manera de demostrar que desempeña un papel en la función cognitiva sería diseñar genéticamente ratones o hurones que siempre tuvieran la forma humana del gen, y comparar su comportamiento con animales que tuvieran la versión ancestral. Pinson planea investigar más a fondo los mecanismos a través de los cuales TKTL1 favorece la proliferación de células progenitoras neuronales.

Tenemos que pensar cuidadosamente, el mayor fraude científico de la historia, se esta viendo en nuestro tiempo cuando se sospecha que las imágenes que demostraban la proteína beta amiloide en la enfermedad mdel Alzheimer, están trucadas

Autores

Svante Pääbo, estudios pioneros sobre los genomas de especies extinguidas

Jens Schlueter / Getty

JOSEP CORBELLA

 

MAPA FUNCIONAL DE GENES QUE SE EXPRESAN EN CÉLULAS HUMANAS

MAPA FUNCIONAL DE GENES QUE SE EXPRESAN EN CÉLULAS HUMANAS

El mapa se ha obtenido con un método basado en el sistema de edición del genoma CRISPR/Cas9 para hacer cambios genéticos en las células.

El método 'Pertub-seq' permite introducir cambios, como en esta célula de cerebro murino. Foto: Laboratorio de P. Arlotta (Harvard) El método ‘Pertub-seq’ permite introducir cambios, como en esta célula de cerebro murino. Foto: LABORATORIO P. ARLOTTA (HARVARD)

Investigadores del Instituto Whitehead de Investigación Biomédica del Instituto de Tecnología de Massachusetts (MIT) publican hoy en Cell el primer mapa funcional completo de genes que se expresan en células humanas. Los datos de este proyecto, que relaciona cada gen con su labor en la célula, están disponibles en la página web del laboratorio Weissman para que otros científicos los utilicen. Según sus autores, son la culminación de años de colaboración con el método Perturb-seq (también conocido como CRISP-seq) de secuenciación de una sola célula.

Jonathan Weissman, primer firmante del trabajo, destaca el hecho de que los datos sean accesibles a toda la comunidad científica. «Es un gran recurso en el sentido de que el genoma humano es un gran recurso: puedes acceder e investigar basándote en descubrimientos. En lugar de definir con anticipación qué biología vas a observar, dispones de este mapa de las relaciones genotipo-fenotipo y puedes acceder y revisar la base de datos sin tener que hacer ningún experimento”.

Este abordaje permitió a los investigadores profundizar en diversas cuestiones biológicas: lo usaron para explorar los efectos celulares de genes con funciones desconocidas, para investigar la respuesta de las mitocondrias al estrés y para detectar genes que causan la pérdida o ganancia de cromosomas, un fenotipo que ha resultado difícil de estudiar en el pasado. «Creo que este conjunto de datos permitirá todo tipo de análisis que aún no hemos pensado por parte de personas que provienen de otros campos de la biología y que ahora tienen disponible», ha añadido Tom Norman, ex postdoctorado del laboratorio Weissman y coautor principal del artículo.

El proyecto se basa en Perturb-seq, que permite seguir el impacto de activar o desactivar genes con una profundidad sin precedentes. Este método de secuenciación fue publicado por primera vez en 2016 por un grupo de investigadores que incluye a Weissman y al profesor del MIT Aviv Regev, pero entonces solo podía usarse en pequeños conjuntos de genes y a un gran coste económico. El siguiente paso fue crear una nueva versión de Perturb-seq que pudiera ampliarse. Los resultados se publicaron en una prueba de concepto en Nature Biotechnology en 2020.

El método Perturb-seq usa la edición del genoma CRISPR/Cas9 para introducir cambios genéticos en las células. Además, usa la secuenciación de ARN de una sola célula para capturar información sobre los ARN que se expresan como resultado de un cambio genético determinado. Los ARN controlan todos los aspectos del comportamiento de las células, por lo que este método puede ayudar a decodificar los muchos efectos celulares de los cambios genéticos.

En el estudio recién publicado, los investigadores ampliaron el método a todo el genoma: utilizaron líneas celulares humanas de cáncer de sangre y células no cancerosas derivadas de la retina, realizando el análisis con Perturb-seq en más de 2,5 millones de células y usando los datos para construir un mapa completo que relaciona genotipos con fenotipos.

