El blog del Dr. Enrique Rubio

Categoría: INMUNIDAD (Página 1 de 7)

CAR-T TRATAMIENTO DEL CÁNCER CON CÉLULAS MANIPULADA

CAR-T TRATAMIENTO DEL CÁNCER CON CÉLULAS MANIPULADAS

La inmunidad celular es aquella realizada mediante el ataque directo de las células inmunes contra los agentes externos al organismo. La inmunidad humoral es el principal mecanismo de defensa contra los microorganismos extracelulares y sus toxinas, y se realiza mediante anticuerpos que atacan a los antígenos de las células extrañas al organismo.

Un CART consiste en rediseñar las células “buenas” del organismo de un paciente para combatir un cáncer. Pero no cualquier célula. No. Las seleccionadas son los linfocitos T.

inmunoterapia CAR linfocito T

Un linfocito T es una célula de nuestro propio organismo, el de todos, pacientes y personas sanas. Los linfocitos son unidades fundamentales de nuestro cuerpo. Son creados por nuestra médula ósea, una substancia que se encuentra dentro de nuestros huesos y contiene las células madre de la sangre que, a posteriori, se convertirán en glóbulos rojos, glóbulos blancos o plaquetas.

Los glóbulos blancos (o leucocitos) son parte del sistema inmunitario de nuestro cuerpo. Nos ayudan a combatir infecciones, elementos extraños (microorganismos, células tumorales o antígenos en general), etc…. Hay 3 grandes tipos de glóbulos blancos: los granulocitos (neutrófilos, eosinófilos y basófilos), los monocitos y los linfocitos (células T y células B).

Los linfocitos T, que se desarrollan en el timo, participan en la respuesta inmunitaria celular** de nuestro organismo; y los linfocitos B, que se desarrollan en la médula ósea y luego migran a diferentes tejidos linfáticos, son los encargados de la respuesta humoral** transformándose en plasmocitos que producen anticuerpos.

Los linfocitos T tienen un receptor especial en la membrana de las células que es específico de ellos y se llama, en inglés, T cell receptor.

Cada año, más de 6.400 personas son diagnosticadas de leucemia en España, es el cáncer infantil más frecuente (un 30% de las neoplasias en niños).

Además de la leucemia, quizá el cáncer de la sangre más conocido, muchas personas también son diagnosticadas de linfomas, mieloma múltiple, síndromes mielodisplásicos, entre muchos otros

Una persona que padece un cáncer de la sangre como una leucemia o un linfoma, por ejemplo, tiene una médula ósea que no está funcionando correctamente. Por causas todavía desconocidas, las células madre de la sangre empiezan a fabricar en cantidades excesivas una línea celular, por ejemplo, los linfocitos. Estos linfocitos son inmaduros (linfoblastos), se multiplican rápidamente y desplazan a las células normales de la médula ósea, el tejido blando del centro de los huesos dónde se forman las células sanguíneas.

Lo que pretende la quimioterapia es administrar una serie de fármacos muy potentes y que estos erradiquen completamente las células cancerígenas (y, desgraciadamente, también las sanas). Cuando los tratamientos de quimioterapia no son suficientes, bien porque la enfermedad no remite, bien porque reaparece, en algunos cánceres de la sangre, los hematólogos pueden plantear un trasplante de células madre de la sangre (médula ósea, sangre periférica o sangre de cordón umbilical).

Básicamente, un trasplante de células madre de la sangre (llamado, médicamente, trasplante de progenitores hematopoyéticos) consiste en “substituir” la médula ósea dañada del paciente por una nueva. En un trasplante autólogo, se tratan las propias células madre de la sangre del paciente y se le vuelven a infundir y, en un trasplante alogénico, éstas se substituyen por las células de un donante sano. Muchos cánceres de la sangre pueden requerir un trasplante de células madre: las leucemias agudas, los linfomas, el mieloma múltiple o los síndromes mielodisplásicos, entre otros.

¿Qué ocurrió en abril de 2012?

carl June inmunoterapia CART

Tenemos que remontarnos un poco más atrás. El Dr. Carl June es un inmunólogo y oncólogo americano que trabaja en la Universidad de Pensilvania (Filadelfia, Estados Unidos).

El Dr. June empezó su carrera como investigador centrándose sobre todo en el virus de inmunodeficiencia humana (VIH). Su idea era estimular el propio sistema inmunitario de estos pacientes para luchar contra el SIDA. Pero sus prioridades cambiaron cuando a su mujer le diagnosticaron un cáncer de ovario en 1996, cuando tenía 41 años. June intentó desarrollar entonces una inmunoterapia contra el cáncer, pero no logró convencer a ninguna compañía de que invirtiera en el proyecto. Cuando su mujer murió en el 2001, June decidió dedicarse a tiempo completo a la inmunoterapia del cáncer.

¿Qué es un CART?

Las células tumorales expresan unos receptores en sus membranas. En cada subtipo de la enfermedad, estas células, y, por lo tanto, los receptores, son distintos y se denominan con “nombres” diferentes. Por ejemplo, los receptores de las células de una leucemia linfoblástica aguda o de algunos linfomas no Hodgkin de tipo B como el linfoma no Hodgkin de células B grandes, se llaman CD19; los del linfoma de Hodgkin o de algunos tipos de linfomas no Hodgkin de tipo T, CD30; o los del mieloma múltiple, CD38. Estos “CD” (cúmulo de diferenciación) son antígenos celulares que se expresan en las membranas de las células tumorales y están formados por cadenas de aminoácidos.

Pero, volvamos a los linfocitos T. Como ya hemos dicho anteriormente, estos están “entrenados” para matar células extrañas del organismo. Podríamos decir que son “naturalmente asesinos”. Pero, en una analogía bélica poco adecuada pero muy descriptiva, podríamos decir que están diseñados biológicamente para “matar moscas a cañonazos”. Erradican muchas células extrañas que se encuentran, pero no todas y no específicamente. Un CART podría definirse, con nuestra analogía, como un calibrado de estas células. Sería coger estos linfocitos T que ya tiene el paciente y saben destruir células, y diseñarlos concretamente para acabar con los receptores concretos de las células tumorales: CD19, CD30, CD38…. según la enfermedad que se esté tratando.

¿Cómo se administra un CART?

Se extraen los linfocitos T del propio paciente a tratar. Pongamos por caso que es un paciente de leucemia linfoblástica aguda de tipo B (ya hemos comentado anteriormente que las células tumorales de este paciente expresan unos antígenos llamados CD19).

Mediante un lentivirus, un virus cuyo periodo de incubación es muy largo, los inmunólogos infectaran a estos linfocitos T con un virus perpetuo anti-CD19 y los multiplicaran en el laboratorio.

Tienen los parámetros ambientales estrictamente controlados: partículas en aire, temperatura, humedad, flujo de aire, presión interior del aire, iluminación…

A posteriori, tras un ciclo de acondicionamiento con quimioterapia, se infundirán estas células anti-CD19 de nuevo en el paciente. De esta manera, en el paciente quedarán unos linfocitos T perpetuos cargados con “armamento anti-CD19” que se llamarán CART anti-CD19.

inmunoterapia CART 3

El primer CART que se llevó a cabo en Estados Unidos fue el CART anti-D19 para leucemia linfoblástica aguda de tipo B infantil, el que se administró a Emily Whitehead. Este ensayo clínico fue posible gracias a una gran farmacéutica, Novartis. Hasta 2016, los tratamientos de inmunoterapia CART que se realizaron en Estados Unidos fueron ensayos clínicos de grandes empresas farmacéuticas. En 2016, Novartis inició el primer ensayo clínico de esta inmunoterapia en algunos hospitales pediátricos de Europa. En nuestro país, los primeros CARTs se realizaron como ensayo clínico en el Hospital Sant Joan de Déu de Barcelona.

Los resultados de estos primeros ensayos clínicos fueron espectaculares y completamente sorprendentes para el mundo de la medicina en general y de la hematología en particular. El 80% de los pacientes estaban libres de la enfermedad un año después de someterse al CART. Es importante destacar que todos estos pacientes eran niños o personas muy jóvenes, todos menores de 25 años, que no habían respondido a ninguno de los tratamientos previos, incluidos trasplantes de células madre de la sangre.

A pesar de ello, la coyuntura de estos ensayos clínicos es complicada. La mayoría de tratamientos  CART se suministran a través de una farmacéutica y, por lo tanto, son ensayos clínicos privados, y su coste es muy alto.

En paralelo a estos descubrimientos, algunos grupos de hematólogos e inmunólogos decidieron avanzar para crear unos CARTs llamados “académicos”. Son CARTs impulsados por un hospital universitario, en nuestro país, público, y, por lo tanto, con un coste mucho más asequible. El Hospital Clínic de Barcelona, de la mano del Dr. Álvaro Urbano-Ispizua y del inmunólogo, Dr. Manuel Juan, fueron los primeros en tener a punto un CART académico anti-CD19. Una vez logrados los permisos de la Agencia Española del Medicamento, se empezó el primer ensayo clínico con CART académico anti CD19 en el Hospital Clínic, para adultos, y en el Hospital Sant Joan de Déu para niños. Todos los receptores tenían que ser pacientes con leucemia linfoblástica aguda de tipo B y menores de 25 años. Los resultados también fueron los esperados. En paralelo, en varios hospitales también se continuaron los ensayos clínicos del CART anti-CD19 comercial de la industria farmacéutica).

A pesar de que los primeros resultados fueron apabullantes (>80% de pacientes libres de la enfermedad), los científicos pronto vieron que había que perfeccionar algunos aspectos de esta nueva terapia. En primer lugar, se dieron cuenta que la administración del CART provocaba en el paciente una reacción grave llamada “síndrome de liberación de citoquinas”. El síndrome de liberación de citocinas se presenta por una liberación masiva y rápida en la sangre de las células afectadas por la inmunoterapia. Las citocinas son sustancias que tienen muchas acciones diferentes en el cuerpo. Los signos y síntomas del síndrome de liberación de citocinas incluyen fiebre, náuseas, dolor de cabeza, sarpullidos, latidos cardíacos rápidos, presión arterial baja y dificultad para respirar. La mayoría de los pacientes tienen una reacción leve, pero, a veces, la reacción es grave o pone en peligro la vida. Por ello, se crearon equipos multidisciplinarios para tratar a estos pacientes y, hoy en día, es una complicación que se ha sabido manejar positivamente.

Por otra parte, se vio como algunos pacientes “perdían” los CARTs con el paso del tiempo, perdiendo por supuesto también la reacción inmunológica contra las células tumorales. A pesar de ello, hoy en día el 40-50% de los pacientes que se someten a un CART anti-CD19 siguen libres de la enfermedad pasado un año. Un resultado a mejorar, por supuesto, pero de momento, exitoso.

Actualmente, en nuestro país conviven los ensayos clínicos de CART comerciales y los académicos. No solamente se han desarrollado inmunoterapias CART anti-CD19 para leucemia linfoblástica aguda de tipo B sino también para linfomas no Hodgkin de tipo B como el linfoma difuso de células grandes, por ejemplo. Están ya en curso ensayos clínicos con inmunoterapia anti-CD30 para linfoma de Hodgkin y linfomas no Hodgkin de tipo T y, se están estudiando esta terapia para otras dolencias como la leucemia mieloide aguda. También hay centros españoles que han iniciado ensayos clínicos, tanto académicos como comerciales, con inmunoterapia CART para mieloma múltiple.

La inmunoterapia CART es el futuro de la curación de muchos cánceres de la sangre. En un futuro se espera poder desarrollar estrategias de tratamiento CART también para pacientes con otras neoplasias hematológicas o, incluso, tumores sólidos. El campo de aplicación de esta terapia es muy amplio.

Pero la inmunoterapia CART no es el futuro por si sola. De hecho, hoy en día se están realizando tratamientos de CART incluso a pacientes que se no consigue hacer remitir la enfermedad para conseguir erradicarla y, a posteriori, realizarles un trasplante de células madre de la sangre. La inmunoterapia CART es una nueva arma que deberá complementar y regularse junto con el arsenal terapéutico ya existente.

 

Carl H. June, inmunólogo y pionero en la terapia con células CAR-T confía en que este tipo de tratamientos llegue también a otras patologías no oncológicas.

En 1999, June empezó a aplicar, ya en la Universidad de Pensilvania, sus conocimientos sobre el VIH para intentar estimular al sistema inmune frente a la enfermedad. Así surgió un programa de entrenamiento para que ciertas células inmunitarias, los linfocitos T, atacaran con mayor precisión y potencia a las células tumorales. Mediante ingeniería genética modificaron linfocitos T para que expresaran un marcador, un receptor antigénico quimérico (CAR, en su acrónimo inglés). “Como sabía mucho sobre el VIH, fuimos los únicos que utilizamos este tipo de virus [modificado para que no cause enfermedad] para colocar la molécula CAR en las células T y resulta que era una buena forma. Tuve suerte. Haberme formado en diferentes disciplinas resultó ser una ventaja muy grande y algo que nunca hubiera planeado. Fue un accidente causado por la guerra”, resume con sencillez.

La terapia con células CAR-T de June cosechó resultados sorprendentes en sus primeros ensayos iniciados en 2010 con pacientes afectados por leucemia linfocítica crónica refractaria y recidivante, incluida poco después una niña de seis años que ahora es una adolescente sin rastro de la enfermedad. Hoy, hay varias compañías farmacéuticas que comercializan células CAR-T para diversas indicaciones, todas de cáncer hematológico. En España, un total de 15 hospitales están autorizados para administrarlas a los pacientes, mediante un proceso que implica extraer los linfocitos del paciente, modificarlos genéticamente en un laboratorio e introducirlos de nuevo en el enfermo para que ataquen a las células enfermas.

Deben superarse otras barreras para que esta terapia pueda funcionar en otros tumores?
Son mas difíciles que en el cáncer hematológico, porque el cáncer sólido tiene más formas de apagar el sistema inmunológico; cuenta con muros, algunos hechos con tejido cicatricial, para evitar que los invasores entren. En el cáncer de la sangre, las células CAR-T no tienen que atravesar una pared para llegar hasta la célula tumoral. Por esto estamos trabajando en diversos enfoques, como combinar las células CAR-T con un virus capaz de infectar al tumor para ayudar a los linfocitos a entrar. De hecho, esta investigación la llevamos a cabo con un equipo de Barcelona, con Ramón Alemany, quien desarrolló el virus oncolítico, y Sònia Guedan, que estuvo haciendo un posgrado en mi laboratorio de Pensilvania. Tenemos un ensayo clínico abierto en cáncer de ovario. También vamos a ensayar el cáncer de páncreas con esta estrategia combinada. Y creo que habrá muchos más estudios en esta línea. Es una forma de derribar los muros, que parece muy prometedora. Hay muchas investigaciones aquí en España y en todo el mundo para tratar de hacer que funcione en el cáncer sólido. Y está funcionando en ratones y está empezando a funcionar en algunos ensayos en humanos, por ejemplo, se han visto datos emocionantes en un reciente ensayo sobre cáncer cerebral infantil en Stanford. Hay mil ensayos ahora, sin embargo, es importante recordar que estamos en el campo de la investigación. De momento, la terapia CAR-T solo está aprobada para el cáncer de sangre.