Al completar el análisis, los investigadores decidieron usar el nuevo conjunto de datos y examinar algunas preguntas biológicas. “La ventaja de Perturb-seq es que te permite obtener un gran conjunto de datos sin sesgos”, ha destacado Tom Norman. “El primer uso fue investigar los genes con funciones desconocidas. Debido a que el análisis también lee los fenotipos de muchos genes conocidos, los investigadores podrían usar los datos para comparar genes desconocidos con los conocidos y buscar resultados transcripcionales similares, lo que podría sugerir que los productos genéticos trabajaron juntos como parte de un complejo más grande.

En el análisis, destacó la mutación del gen C7orf26: los investigadores notaron que los genes cuya eliminación conducía a un fenotipo similar formaban parte de un complejo de proteínas llamado Integrator, que desempeñaba un papel en la creación de pequeños ARN nucleares. El complejo Integrator está formado por muchas subunidades más pequeñas -estudios previos habían sugerido 14 proteínas individuales- y los investigadores pudieron confirmar que C7orf26 constituía un decimoquinto componente del complejo. También descubrieron que las 15 subunidades trabajaban juntas en módulos más pequeños para realizar funciones específicas dentro del complejo Integrator.

Otra ventaja de Perturb-seq es que, debido a que el ensayo se enfoca en células individuales, los investigadores podrían usar los datos para observar fenotipos más complejos que se enturbian cuando se estudian junto con datos de otras células. «A menudo tomamos todas las células en las que se silencia un determinado gen y hacemos una media para ver cómo cambiaron», ha explicado Weissman. “Pero a veces, cuando silencias un gen, diferentes células que están perdiendo ese mismo gen se comportan de manera diferente. Y ese comportamiento puede pasar desapercibido por el estudio conjunto de células”.

Los investigadores encontraron que un subconjunto de genes cuya eliminación condujo a diferentes resultados de una célula a otra era responsable de la segregación cromosómica. Su eliminación estaba causando que las células perdieran un cromosoma o añadieran uno extra (aneuploidia). «No se podía predecir cuál era la respuesta transcripcional a la pérdida de este gen, porque dependía del efecto secundario de qué cromosoma se ganaba o se perdía», ha detallado Weissman. “Nos dimos cuenta de que podíamos cambiarlo y crear este fenotipo compuesto en busca de firmas de cromosomas que se ganaban y perdían. De esta forma, hemos realizado el primer análisis de todo el genoma de los factores necesarios para la correcta segregación del ADN”, ha destacado.

Para Norman, el estudio de la aneuploidía es la aplicación más interesante de estos datos hasta el momento. El motivo es que permite capturar un fenotipo “que solo puedes obtener usando una lectura de una sola célula”.

Los investigadores también utilizaron su conjunto de datos para estudiar cómo respondían las mitocondrias al estrés: cuando alteraron diferentes genes relacionados con las mitocondrias, el genoma nuclear respondió de manera similar a muchos cambios genéticos diferentes. Sin embargo, las respuestas del genoma mitocondrial fueron mucho más variables.

“Todavía hay una pregunta pendiente sobre por qué las mitocondrias todavía tienen su propio ADN”, ha apuntado Joseph Replogle, investigador en el laboratorio Weissman y primer co-autor del artículo. “Una conclusión general de nuestro trabajo es que uno de los beneficios de tener un genoma mitocondrial separado podría ser tener una regulación genética localizada o muy específica en respuesta a diferentes factores estresantes”, ha resumido.

En el futuro, los investigadores esperan usar Perturb-seq en diferentes tipos de células además de la línea de células cancerosas en la que comenzaron su investigación. También esperan continuar explorando su mapa de funciones genéticas y desean que otros hagan lo mismo. “Esta es realmente la culminación de muchos años de trabajo de los autores y otros colaboradores y estoy muy complacido de ver que continúa teniendo éxito y expandiéndose”,.

Referencias

Instituto Whitehead de Investigación Biomédica del Instituto de Tecnología de Massachusetts (MIT) en Cell el primer mapa funcional completo de genes 

Javier Granda Revilla. Madrid

Vie, 10/06/2022 – 09:29

 

EPIGENETICA

EPIGENÉTICA

Cancer y gen metilado

La epigenética es un campo de la ciencia, todavía incipiente, que tendrá implicaciones muy importantes sobre cómo abordamos nuestra salud y la de las generaciones futuras.

La palabra epigenética significa literalmente «por encima de los genes», y eso resume perfectamente el epigenoma.

Todos tenemos nuestro ADN único, siempre y cuando no se tenga un gemelo idéntico. Y casi todas las células de nuestro cuerpo contienen todo nuestro ADN y todos los genes que nos hacen ser quienes somos. Esto se conoce como el genoma. Pero, no todas las células son iguales, por ejemplo, nuestras células cerebrales hacen cosas diferentes a las del corazón, que a su vez se comportan de manera diferente a las células de la piel.