«Las CAR-T está empezando a funcionar, en el campo de la investigación, en tumores como el de páncreas, cerebral y de ovario»

También se está trabajando en otras enfermedades diferentes al cáncer, como el lupus, .

Las células CAR-T aplicadas al cáncer activan el sistema inmunitario, pero también puede ser interesante desactivarlo, por ejemplo, en el caso de las enfermedades autoinmunes o para evitar el rechazo en un trasplante de riñón. Si se pudiera diseñar una célula que desactivara específicamente la respuesta contra el órgano trasplantado, tendríamos un tratamiento más seguro para el paciente, que no contraería ni siquiera infecciones. En esa dirección se está investigando mucho con las llamadas células T reguladoras (Tregs). Acabamos de empezar un ensayo en la Universidad de Pensilvania con este tratamiento. En el lupus que menciona, se ha tratado ya a algunos pacientes en un ensayo, en la Universidad de Erlangen, en Alemania, con resultados emocionantes.

También hemos publicado datos en ratones donde hemos tratado la fibrosis cardíaca. Y hay muchas enfermedades en las que se generan cicatrices, por ejemplo, en los pulmones.

Vamos a ver cómo se utilizan las células manipuladas para muchos tipos de enfermedades aparte del cáncer. Todavía es pronto, pero creo que podremos tratar con células modificadas incluso patologías como la esclerosis múltiple o la enfermedad de Alzheimer, donde se acumulan proteínas en el cerebro. Casi todas las enfermedades tienen algún tipo de componente de inflamación, y podemos intentar dirigir células modificadas para que actúen sobre las moléculas que causan el daño.

P. Volviendo a las actuales células CAR-T. Es cierto que están añadiendo vida a un grupo de pacientes, pero no siempre funcionan, ¿cómo mejorarlas?
R. Hay varias estrategias para aumentar su eficacia. Por un lado, están las combinaciones, como la de los virus oncolíticos que comentaba para alcanzar mejor a los tumores. También está la idea de manipular a la célula T para que sea más potente, convertirla en un especie súper célula T, mediante la modificación de sus genes.

Otra categoría de investigación, es conseguir que la célula CAR-T luche contra el microambiente del tumor, que es lo que lo protege y favorece su crecimiento.

Y también se avanza en conseguir que los linfocitos T tengan el mismo efecto que los anticuerpos que inhiben los llamados puntos de control (checkpoint), la inmunoterapia que se emplea ahora en algunos tipos de cáncer. Esta es un área muy prometedora, pues se obtendrían una célula CAR-T que de forma local, una vez en el tumor, secrete los anticuerpos. Una de mis colaboradoras, Marcela Maus, que ahora está en Harvard, trabaja con células CAR-T que segregan BiTE [del inglés, anticuerpo biespecífico de células T], un anticuerpo que tiene dos especificidades, es muy complejo. Se une a una célula T y a la célula tumoral. De esta forma, la célula CAR-T cuenta con su propio anticuerpo dirigido al tumor y aporta ese anticuerpo biespecífico que puede dirigirse al microambiente del tumor. Como ve, hay mucha investigación y muy esperanzadora en este campo.

Un potencial por explorar en las CAR: fibrosis cardíaca, lupus y hepatitis B

La Red Española de Terapias Avanzadas se hace más fuerte en España

Las CAR-T se consolidan en linfoma, leucemia y mieloma múltiple

P. Además, existe la posibilidad de utilizar otras células diferentes los linfocitos T.
R. Sí, como las células asesinas naturales (CAR-NK) y también los hay macrófagos, que llamamos CAR-Ms. Tenemos un ensayo en la Universidad de Pensilvania con macrófagos, que literalmente se comen las células tumorales. Mientras que las células T hacen agujeros en la célula tumoral provocando que muera, los macrófagos las eliminan por fagocitosis. Esperamos que, dado que acaban de forma diferente con el tumor, puedan ser dos aproximaciones sinérgicas.

Un problema de estas terapias es su alto coste, que también dificulta el acceso a todos los pacientes que lo necesiten, la logística de la fabricación es muy complicada y se necesita a profesionales altamente cualificados, pero hay ejemplos que nos indican que esto no tiene que ser siempre así. El caso de los coches, por ejemplo, con Henry Ford, se fabricaban con trabajadores en una línea de montaje y ahora el 80% o más de un coche está fabricado por robots. Tendrá que llegar la automatización de la fabricación celular, lo que reducirá su coste drásticamente.

Y otro forma de abordar el problema también será utilizar en lugar de las propias células T del paciente, células ya listas, cultivadas en grandes lotes y disponibles para cualquier enfermo. Esto también haría más accesible.

Esto es una cuestión de ingeniería, no hace falta ningún descubrimiento científico. Es como aprender a hacer teléfonos móviles mejores y más baratos. Ahora estamos en esa etapa de conseguir que la fabricación de la terapia celular se abarate y terminará haciéndose directamente en el hospital, sin esperar tantos días para su producción. Ahora ya sabe que extraen la sangre del paciente, la envían a un centro de fabricación, cuando están listas, congelan las células y las envían de vuelta, para que el médico las infunda en el paciente. Todo eso se hará en un futuro en el lugar donde está el paciente, de forma más sencillo y mucho menos costosa. ►

¿Qué hospitales administran CARTs en España y cómo lo hacen?

Para explicar qué hospitales administran CARTs y si estos son académicos o comerciales es necesario entender por qué diferentes fases para la aprobación de un ensayo clínico en nuestro país.

Fases IMPRESCINDIBLES (en la práctica y en la legalidad) para producir un tratamiento eficaz

fases ensayo clínico

Como se puede leer en la gráfica adjunta, después de los estudios celulares y los estudios en modelos animales, un tratamiento entra en una fase de ensayo clínico denominada Fase I. Para a ello, el equipo debe haber demostrado la efectividad del nuevo tratamiento con 3 pruebas exitosas en modelos animales en condiciones GMP*, haber presentado toda la documentación a la Agencia Española del Medicamento y haber recibido su verificación y autorización. Solo entonces, se podrá llevar a cabo una prueba en unos 10-30 pacientes debidamente seleccionados.

Una vez analizados estos resultados en estos pocos pacientes, se continua o no el ensayo en Fase 2, 3, etc… Son procedimientos muy costosos y complicados.

En el caso del CART anti-CD19, se llevaron a cabo en España todas las pruebas pertinentes y, en diciembre de 2018, la Ministra de Sanidad, Consumo y Bienestar Social, María Luisa Carcedo, anunció la aprobación de la financiación de la primera terapia CART de la industria farmacéutica privada en el Sistema Nacional de Salud (SNS). Se trataba del CART anti-CD19 de Novartis (Kymriah®), indicado para tratar la leucemia linfoblástica aguda (LLA) de células B refractaria, en recaída postrasplante de médula ósea o en segunda o posterior recaída en pacientes pediátricos y adultos jóvenes de hasta 25 años de edad y para la indicación de linfoma B difuso de célula grande (LBDCG), en recaída o refractario tras dos o más líneas de tratamiento sistémico en pacientes adultos. La ministra realizó este anuncio junto a la presentación del Libro blanco de la terapia celular en España, de la Red de Terapia Celular Española del Instituto de Salud Carlos III.

¿Cuál es el criterio para la selección de pacientes para someterse a una inmunoterapia CART?

Según el Ministerio de Sanidad, en el caso de los pacientes de leucemia linfoblástica aguda B, se consideran pacientes candidatos a iniciar un tratamiento de inmunoterapia CAR-T anti CD19 los siguientes pacientes:

Pacientes pediátricos y adultos jóvenes hasta 25 años.

Pacientes de leucemia linfoblástica aguda B (LLA-B) CD19+ refractaria o en recaída:

– Segunda o posterior recaída de la enfermedad tras el tratamiento con dosis convencionales de quimioterapia/terapia de anticuerpo monoclonal.

– Cualquier recaída que ocurra tras un trasplante alogénico de progenitores hematopoyéticos (alo TPH o trasplante procedente de un donante).

– Enfermedad refractaria primaria que no logra alcanzar respuesta completa tras la segunda línea de quimioterapia estándar.

– Enfermedad refractaria secundaria definida como no lograr una respuesta completa después de 1 ciclo de quimioterapia estándar en casos de LLA en recaída.

– Pacientes en recaída que no son candidatos por criterio clínico a un aloTPH (trasplante de donante), pero que están en un estado funcional adecuado para el tratamiento con inmunoterapia CAR-T.

Según el Ministerio de Sanidad, en el caso de los pacientes de linfoma difuso de células B grandes, se consideran pacientes candidatos a iniciar un tratamiento de inmunoterapia CAR-T anti CD19 los pacientes:

Pacientes adultos (mayores de 18 años).

Pacientes de linfoma difuso de células B grandes (LDCBG), linfoma folicular transformado a LDCBG o linfoma primario del mediastino.

Pacientes con la enfermedad en recaída o refractaria tras al menos 2 líneas de tratamiento sistémico, definida por uno de los criterios que vienen a continuación, y que o bien el paciente no hubiera respondido al trasplante autólogo o bien no fuera candidato por criterios clínicos:

– Pacientes con LBDCG que ha recibido 2 o más líneas de terapia sistémica y recae después de la ultima línea o es refractario a la ultima línea de terapia sistémica.

-Pacientes con linfoma folicular transformado que ha recibido 2 o mas líneas de terapia sistémica desde el diagnóstico de transformación y recae después de la ultima línea o es refractario a la ultima línea de terapia sistémica.

Breve Bibliografia

Carl H.June es director del Centro de Inmunoterapias Celulares de la Universidad de Pensilvania.

Foto: ÁNGEL NAVARRETE.

Sonia Moreno. Madrid Vie, 09/09/2022 – 17:47

 

ANTICUERPOS CONTRAS LAS RESISTENCIAS TUMORALES

ANTICUERPOS CONTRAS LAS RESISTENCIAS TUMORALES

Buscar salidas a la resistencia a inmunoterapias es otro de los grandes logros en oncología. Foto: DM.

 

Foto: DM. Raquel Serrano. Madrid Mié, 18/05/2022 – 09:30

Vencer la resistencia a inmunoterapias es otro de los grandes logros en oncología Su actividad podría llenar un vacío clínico en tumores refractarios a la terapia con inhibidores de punto de control anti-PD(L)1.

Un anticuerpo de última generación, el GEN1046, ha mostrado que puede reestablecer la actividad antitumoral en pacientes de cáncer, incluso en aquellos con tumores sólidos refractarios avanzados.

Los datos preliminares de esta investigación con inmunoterapia se publican en Cancer Discovery y se desprenden de un ensayo desarrollado en la  Clínica Universidad de Navarra, en Pamplona, con la participación del Vall d’Hebron Instituto de Oncología (VHIO), que forma parte del Campus Vall d’Hebron, en Barcelona.

El fármaco GEN1046 se ha probado por primera vez en un ensayo clínico fase I en 61 pacientes con tumores sólidos refractarios avanzados.

La molécula ha demostrado efectos inmunológicos farmacodinámicos en sangre periférica consistentes con su mecanismo de acción, toxicidad manejable y actividad clínica objetiva temprana en pacientes muy pretratados, incluidos los casos de aquellos con tumores resistentes a la inmunoterapia previa con anti-PD-(L)-1.

Según Elena Garralda, jefa del Grupo de Desarrollo Clínico Precoz de Fármacos del Vall d’Hebron Instituto de Oncología (VHIO), «hasta el 65,6% de los pacientes experimentaron el control de la enfermedad. Esta elevada tasa sugiere una importancia clínica para esta población».

Elena Garralda, jefa del Grupo de Desarrollo Clínico Precoz de Fármacos del Vall d’Hebron Instituto de Oncología (VHIO). Foto: VHIO. Elena Garralda, jefa del Grupo de Desarrollo Clínico Precoz de Fármacos del Vall d’Hebron Instituto de Oncología (VHIO). Foto: VHIO.

La fase I de este ensayo está basada en los resultados positivos de estudios preclínicos. Para comprobar el efecto de GEN1046 en las células tumorales, se realizaron diferentes pruebas tanto ‘in vitro’ como en modelos animales.

En estos ensayos se demostró que este nuevo fármaco era capaz de conseguir que tumores insensibles a los inhibidores del punto de control tuvieran una respuesta gracias a su doble especificidad.

Bloqueos combinados

De esta forma, y según los datos del estudio, se  logró una potente actividad antitumoral que confería además protección contra inóculos del mismo tumor en los ratones estudiados y mejoraba significativamente la llegada al tejido tumoral de células T CD8+ capaces de destruir células cancerosas.

A juicio de Garralda, este hecho se puede atribuir a la combinación del bloqueo de PD-L1 junto con actividad agonista sobre 4-1BB, es decir, una actividad estimuladora del sistema inmune, ya que el bloqueo de PD-L1 solo con un análogo de durvalumab, un anticuerpo monoclonal anti-PD-L1, no conseguía este efecto».

Freno y acelerador

El tratamiento estándar con la inmunoterapia convencional emplea el bloqueo de las proteínas PD-1 o PD-L1 para evitar que las células tumorales pasen desapercibidas para el sistema inmunitario y permitir que las células T las detecten y las destruyan.

De este bloqueo de la proteína PD-L1 -receptor de muerte celular programada- se encargan los llamados inhibidores de puntos de control. No obstante, muchos pacientes no responden a esta terapia de bloqueo o se benefician de sus efectos por un tiempo limitado, antes de sufrir una recaída.

El anticuerpo GEN1046, según Ignacio Melero, codirector del Servicio de Inmunología e Inmunoterapia de la Clínica Universidad de Navarra, investigador senior del Cima y autor senior del ensayo, está diseñado para combinar el bloqueo de la proteína PD-L1 con la estimulación condicional del antígeno 4-1BB.