Nuestras células tienen todas la misma información, en forma de ADN, ¿pero hacen cosas diferentes?

Aquí es donde entra en juego la epigenética. Básicamente es una capa de instrucción por encima del ADN al que le dice qué activar, cómo actuar, etc.

Esto es similar a una orquesta en la que nuestro ADN serían los músicos y el epigenoma sería el director, que les dice a las células qué deben hacer y cuándo hacerlo. La orquesta de cada persona es diferente. Por eso, aunque el epigenoma no cambia nuestro ADN, si que es el responsable de decidir qué genes se expresarán y cuales no. Epigenética | Oryzon

Resumiendo, cada célula con todo su ADN espera instrucciones externas, las cuales vienen en forma de un grupo METILO, un compuesto hecho de carbono e hidrógeno. Estos grupos metilo se unen a los genes, haciéndoles saber cuándo expresarse y cuándo permanecer inactivos, y se unen de manera diferente dependiendo de en qué parte del cuerpo se encuentra el ADN. Además hay otras moléculas que son las HISTONAS que también juegan un papel muy importante en cómo se expresan los genes, pues las histonas son las proteínas alrededor de las cuales se enrolla el ADN. La forma en que este el ADN empaquetado alrededor de la histona juega un papel importante en la fuerza con que se expresa un gen. Identifican miles de variaciones epigenéticas en el genoma humano

En resumen, los grupos metilo le dicen a la célula qué es, por ejemplo «eres una célula de la piel, y esto es loque tienes que hacer», y las histonas deciden como va a comportarse esa célula de la piel . Cada célula tiene esta combinación de metil e histona, que le indica qué hacer y en que medida.

Sin el epigenoma dando instruccionesal genoma de las células, nuestro cuerpo no sabría qué hacer.

Nuestro genoma es el mismo desde que nacemos hasta que morimos, nuestro epigenoma va cambiando a lo largo de nuestra vida, decidiendo qué genes se activan o desactivan.

En ocasiones, estos cambios suceden cuando se producen cambios físicos importantes en nuestro cuerpo, como puede ser la pubertad o durante el embarazo. Pero, como la ciencia está comenzando a descubrir, existen otros factores externos que también pueden provocar cambios epigenéticos. Cosas como cuánta actividad física realizamos, qué y cuánto comemos, nuestro nivel de estrés, fumar o beber mucho entre otras cosas, pueden provocar cambios en nuestro epigenoma y afectar la forma en que los grupos metilo se unen a las células.

Estos cambios pueden causar errores, y conducen a enfermedades y otros trastornos.

Debido a que el epigenoma cambia constantemente, sería lógico pensar, que cuando nacemos cada uno de nosotros comenzaríamos con una digamos una pizarra limpia, en blanco, es decir, que nuestros padres no nos pasarían sus epigenomas. Y si bien eso es lo que debería suceder, a veces estos cambios epigenéticos se atascan en los genes y se transmiten a los hijos.

Un ejemplo de esto es el Síndrome de Invierno del Hambre Holandés. Los bebés expuestos a la hambruna prenatal durante la Segunda Guerra Mundial en los Países Bajos tenían un mayor riesgo de enfermedad metabólica más adelante en la vida y tenían diferente metilación del ADN de un gen en particular en comparación con sus hermanos del mismo sexo que no estaban expuestos a la hambruna.

“Estos cambios persistieron seis décadas después.“ Las firmas epigenéticas del dolor crónico - Genotipia Metilacion en el dolor

”Otro estudio encontró que, si bien los gemelos idénticos son en gran medida indiferenciables entre sí cuando nacen, a medida que envejecen, existen grandes diferencias en sus grupos metilo e histonas, lo que afecta la forma en que sus genes se expresan y explican las diferencias en su salud. El ADN dañado o debilitado que se replica puede inevitablemente crear estados de expresión epigenética alternativos que pueden afectar a varias generaciones. Además, la alteración de la replicación del ADN durante el desarrollo embrionario o prenatal tiene consecuencias epigenéticas para un gen, o el conjunto completo de ADN del organismo.

Si bien la epigenética está todavía en pañales, hay muchas cosas que hacen que parezcan apasionantes.

En primer lugar podría cambiar la forma en que tratamos las enfermedades pues si el epigenoma controla cómo se comportan los genes, un epigenoma erróneo puede comportarse como una mutación genética. Esto nos podría conducir a tener un mayor riesgo de enfermedades autoinmunes o el cáncer, incluso aunque los genes sean perfectamente normales. A medida que se sepan más cosas sobre las causas de los errores epigenéticos, sería posible desarrollar medicamentos que modifiquen los grupos metilo o las histonas que estén causando esos errores, pudiendo desarrollarse una cura para esas enfermedades causadas por epigenética.

En segundo lugar podría cambiar la forma en que tratamos las adicciones. Pues como es bien sabido algunas personas son más vulnerables a las adicciones que otras. Pero no hay un gen de la adicción, pues es una combinación de factores heredados y ambientales lo que conducen a una adicción.

Los mecanismos epigenéticos juegan un papel muy importante en lo que se refiere a las adicciones, pues influyen en cómo se expresan los genes para desarrollar una adicción y también cómo esa predisposición a la adicción se transmite a la descendencia. Una mejor comprensión de cómo el epigenoma afecta la adicción podría significar cambiar la forma en que se trata para evitar que la descendencia tenga un mayor riesgo de padecerla.

En tercer lugar podría cambiar la forma en que abordamos los traumas.

Una de las teorías sobre la epigenética trata de explicar cómo un evento traumático, como podría ser sobrevivir al Holocausto, podrían cambiar el epigenoma de una persona y el de su descendencia.

Un pequeño estudio sugiere que los hijos de los supervivientes del Holocausto heredaron una respuesta específica al estrés.

Otro estudio mostró que los hijos de mujeres embarazadas durante los ataques de septiembre en las torres de New York tenían niveles más bajos de cortisol, lo que podría hacerlos más vulnerables al trastorno de estrés postraumático. Estos estudios al ser muy pequeños tienen sus detractores, pero si bien pueden no ser concluyentes, no es difícil pensar que eventos traumáticos mayores podrían encontrar una manera de alterar el epigenoma de alguien lo suficiente como para transmitirlo a su descendencia.

La epigenética es por ahora un campo de investigación muy joven y muchos de los estudios sobre el tema son muy muy pequeños, por lo que es difícil afirmar que sean concluyentes. Además nadie está seguro en que medida influye lo que hacemos en el epigenoma. Si bien tener unos buenos hábitos, como llevar una dieta saludable, hacer ejercicio regularmente no consumir alcohol se sabe que influye positivamente en tu salud, ¿Pueden estos buenos hábitos revertir cualquier daño anterior que ya hayamos causado al epigenoma?

Pues esto no está claro en humanos. La mayor parte de los trabajos llevados a cabo en epigenética hasta ahora han sido hechos en animales, y aún queda por ver cómo se comporta en humanos. Múltiples cosas influyen en la epigenética como son, el entorno, los medicamentos, la dieta, la edad, a medida que se envejece se producen mas daño en el ADN, pero hay que tener en cuenta que todos los factores epigenéticos funciona de manera conjunta y también que no hay nada que podamos hacer por el momento para evitar morir cuando toque. Lo que si es cierto es que las decisiones que tomemos en cuanto a alimentación o entorno pueden ayudar a retrasar o acelerar el envejecimiento. Un alto nivel de emociones afecta a cómo se expresan los genes.

De igual forme la mala nutrición también modifica la forma en que los genes van a expresarse.

La remisión espontánea de ciertas enfermedades , donde alguien que tiene una enfermedad, de repente sana posiblemente la epigenetica tiene aquí también una acción apasionante.

Este sorprendente y grandioso descubrimiento, le queda mucho por ver.

Pero si esta clara que las lesiones del genoma pueden ser evitables y reparables.

Queda un capitulo por entender, el de las enfermedades psiquiátricas, que posiblemente son producidas por daños genómicos en cadena.

Pero seguro que también los encontraremos.

Referencias

Iridoy Zulet, Marina; Pulido Fontes, Laura; Ayuso Blanco, Teresa; Lacruz Bescos, F.; Mendioroz Iriarte, Maite (septiembre de 2017). «Modificaciones epigenéticas en neurología: alteraciones en la metilación del ADN en la esclerosis múltiple»Neurología (en inglés) (Elsevier España, S.L.U.) 32 (7): 463-468. doi:10.1016/j.nrl.2015.03.011. Consultado el 10 de octubre de 2018.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. ‘Genes Dev 2009;23:781-783.

Waddington CH. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci USA 1939;25:299-307.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. ‘Genes Dev 2009;23:781-783.