«Por tanto, es capaz de desactivar un freno crucial del sistema inmunitario (PD-L1) a la vez que ‘pisa’ un acelerador de gran importancia (4-1BB) capaz de activar aquellas células del sistema inmune que pueden ser capaces de destruir células tumorales».

Ignacio Melero, codirector del Servicio de Inmunología e Inmunoterapia de la Clínica Universidad de Navarra, en Pamplona. Foto: CUN.

Varios tratamientos de inmunoterapia que usan el antígeno 4-1BB como diana ya han demostrado resultados esperanzadores en estudios clínicos.

Sobre la relevancia de los efectos de este equilibrio de fuerzas, el especialista de la Clínica Universidad de Navarra señala que «aunque conocemos desde hace casi dos décadas que el bloqueo de PD-L1 coopera con la estimulación de 4-1BB, no ha sido hasta ahora que podemos hacerlo en pacientes con un único fármaco biespecífico».

«Este anticuerpo podría llenar un vacío clínico para el tratamiento de la enfermedad refractaria al tratamiento con inhibidores de punto de control anti-PD(L)1», señala Melero.

El fármaco GEN1046 surge de la colaboración entre las biofarmacéuticas Genmab y Biontech, que han promovido el estudio y que comparten la autoría del trabajo.

En este estudio clínico ha tenido una participación destacada la Unidad de Investigación de Terapia Molecular del Cáncer (UITM)-CaixaResearch que dirige Elena Garralda y quien sostiene que «la capacidad de GEN1046 para conferir un beneficio clínico en algunos casos de tumores típicamente menos sensibles a la inmunoterapia supone un importante avance».

Datos decisivos en fase 2

El siguiente paso del desarrollo clínico del fármaco será un estudio fase 2, que ya está en curso, para proporcionar datos adicionales de eficacia y seguridad, así como ayudar a definir las estrategias de tratamiento más adecuadas.

Esta fase será esclarecedora, ya que según Melero «aunque los resultados son prometedores, es prematuro sacar conclusiones sobre eficacia hasta que dispongamos de los resultados de ensayos clínicos en fase 2 actualmente en curso».

La inmunoterapia es un campo fascinante de la investigación del cáncer que está cambiando la forma de pensar sobre el tratamiento la inmunoterapia usa el sistema inmunitario del cuerpo para combatir el cáncer

El sistema inmunitario es una red compleja de órganos, tejidos y células, e incluye las sustancias que elaboran uno de los propósitos del sistema inmunitario es eliminar los gérmenes del cuerpo, como las bacterias; y las células anormales, como las células cancerosas

La inmunoterapia refuerza el sistema inmunitario de distintas maneras para que destruya mejor las células cancerosas

Los inhibidores de puntos de control inmunitario son el tercer tipo de inmunoterapia están en la superficie de las células y controlan la respuesta inmunitaria en general, los puntos de control inmunitario desactivan las células T hasta que sean necesarias así se impide que las células T dañen las células normales

Las células cancerosas pueden aprovechar estos puntos de control para desactivar las células T en este caso, no se destruyen las células cancerosas.

Los inhibidores de puntos de control inmunitario son medicamentos que bloquean los puntos de control esto permite que las células T ataquen el cáncer

Estos tres tipos de inmunoterapia son eficaces para tratar el cáncer, pero no sirven para todos los pacientes y causan efectos secundarios graves

Los investigadores que reciben apoyo del instituto nacional del cáncer trabajan para aprender más sobre la forma en que el sistema inmunitario lucha contra el cáncer así, pueden entender cómo mejorar la inmunoterapia para todos los pacientes

Referencias

‘CANCER DISCOVEY’ un nuevo anticuerpo, preparado para batir resistencias en inmunoterapia

 

LA VIRUELA DEL MONO

LA VIRUELA DEL MONO Expertos señalan la importancia de cortar las cadenas de transmisión de la viruela del mono. Foto: SOCIEDAD ANDALUZA DE MEDICINA PREVENTIVA, SALUD PÚBLICA Y GESTIÓN SANITARIA. Expertos señalan la importancia de cortar las cadenas de transmisión de la viruela del mono. Foto:

Carmen Torrente/Cristina Ruiz. Madrid

La viruela símica o viruela del mono (monkeypox) es una «zoonosis viral (enfermedad provocada por virus transmitido de los animales a las personas)», al igual que el virus SARS-CoV-2. La Organización Mundial de la Salud (OMS) la considera «rara, que produce síntomas parecidos a los que se observaban en los pacientes de viruela en el pasado, aunque menos graves».  Eso sí, tras la erradicación de la viruela en 1980 y su posterior cese de la vacunación, señala que se ha convertido en el Orthopoxvirus es un género vírico de poxvirus que incluye muchas especies, como Cowpox virus, Monkeypox virus, Rabbitpox virus, entre otros; estos ejemplos han sido aislados de mamíferos no humanos aunque también puede afectar a personas que estén en contacto con estos animales. ᐈ ¿Qué es la viruela del simio y dónde se confirmaron casos? Esta semana, con la detección el 14 de mayo de dos casos en Reino Unido y 30 casos confirmados ya en España, el mayor número fuera de África, han sonado todas las alarmas y la Organización Mundial de la Salud (OMS) prevé una reunión extraordinaria para la próxima semana. ¿Hay motivos serios de preocupación?

Daniel López Acuña, epidemiólogo y ex director de Acción Sanitaria de la OMS, considera que «no hay motivo para que exista una alarma social a raíz de la viruela del mono, pero sí es necesaria una alarma epidemiológica como una enfermedad contagiosa que tenemos que cortar. No es una alarma equiparable a la de la pandemia de la covid. No debemos pensar que la viruela del mono se va a comportar igual, porque es muy distinto. Estamos hablando de una decena de casos y la transmisión no es por aerosoles. Hay que frenarlo ya para que no se expanda, pero no podemos compararlo en cuanto a vías de transmisión y punto de vista de la epidemiología. Es decir, no hay que alarmar de que hay una nueva pandemia. Lo que hay son brotes epidémicos de una enfermedad rara, endémica, que se está saliendo un poco de su cauce, porque se ha presentado en lugares donde habitualmente no lo hace: en Europa. Y, además, no ha sido en un único lugar, sino que hay prácticamente una decena de países con casos».

¿Se ha aprendido algo epidemiológicamente a raíz de la covid-19? «Ha generado una sensibilización mayor a la necesidad que siempre ha existido, pero no siempre se ha cumplido, de declarar alertas sanitarias cuando hay brotes epidémicos y de establecer protocolos de actuación para que haya toda la claridad del mundo sobre cómo diagnosticar casos, cómo aislarlos, cómo controlar los brotes. En esto la pandemia nos favorece, porque ha creado sensibilización».

«La vacuna de la viruela tiene una eficacia de un 80% respecto a la viruela del mono, pero no se trata ahora de inmunizar a toda la población» (López Acuña)

Eso sí, López Acuña considera que hay que «saber actuar bien» y recalca que «esto no es un tema de vacunar, no es una enfermedad que se transmita por aerosoles, sino que tiene una transmisión por contacto estrecho por fluidos corporales, con una dinámica de contagio muy distinta».

Daniel López Acuña, epidemiólogo y ex director de Acción Sanitaria de la OMS. Daniel López Acuña, epidemiólogo y ex director de Acción Sanitaria de la OMS.

Dicho esto, sí cree que la vacuna de la viruela ayuda a estar protegido: «La vacuna de la viruela tiene una eficacia de un 80% respecto a la viruela del mono. Se inoculó hasta 1980. Los que estamos vacunados con ella de forma rutinaria, para viajar y como parte de nuestro calendario vacunal, tenemos un cierto grado de protección, no absoluto. La gente más joven está desprotegida en ese sentido, pero no se trata ahora de inmunizar a toda la población. Eso sería un salto que no vendría al caso. Se trata de hacer como hicieron en Estados Unidos hace diez y veinte años, cuando controlaron brotes aislados de viruela del mono. Se usa una vacuna contra la viruela para proteger al círculo inmediato de relaciones de contactos estrechos, pero no para todo el mundo». De hecho, el Centers for Disease Control and Prevention (CDC) menciona brotes recientes en ese país, pero el mayor fue el de 2003, cuando hubo 47 personas confirmadas de seis estados.

¿De qué vacuna estaríamos hablando? «Se puede usar la vacuna tradicional, pero tiene más efectos secundarios. Hay una nueva vacuna reformulada, más purificada, producida en Dinamarca, que está aprobada por la Agencia Europea del Medicamento (EMA), y se podría utilizar con menos riesgos de efectos secundarios».

Sobre esto, el Ministerio de Sanidad informa de que, aparte de la vacuna tradicional de la viruela, existe una de tercera generación, aprobada en 2019 por parte de la EMA, con disponibilidad limitada. Más tarde, en 2022, se ha aprobado, también por la EMA, un tratamiento antiviral específico que no está comercializado en España y del que hay también una disponibilidad muy limitada.

«La reunión de la OMS es una acción habitual cuando hay un brote epidémico de una enfermedad que es mayor de lo habitual» (López Acuña)

En cuanto a la reunión extraordinaria prevista por la OMS, López Acuña matiza que probablemente sea la próxima semana: «Eso es una acción habitual cuando hay un brote epidémico de una enfermedad que es mayor de lo habitual, que no había estado presente y se produce en varios países. También se hizo cuando hubo brotes de Ébola, de cólera…Es para contrastar información, comparar puntos de vista, analizar posibles normas en términos de protocolos de actuación y vacunación. Es decir, es algo estándar dentro del marco reglamentario internacional. No debe ser interpretado como algo que se haga por una situación de emergencia desproporcionada. Nos preocupa ver casos en toda Europa, simultáneamente, que no están, salvo uno en Reino Unido, ligados a una visita o interacción con personas de zonas endémicas. Lo que tenemos que entender es cómo se han producido las cadenas de transmisión».

Al hilo de esto, el ex directivo de la OMS recuerda que en Estados Unidos los brotes fueron por mascotas contaminadas, provenientes de África, «que entraron en contacto con humanos». ¿Por ejemplo? «Un tipo de ardilla africana, simios… estos se lo pasaron a los perritos de la pradera, y personas que estuvieron en contacto con las crías de los perritos se contagiaron. Pero esto se cortó rápidamente, se interrumpió la transmisión y se aisló a las personas».

«No hay que estigmatizar. Al ser transmitido por fluidos corporales, puede haber una transmisión también de hombre a mujer y de mujer a mujer» (López Acuña)

Por ello, subraya la importancia de que se rastreen a fondo los casos y contactos estrechos: «Deben ser aislados y poner un dique para interrumpir la transmisión, que está un poco extendida, y todo parece indicar, en el caso de España, que ha habido sitios de concentración, como una sauna en Madrid, adonde acuden hombres que tienen sexo con hombres y ha habido interacción. En cualquier caso, no hay que simplificar ni estigmatizar. Al ser transmitido por fluidos corporales, puede haber una transmisión también de hombre a mujer y de mujer a mujer. Todo depende del contacto estrecho».

Respecto a los casos vistos en África, a excepción de la República Democrática del Congo, López Acuña señala que la transmisión fue por contacto estrecho y fluidos corporales, pero no había una singularización de que esto ocurriera en hombres al tener sexo con hombres. «Esto ha sido un epifenómeno de lo que no es lo definitorio. Lo importante es poder trazar claramente las cadenas de transmisión».

Madrid reclama a Sanidad la compra de vacunas para controlar el brote de la viruela del mono

Viruela del mono: los no vacunados, menos inmunes y más expuestos a los reservorios

La Comunidad de Madrid investiga 23 posibles casos de viruela del mono en la región

Javier Arranz, miembro del Grupo de Trabajo en Enfermedades Infecciosas de la Sociedad Española de Medicina de Familia y Comunitaria (Semfyc), niega que se esté apreciando una alarma en las consultas ante la viruela del mono, aclara que la preocupación de los profesionales es «intermedia», considera que la actuación ante estos brotes está siendo relativamente rápida y sitúa, por tanto, la enfermedad en su escenario correcto. De hecho, al igual que López Acuña, aclara que no es una pandemia, sino que se trata de brotes epidémicos relacionados entre sí, con un vínculo, «con un número importante de personas afectadas y casi siempre relacionadas».

«El brote surgió en Inglaterra, y su comunicación con España es importante, igual que pasó con la covid» (Javier Arranz, Semfyc)

¿Por qué España lidera el número de casos a escala internacional? «El brote surgió en Inglaterra y, al ocurrir en un país que tiene más comunicación con otros países, empieza a generar contactos. La comunicación de España con el Reino Unido es importante, igual que pasó con la covid. Y en España ha habido una agrupación concreta de personas, como podía haber ocurrido en otros países». Eso sí, subraya que lo importante es que «se ha detectado rápidamente ese vínculo y, por tanto, se ha ampliado el estudio de contactos y las posibilidades de diagnóstico».

Arranz comenta que surgen brotes de viruela del mono periódicamente y señala a Nigeria como el país donde probablemente se detecten más: «Desde 2017 hasta ahora se han detectado allí unos 600 casos». Y comenta que los brotes detectados en Reino Unido siempre han estado vinculados a personas procedentes de África, mientras que los casos detectados en Estados Unidos estuvieron más relacionados con mascotas importadas, como señala López Acuña.

«El problema principal es que hubiera habido un salto cualitativo en el virus que lo hiciera mucho más contagioso a personas con bajos niveles de contacto» (Javier Arranz, Semfyc)

Y matiza: «La viruela del mono no es una viruela humana, porque su hospedador habitual no es el hombre, sino otros animales» y reitera que cada año aparecen casos: «El problema principal es que hubiera habido un salto cualitativo en el virus que lo hiciera mucho más contagioso a personas con bajos niveles de contacto. Son estudios que deberán hacerse, pero primero atajarlo desde el punto de vista epidemiológico y evitar que haya especies que en África tienen el virus y que no pase a otros lugares. Esto es difícil, pero no imposible».

De hecho, cree que la crisis del Ébola y la pandemia ha enseñado a actuar rápido: «El aviso de Inglaterra fue el 14 de mayo. Estamos a día 21 y en España se ha clausurado ya el lugar que parece ser el origen del brote epidemiológico y se han detectado muchos casos. Igual en un momento anterior hubiéramos tardado más. Además, ayer el Ministerio de Sanidad publicó un protocolo, y días antes las comunidades autónomas habían iniciado un procedimiento muy en la línea de los de detección y aislamiento del Ébola». A su vez, subraya la importancia de las alertas internacionales: «Hace unos años, el European Centre for Disease Prevention and Control (ECDC) no existía. Los mecanismos de alerta internacionales están funcionando muy bien y son rápidos. La pandemia de la covid ha engrasado algunos de estos aspectos».