Michael Mosley (16 de septiembre de 2015). «El extraordinario impacto para tu salud de lo que comía tu madre en el embarazo»BBC News, Mundo. Consultado el 20 de mayo de 2022.

Epigenética, mucho más que genes, ADC Murcia, 30 de enero de 2014.

José Luis García-Giménez (2012). Epigenética. La gramática del código genéticoJournal of Feelsynapsis, ISSN 2254-3651. 4:34-38.

García Azkonobieta, T.(2005). Evolución, desarrollo y (auto)organización. Un estudio sobre los principios filosóficos de la evo-devo Archivado el 12 de abril de 2012 en Wayback Machine.: tesis doctoral dirigida por Miren Arantzazu Etxeberria Agiriano. Universidad del País Vasco, Donostia-San Sebastián.

«Epigenética»www.revistaeidon.es. Archivado desde el original el 21 de septiembre de 2016. Consultado el 10 de septiembre de 2016.

Gilbert, S. F., & Epel, D. (2009). Ecological Developmental Biology. Sunderlad: Sinauer Associates Inc.

Watt, W. B. (1969). Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. PNAS, 63 (3), 767-774.

Nijhout, H. F. (1999). Control mechanisms of polymorphic development in insects. BioScience, 42, 181-192.

Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution and Development, 5, 9-18.

Woodward, D. E., & Murray, J. D. (1993). On the effects of temperature-dependent sex determination on sex ratio and survivorship in crocodilians. Proceedings of the Royal Society of London, 252, 149-155.

Kroon, F. J., Munday, P. L., Westcott, D. A., Hobbs, J. P., & Liley, N. R. (2005). Aromatase pathway mediates sex change in each direction. Proceedings. Biological Sciences, 272, 1399-1405.

Plowright, R. C., & Pendrel, B. A. (1977). Larval growth in bumble bees. The Canadian Entomologist, 109, 967-973.

Kucharski, R., Maleszka, J., Foret, S., & Maleszka, R. (2008). Nutritional Control of Reproductive Status in Honeybees via DNA Methylation. Science, 319, 1827-1830.

Emlen, D. J. (1997). Alternative reproductive tactics and male dimorphism in the horned beetle Ontophagus acuminatus (Coleoptera:Scarabaeidae). Behavioral ecology and sociobiology, 141, 335-341.

Emlen, D. J., & Nijhout, H. F. (1999). Hormonal control of male horn length dimorphism on the horned beetle Ontophagus taurus. Journal of Insect Physiology, 45, 45-53.

Emlen, D. J. (2000). Integrating development with evolution: a case study with beetle horns. BioScience, 50, 403-418.

 Mardones L.; Villagrán M.; Lanuza F.; Leiva A.M.; Troncoso C.; Martínez-Sanguinetti M.A.; Peterman-Rocha F.; Celis-Morales C. (2019). «La trascendencia de la alimentación prenatal: Desde la hambruna holandesa hasta la realidad chilena». Rev. chil. pediatr. (Santiago) 90 (4).

Black, M. P., Moore, T. B., Canario, A. V., Ford, D., Reavis, R. H., & Grober, M. S. (2005). Reproduction in context:Field-testing a lab model of socially controlled sex change in Lythrypnus dalli. Journal of Experimental Marine Biology and Ecology, 318, 127-143

Mark A. Dawson, Tony Kouzarides, and Brian J.P. Huntly. Targeting epigenetic readers in cancer. N Engl J Med, 2012; 367:647-657, August 16, 2012.

Geutjes E, Bajpe P, Bernards R. Targeting the epigenome for treatment of cancer. ‘Oncogene 2012; 31(34): 3827-3844, Agust 23, 2012.

Paoloni-Giacobino, Ariane (2014).

EL MILAGRO DE LA CREACIÓN

EL MILAGRO DE LA CREACIÓN

Esto que aquí veis es una semilla de Sandia qué plante hace unos seis meses.

Si, Plante como cien semillas cuidadosamente y he necesitado, eso, seis meses para que brote esta preciosa planta.

Lo importante no es la planta, sino que de algo tan pequeñito y sutil , como una semilla ha brotado, eso si cuando le ha parecido oportuno y ha podido, una plantita, preciosa y que dará si Dios quiere una sandia hermosa y sabrosa.

¿Como es posible? que de este pequeña cosita de apariencia inanimada, pueda brotar vida con toda sus característica.

Nace, crece se reproduce y eso si muere.

Es un milagro y un milagro a mi alcance.

Es la vida que brota pase lo que pase y después se comporta como los seres vivientes.

Seguro que el estudio del genoma de la simiente y su consecuente conversión en ser vivo, lo pueda explicar.