Aparte del Ministerio de Sanidad, la Sociedad Andaluza de Medicina Preventiva, Salud Pública y Gestión Sanitaria (Sampspgs) publicó ayer un protocolo de actuación sobre la viruela del mono que, en el caso de Andalucía ya cuenta con cinco casos sospechosos, que se suman al declarado días atrás.

“En Andalucía tenemos mucho turismo y, en el caso de Málaga está Torremolinos, donde ese turismo mayoritariamente es gay” (Dariusz Narankiewicz, de Sampspgs)

Dariusz Narankiewicz, portavoz de la sociedad andaluza, ha explicado a este medio, que aunque el documento se basa en las recomendaciones dadas a conocer por el Ministerio de Sanidad, se ha querido detallar algo más en el caso de Andalucía, ya que “necesitábamos actuar con mayor rapidez”, dice. “En Andalucía tenemos mucho turismo y, en el caso de Málaga está Torremolinos, donde ese turismo mayoritariamente es gay”. Precisamente, según señala, el primero de los casos notificados en la comunidad corresponde a la provincia malagueña, “pero probablemente la Consejería de Sanidad esté estudiando más casos de otros lugares”.

Entre las medidas propuestas por la Sampspgs, se advierte de que ante cualquier sospecha “se debe informar al Servicio de Medicina Preventiva/Epidemiología del distrito sanitario”. Además, “se debe instaurar la búsqueda de los contactos estrechos e indicarles la vigilancia síntomas, restringir las relaciones sociales y, en caso que se produzcan, usar mascarilla quirúrgica”. La Sampspgs también aconseja el autoaislamiento, en caso de desarrollo de síntomas y comunicación a los servicios de salud, y evitar el contacto con las mascotas.

Por qué en los homosexuales

El hecho de que España esté ahora a la cabeza en número de casos posibles, que correspondan a hombres que tiene sexo con hombres (HSH), y concretamente si se trata de homosexuales “se debe a que son un colectivo que tiene mayor vigilancia. Por ejemplo, en España, que tenemos aprobada la profilaxis de exposición al VIH, estas personas tienen consultas más frecuentes y ante la aparición de lesiones cutáneas son los primeros que se ponen en contacto con el médico. En España tienen una mayor accesibilidad”.

Algunos expertos apuntan que ahora estamos ante una explosión de casos que continuará durante algún tiempo, pero que luego descenderá. En este sentido Narankiewicz cree que “todo dependerá de la detección de los casos, de que se pongan las medidas preventivas adecuadas y de la concienciación de la población, que deberá mantenerse alerta”.

Sobre la premonición de que cada vez más habrá enfermedades que se transmitan a los humanos, según algunos epidemiólogos, el portavoz de la Sampspgs sostiene que “es lógico pensarlo, ya que el ser humano es el principal responsable de que ocurra esto, porque somos nosotros los que estamos provocando las alteraciones en el ecosistema. Sabemos que hay muchos virus y bacterias que están quietecitos en sus reservorios, pero si nosotros invadimos sus entornos naturales y los destruimos, nos exponemos nosotros mismos a los riesgos que están en la naturaleza.

Referencias

SOCIEDAD ANDALUZA DE MEDICINA PREVENTIVA, SALUD PÚBLICA Y GESTIÓN SANITARIA.

Daniel López Acuña, epidemiólogo y ex director de Acción Sanitaria de la OMS.

 

VACUNACIÓN CONTRA EL HERPES ZÓSTER EN MAYORES DE 65

 

Las vacunas contra el Herpes no solo pretenden evitar la infección, sino que se evitan las demencias de los enfermos afectados por el virus del HerpesHerpes zóster - Wikipedia, la enciclopedia libre

VIRUS DEL HERPES

 

Quedamos gratamente sorprendidos de la eficacia de nuestra sanidad

Navarra, Castilla y León, Asturias y Cataluña vacunarán contra el herpes zóster a los mayores de 65, tal como anunció Madrid hace unas semanas.

Las autonomías deberían incorporar la vacunación a mayores de 65 este año, según lo acordado con el Ministerio.

El pasado mes, Madrid se convirtió en la primera autonomía en aprobar la vacunación frente al herpes zóster para los mayores de 65 años. En concreto, el calendario vacunal de 2022 hizo público Madrid establece que, además de los colectivos de riesgo, “se vacunará de forma sistemática a las personas de 65 años de edad (en 2022, cohorte nacida en 1957) y se captará y vacunará a las personas de 80 años de edad (en 2022, cohorte nacida en 1942). Se notificará la fecha de inicio de vacunación a estos grupos de edad a lo largo del año en curso. En función de la disponibilidad de dosis, progresivamente se ampliará la vacunación a otras cohortes de edad”.

Ahora, según ha podido saber Diario Médico, se incorporarán a esta vacunación para mayores Navarra, Castilla y León, Asturias y Cataluña. Esta última ya ha aprobado la inmunización a partir de los 65 años aunque sin anunciar fecha de puesta en marcha, mientras que Asturias espera la decisión del Comité Asesor de Vacunas de la región.

Mientras, Madrid ha aprobado también la venta en farmacias, activa desde esta semana, de la vacuna con receta a las personas que hayan pasado la varicela y no estén incluidas en los grupos contemplados en el calendario de vacunación.

Hace ya un año que Ministerio y autonomías acordaron en la Ponencia de Vacunas y en la Comisión de Salud Pública (aunque no llegaron a tratarlo en el pleno del Consejo Interterritorial de Salud) quién debía vacunarse contra el herpes zóster, ante la inminente llegada a España de la vacuna Shingrix, de GSK, una vacuna producida por técnicas de recombinación de ADN de subunidades adyuvada, y que se ha demostrado más eficaz que la disponible hasta el momento, de MSD, y utilizada solo en programas piloto en España, una vacuna viva atenuada.

Las recomendaciones aprobadas en la Ponencia de Vacunas y en la Comisión de Salud Pública en marzo de 2021 establecían la vacunación en los colectivos de pacientes inmunodeprimidos, pero también afirmaban que se debía “incorporar la vacunación sistemática frente al herpes zóster con la vacuna con la vacuna HZ/su (la vacuna de GSK) en la población general en la cohorte de 65 años en el año 2022, tras confirmación de disponibilidad de dosis. En función de la disponibilidad de dosis se captará y vacunará al menos una cohorte por año comenzando por la cohorte que cumple 80 años y descendiendo en edad hasta alcanzar a la primera cohorte que se vacunó a los 65 años”, en línea con la decisión que han adoptado las citadas comunidades autónomas.

Además, nueve autonomías han desplegado ya por primera vez la vacunación contra el herpes zóster en sus territorios para colectivos inmunodeprimidos de especial riesgo. Se trata en concreto de Galicia, Castilla y León, País Vasco, Madrid, Valencia, Castilla-La Mancha, Baleares, Cataluña y Murcia, que en las últimas semanas han empezado ya a administrar la vacuna a trasplantados o en lista de espera para trasplante, personas con VIH, pacientes oncológicos en tratamiento con quimioterapia para tumores sólidos, personas en tratamiento con fármacos anti-JAK, y pacientes con hemopatías malignas. Está previsto que en los próximos meses se hayan incorporado a esta vacunación para colectivos de riesgo el resto de autonomías.

Pavankumar Kamat | Informes Clínicos | 14 de octubre de 2021 reseña, vínculo entre el herpes zóster, la vacuna zostavax y el riesgo de demencia e informa de que los participantes que fueron diagnosticados con herpes zóster ≥3 años antes del diagnóstico de demencia presentaron un aumento leve pero no significativo en el riesgo de demencia.

El riesgo de demencia fue menor en los participantes que fueron vacunados con Zostavax.

Rara vez se ha considerado el papel potencial del virus varicela-zóster y otros virus del herpes en la demencia.

En el estudio de casos y controles anidado que incluyó 2.378 casos incidentes de demencia y 225.845 participantes de control de la base de datos del Biobanco del Reino Unido.

Los desenlaces de la enfermedad y las exposiciones se determinaron a partir de las estadísticas de episodios hospitalarios y los registros de salud vinculados con la atención primaria.

Se evaluó la asociación del herpes zóster y la vacuna Zostavax con el riesgo de demencia.

Resultados fundamentales

Tras el ajuste de los factores de confusión, hubo un aumento pequeño pero no significativo en el riesgo de demencia en los participantes diagnosticados con herpes zóster ≥3 años antes del diagnóstico de demencia (odds ratio ajustado [ORa], 1,088; IC del 95 %, 0,978-1,211) .

Los participantes vacunados con Zostavax presentaban un menor riesgo de demencia (ORa, 0,808; IC del 95 %, 0,657-0,993).

Los diagnósticos de demencia se basaron en registros en lugar del contacto directo con el paciente.

Referencias

Lophatananon A et al. | BMJ Open | 8 oct 2021

Maria Baena

Lophatananon A, Mekli K, Cant R, Burns A, Dobson C, Itzhaki R, Muir K. Shingles, Zostavax vaccination and risk of developing dementia: a nested case-control study-results from the UK Biobank cohort. BMJ Open. 2021;11(10):e045871. doi: 10.1136/bmjopen-2020-045871. PMID: 34625411

Noticias Médicas de Medscape de Yang Q et al. | Stroke |1 may 2021

El riesgo de ictus disminuye tras la vacuna viva contra el herpes zóster

 Qian J et al. Los pacientes con cáncer tienen mayor riesgo de herpes zóster

Noticias Médicas de Medscape de Warren-Gash C et al. El herpes zóster no se vincula con mayor riesgo de diagnóstico de demencia

 

DESARROLLAN ANTICUERPOS NEUTRALIZANTES EFICACES EN LAS VARIABLES MÁS VIRULENTAS DE LA COVID-19

DESARROLLAN ANTICUERPOS NEUTRALIZANTES EFICACES EN LAS VARIABLES MÁS VIRULENTAS DE LA COVID-19

Para los médicos que hemos sufrido junto a los enfermos, la carencia de medicación efectiva, contra la mayoría de las enfermedades, virales y degenerativas, parece un regalo del cielo, la cantidad de medios, que a diario, los investigadores están desarrollando y haciendo un impresionante bien.

Empieza todo a ser mas fácil

Eso, si después de muchos muertos y mucho dolor

El manejo de lo muy pequeño, como si fueran muy grande, es para mi una afortunada sorpresa.

Se imaginan, como pueden aislar particulas tan pequeñas, casi no existen de pequeñas que son y manipularlas con tanta eficacia.

Y además, cultivarlas, asociarlas con capas protectoras para que duren y todo un largo numero de bondadosos hallazgos.

Que Dios los bendiga, por su insistencia y bondad

El trabajo

Basados en el sistema inmunitario de los dromedarios, serían útiles en inmunodeprimidos y pueden apoyar a la detección.

Micrografía electrónica de barrido de células humanas (azul) infectadas con SARS-CoV-2 (rojo). Foto: CSIC. Magnifica micrografía electrónica de barrido de células humanas (azul) infectadas con SARS-CoV-2 (rojo). Foto: CSIC.

Raquel Serrano. Madrid Mar, 26/04/2022 – 09:45

La pandemia de covid-19, causada por el síndrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2), es una gran amenaza para la salud pública mundial que ya ha causado más de 6 millones de muertes debido a la ausencia de tratamientos específicos.

Durante el pasado año, se autorizaron en diferentes países varias vacunas contra la covid-19 basadas en diferentes tecnologías, así como algunos anticuerpos neutralizantes del SARS-CoV-2 generados a partir de individuos convalecientes de covid-19 y ratones humanizados.

No obstante, la aparición de variantes del SARS-CoV-2 que escapan de la neutralización inmunitaria supone un desafío para las vacunas y los anticuerpos desarrollados para detener la pandemia por covid-19. «Por tanto, es importante establecer terapias dirigidas a variantes múltiples o específicas del SARS-CoV-2. La glicoproteína del pico de la envoltura (proteína S) del SARS-CoV-2 es el objetivo clave de los anticuerpos neutralizantes», señalan en Frontiers in Immunology, investigadores del  Centro Nacional de Biotecnología (CNB-CSIC) que han obtenido, en modelo animal, anticuerpos neutralizantes eficaces frente a las variantes más virulentas del SARS-CoV-2 y que pueden utilizarse como terapia en pacientes de covid-19.

Aplicación clínica

Los anticuerpos se han obtenido mediante cultivos celulares en el laboratorio y, según los autores, «la producción ya puede escalarse para su aplicación clínica». Además, estos anticuerpos tienen un gran potencial para la detección del virus, por lo que pueden ser de «gran utilidad para diferentes formatos de test antigénicos del SARS-CoV-2».

Dirigidos por Luis Ángel Fernández y José María Casasnovas, el equipo ha seleccionado los nanoanticuerpos que mejor se unían a la región de la proteína viral S (spike) del SARS-CoV-2 y que bloqueaban la entrada del virus en la célula.

El trabajo recoge el potencial terapéutico de cuatro de estos anticuerpos y que su administración, en una única dosis, protegió de la muerte causada por la covid-19 a entre el 85-100% de los animales infectados, que se recuperaron completamente en dos semanas. «Mediante ingeniería de proteínas se han humanizado las regiones VHH de estos anticuerpos, lo que permitirá su aplicación directa en ensayos clínicos», indican.

Estos anticuerpos podrían administrarse a pacientes infectados con SARS-CoV-2 que tuvieran riesgo de evolución a enfermedad severa, por ejemplo, pacientes inmunodeprimidos, que no hayan generado inmunidad tras vacunación, o no vacunados, y paliar así las consecuencias más graves de la covid-19, incluida la muerte.

Inmunización de dromedarios

El equipo ha desarrollado estos anticuerpos partiendo de segmentos generados por inmunización de dromedarios en colaboración con Juan Alberto Corbera, de la Universidad de Las Palmas de Gran Canaria. Posteriormente fueron clonados en bacterias E. coli en los laboratorios del CNB.

Según Luis Ángel Fernández, director del grupo de Ingeniería Cacteriana del CNB, los camélidos (dromedarios, llamas y alpacas, entre otros) producen un tipo de anticuerpos capaces de reconocer al antígeno con una sola cadena de proteína, en lugar de dos como en el resto de especies animales. «Así, la zona de reconocimiento del antígeno en estos anticuerpos es de menor tamaño, y pueden alcanzar regiones en la superficie de virus y bacterias inaccesibles de otro modo».

En el laboratorio se ha aislado la zona de unión de estos anticuerpos, fragmentos de pequeño tamaño conocidos como nanoanticuerpos con gran capacidad de bloquear a virus y bacterias. «Al tener secuencias muy similares a las de los anticuerpos humanos, pueden utilizarse directamente en terapia sin generar rechazo», señala Fernández. Además, tienen algunas propiedades muy útiles, como su mayor estabilidad y resistencia a condiciones extremas.

Los ensayos ‘in vitro’ en células infectadas con SARS-CoV-2 identificaron aquellos con una mayor actividad neutralizante del virus en la plataforma de antivirales del instituto del CSIC, dirigida por Urtzi Garaigorta y Pablo Gastaminza. Los ensayos ‘in vivo’ los han realizado Miguel Ángel Martín Acebes y Juan Carlos Saizse del Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC).

El CSIC ha patentado esta tecnología y busca empresas interesadas en llevar estos anticuerpos al mercado.

Y seguro que las encontraran, porque la puesta en marcha de las investigaciones con tanta rapidez es una de las características de nuestros tiempos.

No puedo, sino decir.

Que Dios Los bendiga a todos y a nosotros también.

 

LA MICROBIOTA INTESTINAL EN LA SALUD Y ENFERMEDAD

LA MICROBIOTA INTESTINAL EN LA SALUD Y ENFERMEDAD

No hay dudas de la relación que existe entre microbioma intestinal y salud, pero también la relación con la enfermedad

Aunque esta relación es compleja. Existen datos evidentes de la relación y por consiguiente el estudio de como equilibrar esta convivencia, sin que llegue a la patología es deseable.

Varias poblaciones grandes y diversas de bacterias, virus y hongos ocupan cada superficie del cuerpo humano.1

Se estima que existen casi 30 trillones de células bacterianas viviendo dentro de cada humano.2¡

Eso equivale a una bacteria por célula humana!2

Estos microbios se conocen colectivamente como el microbioma.31

El contacto con los microbios ocurre por primera vez durante el nacimiento. Algunos factores ambientales, como la dieta y los antibióticos afectan el microbioma de un humano.31

Las diferencias en el ambiente, la dieta y el comportamiento de cada individuo, marcan las distinciones entre los microbiomas de cada persona.1

Se presume que el microbioma de cada persona es único.4

Partiendo de esta hipótesis, se han desarrollado varias investigaciones que buscan una manera de utilizar el microbioma como una herramienta de identificación, semejante a las huellas digitales.

 

 

De derecha a izquierda: Una micrografía electrónica de transmisión de un virus de bacteria (bacteriófago), una micrografía electrónica de barrido de la bacteria E. coli, una bacteria genérica (blanca) creciendo en una placa de agar, y unos hongos comestibles silvestres.

Los millones de organismos que componen el microbioma humano desempeñan un rol importante en la salud y en la enfermedad humana.

Cada tipo de microbio ocupa un lugar específico dentro del cuerpo brindando apoyo a las funciones de los órganos respectivos; por ejemplo, las bacterias que viven en los intestinos ayudan a la digestión.31 Aunque los microbios tienen un rol importante en el mantenimiento de una buena salud, también se los ve involucrados en el desarrollo y en el progreso de algunos cánceres. Por otro lado, existe una gran cantidad de evidencia que indica que el microbioma puede alterar las reacciones a los tratamientos de cáncer.

Los microbios interactúan con la salud, la enfermedad y la respuesta a los tratamientos. Asimismo, algunos tratamientos de cáncer utilizan la inflamación que a veces pueden realzar la eficacia de los tratamientos.

Sin embargo, cuando se presentan las alteraciones en el microbioma, las consecuencias pueden ser bastante negativas para la salud. Por ejemplo, las interferencias en las bacterias en los intestinos se asocian con las siguientes enfermedades:

Enfermedad del intestino inflamatorio

Síndrome del intestino irritable

Obesidad

Diabetes tipo 23

Además de la digestión, los microbios también participan en algunos procesos inmunológicos, en el metabolismo y en la reproducción.3

El microbioma y el cáncer

Existe una relación entre el microbioma humano y el desarrollo de cáncer. Inicialmente, los estudios epidemiólogos (estudios de poblaciones) indicaron que ciertos microbios tenían un rol en cáncer.

Cáncer estomacal

La relación entre la Helicobacter pylori (H. pylori), una bacteria con forma de espiral, y el desarrollo del cáncer brinda bastante información acerca de los microbios y el cáncer. Las infecciones por la H. pylori son comunes; los Centros para el control y la prevención de enfermedades (CDC) estima que dos tercios de la población de la población mundial soporta esta bacteria. Estas infecciones se contraen mediante la comida contaminada o el contacto de boca a boca.5

Una vez adentro de su anfitrión, la H. pylori penetra la capa mucosa que forra el estómago,5 una región protegida que dificulta la remoción de la bacteria por parte del sistema inmune.5Las infecciones por H. pylori no causan enfermedades en la mayoría de individuos; sin embargo, es un riesgo para aquellos individuos que sufren de úlceras o del cáncer estomacal.5 Algunos estudios poblacionales han demostrado que los individuos infectados con H. pylori tienen un riesgo de desarrollar un cáncer estomacal 8 veces mayor en comparación aquellos sin la bacteria.5El mecanismo exacto por el cual la H. pylori eleva el riesgo de desarrollar un cáncer aun no se define por completo.5 Sin embargo, existen evidencias que indican que la inflamación crónica causada por una infección por H. pylori promueve el desarrollo de cáncer.5 El CDC recomienda realizarse pruebas para detectar la presencia de la H. pylori aparte del tratamiento respectivo en el caso de una infección posterior a la cura de un cáncer gástricos para evitar la recurrencia de la enfermedad. Se recomienda lo mismo para aquellos individuos que han tenido de úlceras.5

Cáncer de seno

En el 2016, un grupo de investigadores halló a varias poblaciones de microbios en un tejido de seno.6 Los efectos de la presencia del microbioma en el tejido mamario aún no se conocen a detalle.7 No obstante, en numerosos estudios, la presencia de distintas poblaciones bacterianas se detectó en tejidos mamarios afectados por enfermedades benignas y malignas (cancerosas).67

Aun no se define si los microbiomas en el seno contribuyen al desarrollo de tumores, o si son un resultado de la enfermedad. En los laboratorios, se han desarrollado algunas hipótesis que indican una posible asociación entre ciertos tipos de bacterias con el crecimiento de tumores.67 A un grupo de ratones de laboratorio que padecían de una predisposición a desarrollar el cáncer se los infectó con Helicobacter hepaticus (H. hepaticus).6Los resultados indicaron que los ratones infectados tenían desarrollaron más tumores en las glándulas mamarias y sufrieron de más inflamación en comparación con los ratones no infectados.6Estos resultados sugieren que la H. hepaticus contribuye a la progresión de cáncer al provocar la inflamación de dichos tejidos.

Cáncer de piel

El microbioma de la piel es diverso y cambia según su ubicación en el cuerpo.7 Varios experimentos realizados con ratones de laboratorio han hallado que el microbioma puede desempeñar papeles protectores o perjudiciales en relación al desarrollo del cáncer.78 El grupo de ratones que recibieron antibióticos (para matar su microbioma) se vieron expuestos a un riesgo aumentado de desarrollar un melanoma y a una supervivencia reducida.78Estos resultados revelan que el microbioma puede proteger en contra del desarrollo de este tipo de cáncer. Por otro lado, también hay evidencia que demuestra que las «colas» (flagelos) de algunas bacterias promueven la inflamación crónica, lo cual ocasiona daños en los tejidos y como resultado, el cáncer de piel.8Los resultados de otra investigación, en la cual los roedores modelo pasaron por modificaciones genéticas que bloqueaban las reacciones a los los flagelos bacterianos,8indican que estos ratones estaban protegidos en contra de un cáncer artificial, implicando que la respuesta inflamatoria a la bacteria puede llevar al desarrollo de cáncer.8

 

Una micrografía electrónica de transmisión de una bacteria con flagelo.

 

Cáncer colorrectal

El microbioma bucal de un individuo saludablescomúnmente contiene la bacteria Fusobacterium nucleatum (F. nucleatum).9 Sin embargo, varios estudios han detectado la presencia de la F. nucleatum en adenomas colorrectales y en crecimientos tumorígenos del cáncer colorrectal en sus etapas avanzadas.9Recientemente, se descubrió que la F. nucleatum puede ser la causa  de las reacciones inflamatorias que activan a aquellos genes que promueven el cáncer.9 La activación de estos genes causa un incremento en la proliferación de las células del cáncer colorrectal.9

 

Cáncer cervical, anal y oral

Aproximadamente, el 15% de todos los cánceres humanos se pueden atribuir a un virus.10El virus del papiloma humano (VPH/HPV) es responsable por casi todos los casos de cánceres anales y cervicales.10Estos virus también pueden ser la causa de algunos cánceres de boca y cuello.10Interesantemente, en muchos individuos saludables,  los virus del papiloma humano son un componente común de los microbiomas de la piel y la mucosa.11Este tipo de virus también están asociado con el cáncer de hígado y con el cáncer de piel. Haga clic en este enlace para aprender más acerca de los virus y su relación con el cáncer.

El microbioma y el tratamiento del cáncer

La inclusión del microbioma humano dentro de la investigación acerca de los tratamientos de cáncer es relativamente reciente. Los estudios más nuevos han destacado la importancia y la relevancia del uso de los microbios en la recuperación de la enfermedad.127Interesantemente, el microbioma también puede estimular la actividad inmunológica en contra del cáncer.13Por ejemplo, se halló que la ciclofosfamida (un medicamento para tratar la leucemia y algunos linfomas) altera el ambiente microbiano de los intestinos. Como resultado, se promovió la producción de células inmunes, aumentando la eficacia de ciclofosfamida.14Para reiterar, los microbios también pueden estimular las reacciones inflamatorias que causan el cáncer. No obstante, estas reacciones inflamatorias también pueden traer beneficios y realzar la eficacia de los tratamientos contra el cáncer. Algunas terapias, como la quimioterapia de platino y la inmunoterapia CpG-oligonucleótido funcionan mediante las reacciones inflamatorias.12Un estudio reveló que un grupo de ratones de laboratorio que recibió antibióticos (matan al microbioma intestinal) no respondió con tanta eficacia a la quimioterapia de platino ni a la inmunoterapia CpG-oligonucleótido en comparación con otro grupo de ratones que mantuvo intacto su microbioma.12Estos resultados sugieren que el microbioma intestinal complementa a los efectos de las terapias que dependen de la inflamación.12

Por otro lado, la resistencia a los tratamientos de cáncer se ha visto vinculado a la presencia de ciertos tipos de bacterias intestinales. Un grupo de expertos que investigaban la farmacorresistencia en pacientes de cáncer colorrectal detectaron una cantidad elevada en el intestino de la Fusobacterium nucleatum. Se reveló que este organismo simultáneamente prevenía la muerte celular (apoptosis) de las células cancerígenas y estimulaba la autofagia, un mecanismo de supervivencia que emplean las células de cáncer. 15

Esta claro es que los microbios desempeñan un rol muy importante en el desarrollo del cáncer y en la reacción corporal al tratamiento. Adicionalmente, los investigadores esperan poder identificar los aspectos beneficiosos del microbioma para poder aprovecharse del mismo como método de luchar contra el cáncer y para deshacerse de aquellos componentes microbianos que promueven el desarrollo de la enfermedad.7

Microbioma y ejercicio fisico

Existe una mayor presencia de bacterias antiinflamatorias y menor de proinflaflamatorias entre quienes realizan actividad física, abriendo la puerta a la prevención de enfermedades.

Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo. Foto: COVADONGA DÍAZ. Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo.

Un estudio llevado a cabo por investigadores la Universidad de Oviedo ha permitido comprobar cómo la microbiota intestinal cambia en función de si se practica ejercicio físico o no y lo hace también dependiendo de la actividad física que se practique. Esta investigación abre una puerta para entender mejor como fomentar la presencia de bacterias intestinales beneficiosas.

Son las principales conclusiones de este trabajo, liderado por profesionales de las áreas de Microbiología, Anatomía y Fisiología de la Universidad de Oviedo, pertenecientes al grupo 3BIOACTIVE, y cuyos resultados han sido publicados en Frontiers in Physiology

Esta investigación ayuda a entender cómo la actividad física puede actuar sobre las bacterias del intestino, lo que podría aplicarse, en el futuro, en la prevención de enfermedades que pueden alterar estos microorganismos, esenciales para el mantenimiento de la salud, así como en la prescripción de ejercicio físico de forma individualizada teniendo en cuenta la microbiota.

Ha sido realizada con un modelo animal, en concreto ratones de laboratorio sanos sometidos a entrenamiento de fuerza o resistencia durante cuatro semanas. Los autores del estudio eligieron estos animales porque se parecen genéticamente mucho entre sí y viven en condiciones muy controladas, lo que permite aislar el efecto real de cada tipo de ejercicio, algo mucho más complejo en humanos.

Sin embargo, sus datos han servido para comprobar como la microbiota cambia en función de si se practica ejercicio físico o no, de tal modo que se observó una menor presencia de bacterias proinflamatorias, del género ‘Ruminococcus’, en los grupos que practicaron ejercicio frente a los ratones sedentarios.

También se observó una mayor abundancia de bacterias antiinflamatorias, del género ‘Parabacteroides’, en aquellos ratones sometidos a ejercicio físico, tanto en los que practicaron fuerza como en los que ejercitaron resistencia.

Este hallazgo confirma el efecto positivo del ejercicio físico en cuanto al incremento de la presencia de bacterias relacionadas con la respuesta inflamatoria, según explica uno de los supervisores del trabajo, Felipe Lombó, profesor de Microbiología del Departamento de Biología Funcional de la Universidad de Oviedo.

Asimismo, también han podido determinar que hay bacterias que específicamente aumentan su presencia en el intestino con el entrenamiento de la fuerza y otras que lo hacen con la práctica de la resistencia.

Por ejemplo, la especie ‘Clostridium cocleatum’ presenta una abundancia mayor en los ratones que entrenaron fuerza, una especie que se ha utilizado para la prevención de infección por ‘Clostridium difficile’ en modelos murinos de enfermedad.

En el caso del entrenamiento de resistencia, observaron mayor presencia del género ‘Desulfovibrio’, asociado a la protección de las células endoteliales en ratones envejecidos.

Aunque este estudio se ha realizado en ratones, el análisis de estos efectos de los diferentes tipos de entrenamiento puede abrir la puerta a entender mejor cómo podemos fomentar la presencia de bacterias intestinales beneficiosas, no solo en la salud, sino también en la enfermedad, destaca Benjamín Fernández, profesor de Anatomía del Departamento de Morfología y Biología Celular, experto en Medicina del Deporte de la citado universidad y también supervisor del estudio.