Me ha costado seis meses y plantar cientos de semillas, para que tras seis meses mas o menos brote, al principio de una manera sutil, insegura, un poquito de verde sobre la semillita y PLUN, la vida y mi alegría de verla varias veces al dia.

Cuando la vi germinar mi cabeza se lleno de ideas.

Es la vida, esto es la vida.

Pero a nivel humano, las semillitas son aun mas pequeñas y también están llenas de vida y de promesas.

Y desde esta pequeña semillita extrapolándola a un ser humano como yo por ejemplo, todas las posibilidades de alegrías y también de dolor.

Esto se repite y como dice mi amigo el poeta Angel Garcia Lopez.

“porque crecer es solo el argumento que de la flor tiene una simiente”

Los poetas tienen una sensibilidad especial para describir los acontecimientos.

EL MILAGRO DE LA CREACIÓN

Esto que aquí veis es una semilla de Sandia qué plante hace unos seis meses.

Si, Plante como cien semillas cuidadosamente y he necesitado, eso, seis meses para que brote esta preciosa planta.

Lo importante no es la planta, sino que de algo tan pequeñito y sutil , como una semilla ha brotado, eso si cuando le ha parecido oportuno y ha podido, una plantita, preciosa y que dará si Dios quiere una sandia hermosa y sabrosa.

¿Como es posible? que de este pequeña cosita de apariencia inanimada, pueda brotar vida con toda sus característica.

Nace, crece se reproduce y eso si muere.

Es un milagro y un milagro a mi alcance.

Es la vida que brota pase lo que pase y después se comporta como los seres vivientes.

Seguro que el estudio del genoma de la simiente y su consecuente conversión en ser vivo, lo pueda explicar.

Me ha costado seis meses y plantar cientos de semillas, para que tras seis meses mas o menos brote, al principio de una manera sutil, insegura, un poquito de verde sobre la semillita y PLUN, la vida y mi alegría de verla varias veces al dia.

Cuando la vi germinar mi cabeza se lleno de ideas.

Es la vida, esto es la vida.

Pero a nivel humano, las semillitas son aun mas pequeñas y también están llenas de vida y de promesas.

Y desde esta pequeña semillita extrapolándola a un ser humano como yo por ejemplo, todas las posibilidades de alegrías y también de dolor.

Esto se repite y como dice mi amigo el poeta Angel Garcia Lopez.

“porque crecer es solo el argumento que de la flor tiene una simiente”

Los poetas tienen una sensibilidad especial para describir los acontecimientos.

 

OLIGODENDROCITOS, LCR Y MEMORIA. 

OLIGODENDROCITOS, LCR Y MEMORIA.

La comprensión reciente de cómo el entorno sistémico da forma al cerebro a lo largo de la vida ha dado lugar a numerosas estrategias de intervención para retrasar el envejecimiento cerebral  . El líquido cefalorraquídeo (LCR) constituye el entorno inmediato de las células cerebrales, proporcionándoles compuestos nutritivos . Reciente descubrimiento han demostrado que la infusión de LCR joven directamente en cerebros envejecidos mejora la función de la memoria.

Inmunosenescencia o vejez del sistema inmune

Las células gliales son células del tejido nervioso y son esenciales ya que tienen varias funciones como dar soporte mecánico a las neuronas, formar tejido cicatricial después de lesiones cerebrales, eliminar residuos después de la muerte celular, etc. Hay varios tipos de células gliales o neuroglía: astrocitos, oligodendrocitos, células gliales radiales y microglía.

El análisis imparcial del transcriptoma del hipocampo identificó a los oligodendrocitos como los más sensibles a este entorno de LCR rejuvenecido. Además, demostramos que el LCR joven aumenta la proliferación y diferenciación de células progenitoras de oligodendrocitos (OPC) en el hipocampo envejecido y en cultivos primarios de OPC. Usando SLAMseq para etiquetar metabólicamente el ARNm naciente, identificamos el factor de respuesta sérica (SRF), un factor de transcripción que impulsa el reordenamiento del citoesqueleto de actina, como un mediador de la proliferación de OPC después de la exposición al LCR joven.

Con la edad, la expresión de SRF disminuye en las OPC del hipocampo, y la vía es inducida por inyección aguda con LCR joven. Examinamos los posibles activadores de SRF en LCR y descubrimos que la infusión del factor de crecimiento de fibroblastos 17 es suficiente para inducir la proliferación de OPC y la consolidación de la memoria a largo plazo en ratones de edad avanzada, mientras que el bloqueo de afecta la cognición en ratones jóvenes. Estos hallazgos demuestran el poder rejuvenecedor del LCR joven e identifican a como un objetivo clave para restaurar la función de los oligodendrocitos en el cerebro que envejece.