Cristina Tomás, profesora de Fisiología del Departamento de Biología Funcional, recuerda que la práctica de ejercicio físico regular se asocia históricamente a un menor riesgo de mortalidad y a una menor incidencia de patologías crónicas muy prevalentes en los humanos en países desarrollados.

Las alteraciones de la microbiota intestinal, en este contexto, cada vez cobran mayor importancia en el desarrollo de estas patologías tan prevalentes. «Sabíamos que el ejercicio y la microbiota intestinal tienen puntos en común de incidencia en patología y salud. Sin embargo, los mecanismos exactos a través de los cuales se define el efecto protector de las bacterias que pueblan nuestro intestino era más desconocido y nuestro estudio ayuda a entenderlo un poco más», destaca la investigadora.

Esta experta subraya que, en humanos, se ha descrito que el ejercicio regular, principalmente el ejercicio de resistencia o aeróbico, modifica la diversidad y abundancia de las bacterias del intestino. Estos cambios, independientes de la dieta, suelen revertir una vez que cesa la práctica regular de la actividad física.

«El problema reside en que los datos que obtenemos con humanos pueden verse influidos por factores ambientales como la dieta, el alcohol, el consumo de drogas e incluso por características antropométricas, que también pueden modificar la microbiota intestinal. Sin embargo, los modelos animales, con sus limitaciones, nos ofrecen una mejor comprensión de los cambios en la microbiota inducidos por el ejercicio, porque podemos controlar mejor el resto de variables», añade.

Para realizar el estudio, los investigadores de la Universidad de Oviedo utilizaron 26 ratones sanos, divididos en tres grupos: ratones sedentarios, ratones sometidos a entrenamiento de resistencia en una cinta rodante y ratones sujetos a entrenamiento de fuerza en una escalera vertical.

Después de un periodo de adaptación, se entrenó a los ratones durante cuatro semanas, cinco días a la semana. Los investigadores extrajeron el ADN bacteriano a partir de muestras del ciego de estos ratones, una región del intestino en la que residen las bacterias de estos animales. El análisis de este ADN permitió clasificar las diferentes bacterias presentes en las muestras y conocer el porcentaje de cada uno de los taxones bacterianos.

«Conocer cómo la actividad física puede actuar sobre nuestras bacterias intestinales puede facilitar la prevención de muchas enfermedades en las que se ha observado alteraciones en la microbiota intestinal, desde el síndrome del intestino irritable hasta la enfermedad de Alzheimer, incluso ayudar en la búsqueda de tratamientos para cuando la enfermedad ya esté presente”, destaca Tomás.

La extrapolación de los datos de ratones a humanos debe considerarse con precaución, más aún porque las diferencias en la composición de la microbiota intestinal entre humanos y ratones puede llevar a resultados sesgados.

En biología, todo esta relacionado con toda y de ello depende la enfermedad o la salud.

Estudiar las proporciones es vital , pero su imbricación lo hace difícil.

Bibliografia.

Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo. Foto: Covadonga Díaz.

1.a. b. c. d. e. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the Human Microbiome. Nutrition reviews. 2012 Aug; 70(Suppl 1): S38-S44. [PUBMED]

2.a. b. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. [PUBMED]

3.a. b. c. d. e. Cho I, Blaser MJ. The Human Microbiome: at the interface of health and disease. Nature reviews. Genetics. 2012 Mar 13; 13(4): 260-270. [PUBMED]

4.Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2930-8. [PUBMED]

5.a. b. c. d. e. f. g. h. Helicobacter pylori and Cancer. National Cancer Institute. [https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet]

6.a. b. c. d. e. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, Xiao J, Radisky DC, Knutson KL, Kalari KR, Yao JZ, Baddour LM, Chia N, Degnim AC. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.Scientific Reports. 2016 Aug 3; 6: 30751. [PUBMED]

7.a. b. c. d. e. f. g. h. Pevsner-Fischer M, Tuganbaev T, Meijer M, Zhang SH, Zeng ZR, Chen MH, Elinav E. Role of the microbiome in non-gastrointestinal cancers. World Journal of Clinical Oncology. 2016 Apr 10; 7(2): 200-213. [PUBMED]

8.a. b. c. d. e. Pfirschke C, Garris C, Pittet MJ. Common TLR5 mutations control cancer progression. Cancer Cell. 2015 Jan 12;27(1):1-3. [PUBMED]

9.a. b. c. d. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell host & microbe. 2013 Aug 14; 14(2): 195-206. [PUBMED]

10.a. b. c. McLaughlin-Drubin ME, Munger K. Viruses Associated with Human Cancer. Biochimica et biophysica acta. 2007 Dec 23; 1782(3): 127-150 [PUBMED]

11.Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The Ubiquity and Impressive Genomic Diversity of Human Skin Papillomaviruses Suggest a Commensalic Nature of These Viruses.Journal of Virology. 2000 Dec; 74(24): 11636-11641[PUBMED]

12.a. b. c. d. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013 Nov 22;342(6161):967-70. [PUBMED]

13.Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013 Nov 22;342(6161):971-6. [PUBMED]

14.Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013 Nov 22;342(6161):971-6. [PUBMED]

15.Yu T1, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017 Jul 27;170(3):548-563.e16. doi: 10.1016/j.cell.2017.07.008.[PUBMED]

LA MICROBIOTA INTESTINAL EN LA SALUD Y ENFERMEDAD

No hay dudas de la relación que existe entre microbioma intestinal y salud, pero también la relación con la enfermedad

Aunque esta relación es compleja. Existen datos evidentes de la relación y por consiguiente el estudio de como equilibrar esta convivencia, sin que llegue a la patología es deseable.

Varias poblaciones grandes y diversas de bacterias, virus y hongos ocupan cada superficie del cuerpo humano.1

Se estima que existen casi 30 trillones de células bacterianas viviendo dentro de cada humano.2¡

Eso equivale a una bacteria por célula humana!2

Estos microbios se conocen colectivamente como el microbioma.31

El contacto con los microbios ocurre por primera vez durante el nacimiento. Algunos factores ambientales, como la dieta y los antibióticos afectan el microbioma de un humano.31

Las diferencias en el ambiente, la dieta y el comportamiento de cada individuo, marcan las distinciones entre los microbiomas de cada persona.1

Se presume que el microbioma de cada persona es único.4

Partiendo de esta hipótesis, se han desarrollado varias investigaciones que buscan una manera de utilizar el microbioma como una herramienta de identificación, semejante a las huellas digitales.

 

 

De derecha a izquierda: Una micrografía electrónica de transmisión de un virus de bacteria (bacteriófago), una micrografía electrónica de barrido de la bacteria E. coli, una bacteria genérica (blanca) creciendo en una placa de agar, y unos hongos comestibles silvestres.

Los millones de organismos que componen el microbioma humano desempeñan un rol importante en la salud y en la enfermedad humana.

Cada tipo de microbio ocupa un lugar específico dentro del cuerpo brindando apoyo a las funciones de los órganos respectivos; por ejemplo, las bacterias que viven en los intestinos ayudan a la digestión.31 Aunque los microbios tienen un rol importante en el mantenimiento de una buena salud, también se los ve involucrados en el desarrollo y en el progreso de algunos cánceres. Por otro lado, existe una gran cantidad de evidencia que indica que el microbioma puede alterar las reacciones a los tratamientos de cáncer.

Los microbios interactúan con la salud, la enfermedad y la respuesta a los tratamientos. Asimismo, algunos tratamientos de cáncer utilizan la inflamación que a veces pueden realzar la eficacia de los tratamientos.

Sin embargo, cuando se presentan las alteraciones en el microbioma, las consecuencias pueden ser bastante negativas para la salud. Por ejemplo, las interferencias en las bacterias en los intestinos se asocian con las siguientes enfermedades:

Enfermedad del intestino inflamatorio

Síndrome del intestino irritable

Obesidad

Diabetes tipo 23

Además de la digestión, los microbios también participan en algunos procesos inmunológicos, en el metabolismo y en la reproducción.3

El microbioma y el cáncer

Existe una relación entre el microbioma humano y el desarrollo de cáncer. Inicialmente, los estudios epidemiólogos (estudios de poblaciones) indicaron que ciertos microbios tenían un rol en cáncer.

Cáncer estomacal

La relación entre la Helicobacter pylori (H. pylori), una bacteria con forma de espiral, y el desarrollo del cáncer brinda bastante información acerca de los microbios y el cáncer. Las infecciones por la H. pylori son comunes; los Centros para el control y la prevención de enfermedades (CDC) estima que dos tercios de la población de la población mundial soporta esta bacteria. Estas infecciones se contraen mediante la comida contaminada o el contacto de boca a boca.5

Una vez adentro de su anfitrión, la H. pylori penetra la capa mucosa que forra el estómago,5 una región protegida que dificulta la remoción de la bacteria por parte del sistema inmune.5Las infecciones por H. pylori no causan enfermedades en la mayoría de individuos; sin embargo, es un riesgo para aquellos individuos que sufren de úlceras o del cáncer estomacal.5 Algunos estudios poblacionales han demostrado que los individuos infectados con H. pylori tienen un riesgo de desarrollar un cáncer estomacal 8 veces mayor en comparación aquellos sin la bacteria.5El mecanismo exacto por el cual la H. pylori eleva el riesgo de desarrollar un cáncer aun no se define por completo.5 Sin embargo, existen evidencias que indican que la inflamación crónica causada por una infección por H. pylori promueve el desarrollo de cáncer.5 El CDC recomienda realizarse pruebas para detectar la presencia de la H. pylori aparte del tratamiento respectivo en el caso de una infección posterior a la cura de un cáncer gástricos para evitar la recurrencia de la enfermedad. Se recomienda lo mismo para aquellos individuos que han tenido de úlceras.5

Cáncer de seno

En el 2016, un grupo de investigadores halló a varias poblaciones de microbios en un tejido de seno.6 Los efectos de la presencia del microbioma en el tejido mamario aún no se conocen a detalle.7 No obstante, en numerosos estudios, la presencia de distintas poblaciones bacterianas se detectó en tejidos mamarios afectados por enfermedades benignas y malignas (cancerosas).67

Aun no se define si los microbiomas en el seno contribuyen al desarrollo de tumores, o si son un resultado de la enfermedad. En los laboratorios, se han desarrollado algunas hipótesis que indican una posible asociación entre ciertos tipos de bacterias con el crecimiento de tumores.67 A un grupo de ratones de laboratorio que padecían de una predisposición a desarrollar el cáncer se los infectó con Helicobacter hepaticus (H. hepaticus).6Los resultados indicaron que los ratones infectados tenían desarrollaron más tumores en las glándulas mamarias y sufrieron de más inflamación en comparación con los ratones no infectados.6Estos resultados sugieren que la H. hepaticus contribuye a la progresión de cáncer al provocar la inflamación de dichos tejidos.

Cáncer de piel

El microbioma de la piel es diverso y cambia según su ubicación en el cuerpo.7 Varios experimentos realizados con ratones de laboratorio han hallado que el microbioma puede desempeñar papeles protectores o perjudiciales en relación al desarrollo del cáncer.78 El grupo de ratones que recibieron antibióticos (para matar su microbioma) se vieron expuestos a un riesgo aumentado de desarrollar un melanoma y a una supervivencia reducida.78Estos resultados revelan que el microbioma puede proteger en contra del desarrollo de este tipo de cáncer. Por otro lado, también hay evidencia que demuestra que las «colas» (flagelos) de algunas bacterias promueven la inflamación crónica, lo cual ocasiona daños en los tejidos y como resultado, el cáncer de piel.8Los resultados de otra investigación, en la cual los roedores modelo pasaron por modificaciones genéticas que bloqueaban las reacciones a los los flagelos bacterianos,8indican que estos ratones estaban protegidos en contra de un cáncer artificial, implicando que la respuesta inflamatoria a la bacteria puede llevar al desarrollo de cáncer.8

 

Una micrografía electrónica de transmisión de una bacteria con flagelo.

 

Cáncer colorrectal

El microbioma bucal de un individuo saludablescomúnmente contiene la bacteria Fusobacterium nucleatum (F. nucleatum).9 Sin embargo, varios estudios han detectado la presencia de la F. nucleatum en adenomas colorrectales y en crecimientos tumorígenos del cáncer colorrectal en sus etapas avanzadas.9Recientemente, se descubrió que la F. nucleatum puede ser la causa  de las reacciones inflamatorias que activan a aquellos genes que promueven el cáncer.9 La activación de estos genes causa un incremento en la proliferación de las células del cáncer colorrectal.9

 

Cáncer cervical, anal y oral

Aproximadamente, el 15% de todos los cánceres humanos se pueden atribuir a un virus.10El virus del papiloma humano (VPH/HPV) es responsable por casi todos los casos de cánceres anales y cervicales.10Estos virus también pueden ser la causa de algunos cánceres de boca y cuello.10Interesantemente, en muchos individuos saludables,  los virus del papiloma humano son un componente común de los microbiomas de la piel y la mucosa.11Este tipo de virus también están asociado con el cáncer de hígado y con el cáncer de piel. Haga clic en este enlace para aprender más acerca de los virus y su relación con el cáncer.

El microbioma y el tratamiento del cáncer

La inclusión del microbioma humano dentro de la investigación acerca de los tratamientos de cáncer es relativamente reciente. Los estudios más nuevos han destacado la importancia y la relevancia del uso de los microbios en la recuperación de la enfermedad.127Interesantemente, el microbioma también puede estimular la actividad inmunológica en contra del cáncer.13Por ejemplo, se halló que la ciclofosfamida (un medicamento para tratar la leucemia y algunos linfomas) altera el ambiente microbiano de los intestinos. Como resultado, se promovió la producción de células inmunes, aumentando la eficacia de ciclofosfamida.14Para reiterar, los microbios también pueden estimular las reacciones inflamatorias que causan el cáncer. No obstante, estas reacciones inflamatorias también pueden traer beneficios y realzar la eficacia de los tratamientos contra el cáncer. Algunas terapias, como la quimioterapia de platino y la inmunoterapia CpG-oligonucleótido funcionan mediante las reacciones inflamatorias.12Un estudio reveló que un grupo de ratones de laboratorio que recibió antibióticos (matan al microbioma intestinal) no respondió con tanta eficacia a la quimioterapia de platino ni a la inmunoterapia CpG-oligonucleótido en comparación con otro grupo de ratones que mantuvo intacto su microbioma.12Estos resultados sugieren que el microbioma intestinal complementa a los efectos de las terapias que dependen de la inflamación.12

Por otro lado, la resistencia a los tratamientos de cáncer se ha visto vinculado a la presencia de ciertos tipos de bacterias intestinales. Un grupo de expertos que investigaban la farmacorresistencia en pacientes de cáncer colorrectal detectaron una cantidad elevada en el intestino de la Fusobacterium nucleatum. Se reveló que este organismo simultáneamente prevenía la muerte celular (apoptosis) de las células cancerígenas y estimulaba la autofagia, un mecanismo de supervivencia que emplean las células de cáncer. 15

Esta claro es que los microbios desempeñan un rol muy importante en el desarrollo del cáncer y en la reacción corporal al tratamiento. Adicionalmente, los investigadores esperan poder identificar los aspectos beneficiosos del microbioma para poder aprovecharse del mismo como método de luchar contra el cáncer y para deshacerse de aquellos componentes microbianos que promueven el desarrollo de la enfermedad.7

Microbioma y ejercicio fisico

Existe una mayor presencia de bacterias antiinflamatorias y menor de proinflaflamatorias entre quienes realizan actividad física, abriendo la puerta a la prevención de enfermedades.

Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo. Foto: COVADONGA DÍAZ. Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo.

Un estudio llevado a cabo por investigadores la Universidad de Oviedo ha permitido comprobar cómo la microbiota intestinal cambia en función de si se practica ejercicio físico o no y lo hace también dependiendo de la actividad física que se practique. Esta investigación abre una puerta para entender mejor como fomentar la presencia de bacterias intestinales beneficiosas.

Son las principales conclusiones de este trabajo, liderado por profesionales de las áreas de Microbiología, Anatomía y Fisiología de la Universidad de Oviedo, pertenecientes al grupo 3BIOACTIVE, y cuyos resultados han sido publicados en Frontiers in Physiology

Esta investigación ayuda a entender cómo la actividad física puede actuar sobre las bacterias del intestino, lo que podría aplicarse, en el futuro, en la prevención de enfermedades que pueden alterar estos microorganismos, esenciales para el mantenimiento de la salud, así como en la prescripción de ejercicio físico de forma individualizada teniendo en cuenta la microbiota.

Ha sido realizada con un modelo animal, en concreto ratones de laboratorio sanos sometidos a entrenamiento de fuerza o resistencia durante cuatro semanas. Los autores del estudio eligieron estos animales porque se parecen genéticamente mucho entre sí y viven en condiciones muy controladas, lo que permite aislar el efecto real de cada tipo de ejercicio, algo mucho más complejo en humanos.

Sin embargo, sus datos han servido para comprobar como la microbiota cambia en función de si se practica ejercicio físico o no, de tal modo que se observó una menor presencia de bacterias proinflamatorias, del género ‘Ruminococcus’, en los grupos que practicaron ejercicio frente a los ratones sedentarios.

También se observó una mayor abundancia de bacterias antiinflamatorias, del género ‘Parabacteroides’, en aquellos ratones sometidos a ejercicio físico, tanto en los que practicaron fuerza como en los que ejercitaron resistencia.

Este hallazgo confirma el efecto positivo del ejercicio físico en cuanto al incremento de la presencia de bacterias relacionadas con la respuesta inflamatoria, según explica uno de los supervisores del trabajo, Felipe Lombó, profesor de Microbiología del Departamento de Biología Funcional de la Universidad de Oviedo.

Asimismo, también han podido determinar que hay bacterias que específicamente aumentan su presencia en el intestino con el entrenamiento de la fuerza y otras que lo hacen con la práctica de la resistencia.

Por ejemplo, la especie ‘Clostridium cocleatum’ presenta una abundancia mayor en los ratones que entrenaron fuerza, una especie que se ha utilizado para la prevención de infección por ‘Clostridium difficile’ en modelos murinos de enfermedad.

En el caso del entrenamiento de resistencia, observaron mayor presencia del género ‘Desulfovibrio’, asociado a la protección de las células endoteliales en ratones envejecidos.

Aunque este estudio se ha realizado en ratones, el análisis de estos efectos de los diferentes tipos de entrenamiento puede abrir la puerta a entender mejor cómo podemos fomentar la presencia de bacterias intestinales beneficiosas, no solo en la salud, sino también en la enfermedad, destaca Benjamín Fernández, profesor de Anatomía del Departamento de Morfología y Biología Celular, experto en Medicina del Deporte de la citado universidad y también supervisor del estudio.

Cristina Tomás, profesora de Fisiología del Departamento de Biología Funcional, recuerda que la práctica de ejercicio físico regular se asocia históricamente a un menor riesgo de mortalidad y a una menor incidencia de patologías crónicas muy prevalentes en los humanos en países desarrollados.

Las alteraciones de la microbiota intestinal, en este contexto, cada vez cobran mayor importancia en el desarrollo de estas patologías tan prevalentes. «Sabíamos que el ejercicio y la microbiota intestinal tienen puntos en común de incidencia en patología y salud. Sin embargo, los mecanismos exactos a través de los cuales se define el efecto protector de las bacterias que pueblan nuestro intestino era más desconocido y nuestro estudio ayuda a entenderlo un poco más», destaca la investigadora.

Esta experta subraya que, en humanos, se ha descrito que el ejercicio regular, principalmente el ejercicio de resistencia o aeróbico, modifica la diversidad y abundancia de las bacterias del intestino. Estos cambios, independientes de la dieta, suelen revertir una vez que cesa la práctica regular de la actividad física.

«El problema reside en que los datos que obtenemos con humanos pueden verse influidos por factores ambientales como la dieta, el alcohol, el consumo de drogas e incluso por características antropométricas, que también pueden modificar la microbiota intestinal. Sin embargo, los modelos animales, con sus limitaciones, nos ofrecen una mejor comprensión de los cambios en la microbiota inducidos por el ejercicio, porque podemos controlar mejor el resto de variables», añade.

Para realizar el estudio, los investigadores de la Universidad de Oviedo utilizaron 26 ratones sanos, divididos en tres grupos: ratones sedentarios, ratones sometidos a entrenamiento de resistencia en una cinta rodante y ratones sujetos a entrenamiento de fuerza en una escalera vertical.

Después de un periodo de adaptación, se entrenó a los ratones durante cuatro semanas, cinco días a la semana. Los investigadores extrajeron el ADN bacteriano a partir de muestras del ciego de estos ratones, una región del intestino en la que residen las bacterias de estos animales. El análisis de este ADN permitió clasificar las diferentes bacterias presentes en las muestras y conocer el porcentaje de cada uno de los taxones bacterianos.

«Conocer cómo la actividad física puede actuar sobre nuestras bacterias intestinales puede facilitar la prevención de muchas enfermedades en las que se ha observado alteraciones en la microbiota intestinal, desde el síndrome del intestino irritable hasta la enfermedad de Alzheimer, incluso ayudar en la búsqueda de tratamientos para cuando la enfermedad ya esté presente”, destaca Tomás.

La extrapolación de los datos de ratones a humanos debe considerarse con precaución, más aún porque las diferencias en la composición de la microbiota intestinal entre humanos y ratones puede llevar a resultados sesgados.

En biología, todo esta relacionado con toda y de ello depende la enfermedad o la salud.

Estudiar las proporciones es vital , pero su imbricación lo hace difícil.

Bibliografia.

Benjamín Fernández, Cristina Tomás y Manuel Fernández Sanjurjo, autores del estudio realizado en la Universidad de Oviedo. Foto: Covadonga Díaz.

1.a. b. c. d. e. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the Human Microbiome. Nutrition reviews. 2012 Aug; 70(Suppl 1): S38-S44. [PUBMED]

2.a. b. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. [PUBMED]

3.a. b. c. d. e. Cho I, Blaser MJ. The Human Microbiome: at the interface of health and disease. Nature reviews. Genetics. 2012 Mar 13; 13(4): 260-270. [PUBMED]

4.Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2930-8. [PUBMED]

5.a. b. c. d. e. f. g. h. Helicobacter pylori and Cancer. National Cancer Institute. [https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet]

6.a. b. c. d. e. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, Xiao J, Radisky DC, Knutson KL, Kalari KR, Yao JZ, Baddour LM, Chia N, Degnim AC. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.Scientific Reports. 2016 Aug 3; 6: 30751. [PUBMED]

7.a. b. c. d. e. f. g. h. Pevsner-Fischer M, Tuganbaev T, Meijer M, Zhang SH, Zeng ZR, Chen MH, Elinav E. Role of the microbiome in non-gastrointestinal cancers. World Journal of Clinical Oncology. 2016 Apr 10; 7(2): 200-213. [PUBMED]

8.a. b. c. d. e. Pfirschke C, Garris C, Pittet MJ. Common TLR5 mutations control cancer progression. Cancer Cell. 2015 Jan 12;27(1):1-3. [PUBMED]

9.a. b. c. d. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell host & microbe. 2013 Aug 14; 14(2): 195-206. [PUBMED]

10.a. b. c. McLaughlin-Drubin ME, Munger K. Viruses Associated with Human Cancer. Biochimica et biophysica acta. 2007 Dec 23; 1782(3): 127-150 [PUBMED]

11.Antonsson A, Forslund O, Ekberg H, Sterner G, Hansson BG. The Ubiquity and Impressive Genomic Diversity of Human Skin Papillomaviruses Suggest a Commensalic Nature of These Viruses.Journal of Virology. 2000 Dec; 74(24): 11636-11641[PUBMED]

12.a. b. c. d. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013 Nov 22;342(6161):967-70. [PUBMED]

13.Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013 Nov 22;342(6161):971-6. [PUBMED]

14.Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013 Nov 22;342(6161):971-6. [PUBMED]

15.Yu T1, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017 Jul 27;170(3):548-563.e16. doi: 10.1016/j.cell.2017.07.008.[PUBMED]

 

ARN, LA GRAN MOLÉCULA

 

 

Este articulo es copia del escrito por NUÑO DOMÍNGUEZARTUR GALOCHA 29 NOV 2020 – 00:30 Actualizado:29 NOV 2020 – 11:00 CET 44, y me atrevo a transcribirlo porque me parece magnifico

Más allá de los fármacos, el ARN puede darle a la humanidad un mayor control sobre su destino como especie. En 2011 se descubrió cómo reescribir el genoma de cualquier ser vivo gracias a la edición genética CRISPR. Esta tecnología revolucionaria funciona solo con el ADN y esto supone que hace cambios permanentes en el libro de la vida. Por eso ahora un número creciente de laboratorios y empresas buscan una forma de editar el ARN, pues no implica estos riesgos. Aunque las técnicas para reescribir el ARN están en pañales y solo pueden hacer cambios puntuales de una letra genética por otra, sus aplicaciones son interesantísimas: un solo cambio de una letra de ARN podría evitar enfermedades raras como la distrofia muscular. Más allá, desarrollar unas tijeras que corten el ARN podría permitir crear un tratamiento capaz de aniquilar al 80% de los coronavirus conocidos y potencialmente a muchos otros virus cuyo genoma está hecho de esta molécula. De hecho esta es una gran diferencia entre las cosas vivas y las que no lo están: todos los seres vivos del planeta se basan en el ADN para vivir y reproducirse, pero hay muchos virus, incluido el SARS-CoV-2, que están hechos solo de ARN. Por eso necesitan entrar en otros seres vivos y secuestrar su maquinaria biológica para multiplicarse.

Dos de las vacunas más eficaces contra la covid se basan en un compuesto sin el que la vida en la Tierra no podría existir. Su aprobación puede ser el comienzo de una nueva era de tratamientos contra el cáncer, enfermedades raras y vacunas universales

Dentro de todas y cada una de las personas que lean estas líneas hay una molécula frágil, de vida fugaz y origen desconocido sin la que no podrían estar vivos: el ARN. Las dos vacunas contra el nuevo coronavirus que han mostrado una mayor eficacia hasta el momento se basan en esta molécula, en concreto en un subtipo conocido como ARN mensajero. Su trabajo es transmitir el mensaje de la vida contenido en el ADN y convertirlo en todas las proteínas que nos permiten respirar, pensar, movernos, vivir. Esta molécula es tan fundamental que se piensa que con ella pudo comenzar la vida en la Tierra hace más de 3.000 millones de años. Ahora es una de las favoritas para empezar a sacar a toda la población del planeta de la peor pandemia del siglo XXI.

Las dos vacunas más avanzadas, la de Pfizer/BioNTech y la de Moderna, han mostrado una eficacia superior al 94%.

Estas dos vacunas se pinchan en el brazo con una inyección intramuscular Cada inyección contiene millones de nanopartículas (pequeñas esferas de grasa) Cada una de esas nanopartículas transporta 10 cadenas simples de ARN mensajero

Uno de los mayores enigmas de la ciencia es cómo apareció la vida en la Tierra hace más de 3.000 millones de años. Hay varias teorías, pero todas ellas pasan de una forma u otra por el ARN. La definición más básica de algo vivo es que se puede reproducir solo y, por tanto, puede evolucionar. Algunos científicos han demostrado que el ARN se puede copiar a sí mismo y evolucionar por sí solo. Es posible que esta molécula fuese la primera entidad viva en la Tierra.

Las moléculas de la vida

El ADN es una molécula cuya función principal es almacenar toda la información genética que conforma a un ser vivo escrita con una combinación de cuatro letras: G, A, T, C. C A

Está formado por dos hebras que se unen como una cremallera G T

Un ser humano es una secuencia de ADN con 3.000 millones de estas letras.

El ARN es una cadena simple con tres de las mismas letras que el ADN (G, A, C) y una U en lugar de una T. Es mucho más inestable y frágil pero, a cambio, sirve para casi todo. U C G A

El ARN copia la información genética del ADN,

ADN Transcripción a ARN A U G A U C A T A C T A G T

ARN mensajero A U G A U C A C G U U

Para que esta pueda salir del núcleo de la célula. humana

La información del ADN debe permanecer intacta, inmutable, por eso está protegida en lo más interno de las células: el núcleo.

Núcleo Retículo endoplasmático

El ARN transporta la información genética del ADN fuera del núcleo y comienza a seguir sus instrucciones para producir proteínas.

Proteínas

Todo este proceso está mediado por diferentes tipos de ARN

ARNm

ARN mensajero Traduce el ADN y lleva su mensaje fuera del núcleo de la célula

ARNt

ARN de transferencia Ayuda al ensamblaje de las proteínas

ARNr Ribosómico Conforma los ribosomas, las fábricas donde se construyen las proteínas

El ADN puede sobrevivir días o incluso semanas a temperatura ambiente. Incluso se conserva decenas de miles de años en algunos fósiles. El ARN, a cambio de su versatilidad, es una molécula efímera que solo está presente durante unas pocas horas en la célula mientras realiza su función concreta.