Ilustración de neuronas en que se aprecia la mielina que recubre los axones

Ilustración de neuronas en que se aprecia la mielina que recubre los axones

Getty Images/Science Photo Libra

Aumentar el nivel de la proteína FGF17 en el hipocampo, una región del cerebro clave en la memoria y el aprendizaje, puede evitar la pérdida de memoria con la edad, según una investigación de la Universidad de Stanford (California, EE.UU.) presentada hoy en la revista Nature.

La investigación, realizada en ratones y estos resultados se consideran extensibles a personas, aclara por qué la memoria se deteriora con el envejecimiento y cómo evitarlo. La investigación parte de la observación de que el cerebro está bañado en líquido cefalorraquídeo, que le aporta proteínas para su correcto funcionamiento, y que la composición de este líquido cambia con la edad. Los cambios en el líquido cefalorraquídeo, razonaron los investigadores, pueden estar relacionados con el deterioro de la salud cognitiva en personas mayores.

En un primer experimento, inyectaron líquido cefalorraquídeo de ratones jóvenes (de 10 semanas de edad) en el cerebro de ratones viejos (de 18 meses). Observaron que los ratones viejos recuperaban una capacidad de adquirir nuevos recuerdos propia de ratones jóvenes.

Para averiguar a qué se debía este efecto rejuvenecedor, analizaron qué genes estaban activos en el hipocampo tras la inyección de líquido cefalorraquídeo. Se centraron en el hipocampo porque es una estructura del cerebro implicada en la memoria y la orientación espacial, y una de las más afectadas por el deterioro cognitivo asociado a la edad.

Descubrieron así que, en el hipocampo de los ratones tratados, SE ALTERAN LA ACTIVIDAD DE 271 GENES. Al estudiar en qué células se modifica más la actividad de los genes, descubrieron que no es en las neuronas sino en los oligodendrocitos. Se trata de células de soporte que forman la mielina de las neuronas y la vaina aislante que recubre los axones, sin la cual las neuronas no pueden funcionar correctamente). La clave del deterioro de la memoria con la edad, por lo tanto, estaría en los oligodendrocitos.

Experimentos posteriores revelaron que el origen del problema estaba en realidad en las células progenitoras de oligodendrocitos, a partir de las que se forman las células que restauran la mielina de las neuronas. Y concretamente, en la proteína SRF, que regula la maduración de los oligodendrocitos y que es la más activada por el tratamiento con líquido cefalorraquídeo de ratones jóvenes.

Un experimento en ratones demuestra que una proteína del sistema nervioso de individuos de corta edad rejuvenece los cerebros envejecidos

Imagen de microscopio de las células cerebrales de los ratones que recibieron líquido cefalorraquídeo de personas jóvenes.

Imagen de microscopio de las células cerebrales de los ratones que recibieron líquido cefalorraquídeo de personas jóvenes algo llamado parabiosis —coser costado a costado a una rata vieja y otra joven, por ejemplo— basta para recuperar la fuerza en los músculos, el correcto funcionamiento del hígado o revertir la obesidad.

Hace unos años, siguiendo la idea de la parabiosis con métodos menos contundentes, el equipo del neurólogo Tony Wyss-Coray demostró que los ratones viejos recuperan la memoria y la capacidad cognitiva tras una simple inyección de plasma sanguíneo extraído a ratones jóvenes. Esto probó que por la sangre corren dos tipos de moléculas: unas están en el plasma joven y activan la regeneración de los tejidos y otras están presentes en el plasma de ratones viejos e impiden esa renovación. Algunas de esas moléculas del plasma se están probando ya en ensayos clínicos con personas que sufren alzhéimer moderado

El nuevo estudio, también liderado por Wyss-Coray, da una vuelta de tuerca en busca de nuevas moléculas rejuvenecedoras. El neurólogo ha sustituido el plasma por el líquido cefalorraquídeo, la sustancia que baña el sistema nervioso y el cerebro e intercambia moléculas con ellos. Los investigadores extrajeron este fluido a ratones de dos meses y medio de edad —equivalente a nueve años humanos—y lo inyectaron en el cerebro a ratones de 18 meses —unos 70 años—. Después pusieron a prueba la memoria de esos ratones ancianos, que en condiciones normales no son capaces de recordar una sencilla secuencia de eventos: primero se enciende una luz y después sufren una pequeña descarga eléctrica. Los roedores que recibieron el líquido cerebral comenzaron a ponerse alerta al encenderse la bombilla. Habían recuperado la memoria.

Entre un ratón aterrorizado porque prevé un calambre y una persona incapaz de reconocer a su hijo por culpa del alzhéimer hay un abismo inmenso, pero posiblemente subyacen mecanismos biológicos compartidos. Los científicos analizaron el cerebro de estos animales y comprobaron que habían comenzado a generarse nuevos oligodendrocitos, un tipo de células que componen la sustancia blanca del cerebro y que sirven de sustento para la sustancia gris donde están las neuronas. Estas células producen proteínas que forman un cable protector para los axones, las prolongaciones con las que se comunican las neuronas y que pueden llegar a medir un metro de longitud. El estudio muestra que la producción de nuevos oligodendrocitos se da en el hipocampo, el epicentro cerebral de la memoria. Y parece haber una biología compartida, pues los investigadores también inyectaron líquido cefalorraquídeo de personas jóvenes a los ratones viejos y registraron un efecto rejuvenecedor similar. En cambio, el mismo fluido de personas mayores reduce la capacidad de regeneración celular.

Los científicos han identificado una proteína del líquido cefalorraquídeo joven llamada Fgf17 —sigla inglesa de factor de crecimiento de fibroblasto 17— que es capaz de activar la producción de oligodendrocitos jóvenes por sí sola.

Esta proteína “es necesaria para la formación del encéfalo durante el desarrollo de un embrión, pero no se sabe casi nada sobre su producción y función en los cerebros de adultos y personas mayores”, explica Tal Iram, investigadora de la Universidad de Stanford (EE UU) y primera autora del estudio, publicado en la revista Nature, referente de la ciencia mundial. “Los oligodendrocitos son únicos porque sus progenitores siguen presentes en el cerebro a edades avanzadas, aunque su maduración es muy lenta. Nuestro estudio sugiere que manipular las proteínas del líquido cefalorraquídeo permite rejuvenecer estas células y mejorar la memoria en cerebros envejecidos”, resalta.

Las patólogas del Hospital Infantil de Boston (EE UU) Miriam Zawadzki y Maria Lehtinen reconocen que este trabajo “es rompedor”. “La proteína Fgf17 es una posible diana terapéutica y además sugiere que llevar fármacos al líquido cefalorraquídeo puede ser beneficioso contra la demencia [causada por el alzhéimer en el 80% de los casos]”, añaden en un comentario al estudio.

Tres expertos independientes resaltan la originalidad del trabajo y su valía como conocimiento fundamental de las enfermedades neurodegenerativas. El alzhéimer se ha curado en ratones un sinfín de veces, pero seguimos sin tener ni una sola cura para personas, recuerda Jesús Ávila, veterano investigador de esta enfermedad en el Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC). “Aún no sabemos por qué sucede esto”, reconoce. Parte de la explicación puede estar en que ratones y humanos llevan millones de años de evolución por separado. La proteína tau, que está asociada al alzhéimer, se acumula dentro de las neuronas impidiendo su correcto funcionamiento. El equipo de Ávila ha descubierto una forma alternativa de esta proteína que no contribuye a la enfermedad y que solo existe en humanos, pues ni ratones ni primates tienen las variantes genéticas necesarias para fabricarla. Es posible que haya muchas otras diferencias similares que aún desconocemos, argumenta el investigador.

Carlos Dotti investiga el envejecimiento cerebral en el mismo centro que Ávila. Este trabajo es “importante porque demuestra que se puede rescatar la memoria”, opina. El problema es que la proteína Fgf17 y el mecanismo molecular en el que está involucrada no solo genera nuevas células cerebrales, sino que al promover la proliferación podría también generar tumores, advierte. “En cualquier caso se abre una vía muy buena para buscar otras proteínas con potencial terapéutico en el líquido cefalorraquídeo”.

Se deduce Fgf17, es vital para que los oligodendrocitos produzcan mielina y estos permitan la memoria. Lo complicado es que se alteran la actividad de 271 genes, ¿y a estos genes quien los lesiona?

Bibliografía:

Tal Iram, Universidad de Stanford (EE UU)

Kettenmann, H., Hanisch, U. K., Noda, M., & Verkhratsky, A. (2011 Physiology of microglia. Physiological reviews91(2), 461-553.

Jesús Ávila, veterano investigador de esta enfermedad en el Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC).

 

« Entradas anteriores