Se desintegra con mucha facilidad, sobre todo por la acción de unas proteínas inmunes ubicuas (están tanto dentro de la célula como en nuestras manos, piel…) cuya única función es destruir cualquier ARN extraño. Por eso las vacunas de ARN necesitan temperaturas de hasta 80 bajo cero: no es fácil mantener estable esta molécula a temperatura ambiente durante mucho tiempo.

Las vacunas transportan dentro de la célula las instrucciones de ARN externo para que las células produzcan la proteína de la espícula del virus, que por sí sola es inofensiva

Coronavirus El mensaje genético del virus esta escrito con 29.903 letras, de las cuales 3.831 conforman la proteína de la espícula que es esencial para que el coronavirus pueda infectar

AUGUUUGUUUUCUU…

Esas nanopartículas inyectadas llegan al músculo y penetran en diferentes células del cuerpo Y sueltan las cadenas de ARN

Núcleo Reticulo endoplasmatico

El ARN es localizado por los ribosomas sin pasar por el núcleo de la célula Los ribosomas son los encargados de traducir ese ARN para crear las proteínas de la espícula del virus

Cómo se traduce el ARN en proteínas

Una vez que el ARN mensajero lee la información genética del ADN, se sirve de los ribosomas y del ARN de transferencia para crear proteínas.

Ribosoma

ARN mensajero Dentro del ribosoma de la célula, cada tres letras se unen a un ARN de transferencia (ARNt), una molécula que lleva tres letras complementarias y un aminoácido específico

ARNt

Aminoácido

Estos aminoácidos se van uniendo como perlas en un collar para dar lugar a las proteínas que forman el virus. Proteína de la espícula del virus

Cualquier vacuna es una simulación de una infección. Su objetivo es provocar una respuesta del sistema inmune ante un patógeno sin dejar que este cause enfermedad. Las vacunas de Moderna y BioNTech usan una técnica diferente a las convencionales, basadas en virus completos atenuados —sarampión—, desactivados —gripe— o en fragmentos de este. Las vacunas de ARN mensajero usan las células del cuerpo como biorreactores para que produzcan copias de la proteína S del coronavirus y que estas sean localizadas por el sistema inmune.

Aquí está una de las diferencias más importantes entre las vacunas de Moderna, la de BioNTech y las de otras empresas y centros de investigación que desarrollan inyecciones similares.

Una vez la vacuna entra en el músculo del brazo, las nanopartículas pueden migrar por el sistema linfático hasta llegar a los ganglios y el bazo

Nódulos linfáticos

Una vez allí las nanopartículas entran directamente en las células dendríticas, fagocitos del sistema inmune innato

Estas células producen la proteína S y se la muestran a otros dos tipos de glóbulos blancos, lo que da comienzo a la respuesta inmune adaptativa, la más sofisticada y efectiva contra el virus

Linfocitos CD8+ T

Linfocitos CD4+ T

Activan los linfocitos B y son capaces de identificar y aniquilar a una célula infectada de coronavirus Que generan anticuerpos, proteínas capaces de unirse al virus e impedir que infecte

Esta línea también incluye células de memoria capaces de recordar a los virus y reactivar la alerta inmunitaria meses, incluso años después.

El médico e inmunólogo Ugur Sahin, fundador de BioNTech, destaca la importancia de que la vacuna se dirija específicamente a células del sistema inmune, lo que les permite dar una dosis de vacuna unas tres veces menor que Moderna para obtener los mismos resultados. “Una dosis más baja supone que la vacuna es más segura y te permite fabricar más dosis para cubrir la demanda mundial”.

La vacuna del cáncer Este científico de origen turco y el resto de su equipo fue uno de los primeros en el mundo en estudiar en humanos una vacuna de ARN. Lo hizo en 2017 para intentar tratar el cáncer. La idea era desarrollar una vacuna específica para cada paciente como si su tumor fuese un virus.

Tumor del paciente

Primero se lee todo el ADN del tumor Y se identifican unos pocos rasgos únicos: proteínas de su superficie conocidas como antígenos

Después se escribe y produce un ARN mensajero capaz de fabricar esas proteínas

Cuando ese ARN entra en la célula, comienza el proceso de producción de antígenos del tumor

Y activa las defensas del cuerpo ante el cáncer Respuesta inmune

Moderna también surgió como empresa para desarrollar este tipo de vacunas personalizadas y hay una tercera compañía muy adelantada en este campo, la alemana Curevac. Todas, además, desarrollan inmunizaciones contra otros patógenos como la rabia, el zika o el citomegalovirus, un patógeno que puede producir sordera, retraso mental y otros problemas graves en una fracción de los bebés que nacen infectados.

“Las vacunas de ARN pueden revolucionar la medicina”, asegura Norbert Pardi, investigador de la Universidad de Pensilvania (EE UU). Si finalmente estas vacunas demuestran eficacia, su aprobación puede marcar el comienzo de una nueva era en biomedicina. Esta misma técnica puede aplicarse a muchas otras infecciones virales, al cáncer y a enfermedades raras.

La rapidez con la que se pueden desarrollar es apabullante. Moderna tardó 42 días en tener un ARN mensajero candidato a vacuna después de que China publicase la secuencia genética completa del SARS-CoV-2. En comparación, se tarda una media de 10 años en desarrollar una vacuna convencional. Esto hace que el ARN mensajero sea ideal para desarrollar una inmunización rápida contra futuros virus pandémicos de rápida expansión.

Precedentes históricos

La vacuna más rápida, contra el ébola, tardó cinco años en ser descubierta.

1935

Polio Rotavirus 20 años 22 años

Sarampión Malaria 9 años 31 años

Virus del papiloma humano 15 años

Ébola 5 años

Para el VIH y el zika aún no se ha encontrado vacuna

La secuencia de los ARN mensajeros se escribe en un ordenador y después se produce de forma química, sin necesidad de usar células, lo que puede resultar más barato si finalmente estas vacunas tienen éxito y la tecnología para producirlas llega a escalarse.

El ARN puede resultar más seguro que otras vacunas basadas en ADN, proteínas o virus completos. Esta molécula por sí sola no es infecciosa y es incapaz de integrarse en nuestro ADN, lo que podría causar mutaciones peligrosas que se transmitirían de generación en generación. En la actualidad hay unos 50 ensayos clínicos en marcha para probar la eficacia de este tipo de vacunas contra tumores de todo tipo, incluidos los casos más graves en los que hay metástasis. También hay casi una veintena de vacunas en ensayos contra infecciones virales como la gripe, el VIH, el zika y otras.

La gran pregunta sobre estas vacunas es cuánto dura la inmunidad que generan. “Con que las vacunas de ARN mensajero contra covid protejan durante dos o tres años sería satisfactorio porque nos permitiría controlar la epidemia”, opina Felipe García, investigador del Hospital Clínico de Barcelona que participa en un consorcio español de desarrollo de una vacuna de ARN mensajero contra el nuevo coronavirus. Nadie sabe la duración de la inmunidad que generan estas vacunas porque sencillamente son demasiado nuevas. Si finalmente son aprobadas habrá que esperar años para conocer su efectividad en el tiempo, por eso los ensayos clínicos van a continuar por lo menos hasta 2022.

Por el momento no hay ninguna vacuna de ARN mensajero aprobada contra ningún tipo de virus o enfermedad. Sus resultados contra el cáncer han sido mucho menos claros que con la covid. Las vacunas de ARN contra el cáncer parecen seguras y consiguen frenar el avance de los tumores, pero solo en una fracción reducida de pacientes. Los pacientes que sí responden a la vacuna pueden estar sin cáncer hasta tres años y medio.

Hay dos descubrimientos científicos recientes sin los que no serían posibles estas vacunas. El primero data de finales de la década pasada y lo hicieron Katalin Karikó, bioquímica de origen húngaro que actualmente trabaja para BioNTech, y Drew Weissmann, de la Universidad de Pensilvania (EE UU). Ambos desarrollaron un ARN mensajero modificado que incluye un pequeño cambio químico en su fórmula que lo hace mucho más digerible para el sistema inmune, lo que facilita que la molécula llegue intacta a donde tiene que llegar. Aún así, inyectar este ARN solo no conseguía grandes efectos. A partir de 2015, Karikó, Weissmann y Pardi desarrollaron vacunas que protegían la secuencia de ARN dentro DE UNA NANOPARTÍCULA HECHA DE LÍPIDOS (GRASA), lo que permitía llevar la carga de forma mucho más eficiente a las células. La formulación de esa burbuja y la secuencia exacta del ARN modificado son fundamentales para el éxito de estas vacunas. Cada empresa tiene su propia fórmula y en ella están las claves de su eficacia.

La gran barrera para estas vacunas es la necesidad de preservarlas a temperaturas de hasta 80 grados bajo cero. Llevar millones de vacunas así a países con una cadena de frío deficiente o inexistente es un reto al que nunca antes se ha enfrentado la humanidad.

La tecnología para que estas inyecciones se mantengan a temperaturas factibles ya existe. Moderna ha anunciado que su vacuna aguanta hasta un mes a temperaturas típicas de una nevera convencional y Sahin explica que su equipo está trabajando en una nueva formulación que se mantenga estable a temperatura ambiente.

“Nuestra vacuna de ARN mensajero contra la covid aguanta a cinco grados por lo menos tres meses”, explica Mariola Fotin-Mleczek, directora técnica de Curevac, una empresa alemana surgida en 2000 de la Universidad de Tubinga. Su vacuna ha obtenido resultados prometedores en las pruebas en humanos y se dispone a empezar la última fase de pruebas para demostrar su eficacia. La Unión Europea ha acordado la compra de 225 millones de dosis de su vacuna si finalmente funciona, que se sumarían a las ya acordadas con BioNTech, Astra Zeneca, Sanofi, Janssen y posiblemente Moderna. Si estas vacunas finalmente se aprueban y resultan efectivas será “el comienzo de una nueva era”, explica Mleczek, experta en inmunología. “La formulación de estas vacunas es muy fácil y rápida y se pueden aplicar a casi cualquier patógeno, de forma que podríamos desarrollar vacunas multivalentes para la gripe, el covid y otros virus, todo en uno”, explica.

Hay otro posible factor limitante: el precio. Las vacunas de Moderna (23 euros) y BioNTech (15) son cuando menos cinco veces más caras que la desarrollada por la Universidad de Oxford y Astrazeneca, por ejemplo. Como referencia, todas las vacunas que se ponen en África cada año tienen un precio conjunto por persona de unos cuatro dólares. “Las vacunas de ARN nos sacarán de esta pandemia, pero solo junto a las otras, incluidas las más convencionales. En lo que las de ARN son imbatibles es en la rapidez de desarrollo, lo que es muy importante en pandemias”, señala Felipe García, del Clínico.

La fabricación en masa de estas vacunas es posible. “Las técnicas que actualmente usamos para producir estas vacunas en el ámbito académico es fácilmente escalable, así que es factible poder producir dosis para 10.000 millones de personas en uno o dos años”, explica Cristina Fornaguera, investigadora del Instituto Químico de Sarriá, en Barcelona. En 2016 su equipo colaboró con Moderna en la formulación de vacunas de ARN. Junto a Salvador Borrós ha diseñado vacunas liofilizadas —deshidratadas— de ARN que permiten conservarlas a cuatro grados.

España no tiene actualmente ninguna empresa que pueda fabricar vacunas de ARN mensajero, explica Ion Arocena, director de la Asociación Española de Bioempresas (Asebio). “Estos candidatos a vacuna contra la covid se han desarrollado en un tiempo récord y con un esfuerzo que no tiene precedentes en la historia. Si salen adelante se abrirá la puerta a toda una nueva categoría de fármacos. En este punto hay que recordar que empresas como Curevac han recibido 300 millones de euros del Gobierno alemán para el desarrollo de su vacuna. En España, el fondo de covid del CDTI ha financiado a tres empresas que desarrollan candidatos de vacuna por unos 500.000 euros. Viendo la situación uno se pregunta si el desarrollo de estas vacunas hubiera podido suceder en España”,

NUÑO DOMÍNGUEZARTUR GALOCHA

29 NOV 2020 – 00:30Actualizado:29 NOV 2020 – 11:00 CET

44

DERMATITIS ATOPICA

DERMATITIS ATOPICA

Es un trastorno cutáneo prolongado (crónico) que consiste en erupciones pruriginosas y descamativas. Es un tipo de eccema.

Y en los medios informáticos es una de las entidades sobre las que mas se publica

La prevalencia de la dermatitis atópica (DA) en la población general es difícil de precisar, pero se calcula que en los países desarrollados entre el 15% y el 30% de los niños sufren la enfermedad. Un 60% de los casos son diagnosticados antes del año de edad, y en torno al 85% debutan antes de los 5 años de vida1.

La dermatitis atópica se debe a una reacción en la piel. Esta provoca picazón, hinchazón y enrojecimiento continuos. Las personas con dermatitis atópica pueden ser más sensibles debido a que su piel carece de proteínas específicas que mantienen la barrera protectora contra el agua.

La dermatitis atópica es más común en bebés. Puede comenzar incluso ya a la edad de 2 a 6 meses. Muchas personas lo superan con el tiempo a comienzos de la vida adulta.

Dermatitis - atópica en un bebé Vinculan la depresión posparto y la dermatitis atópica

Las personas con dermatitis atópica a menudo tienen asma o alergias estacionales.

Tienen a menudo antecedentes familiares de afecciones alérgicas como asma, rinitis alérgica o eccema. Las personas con dermatitis atópica a menudo dan positivo en las pruebas cutáneas para alergias. Sin embargo, esta dermatitis no es causada por alergias.

Hay 3 tipos principales de respuestas inmunitarias mediadas por células en el cuerpo:

• La respuesta inmunitaria tipo 1 protege contra las bacterias intracelulares, los virus y las células cancerosas1,2

• La respuesta inmunitaria tipo 2 protege contra amenazas externas como los parásitos2,3

• La respuesta inmune tipo 3 protege contra hongos y bacterias extracelulares2

Estas respuestas cumplen funciones protectoras importantes cuando funcionan normalmente, pero contribuyen a diferentes enfermedades cuando no están reguladas.2

La inflamación de tipo 2, como resultado de la desregulación de la respuesta inmunitaria de tipo 2, provoca dermatitis atópica (DA). A medida que evoluciona nuestra comprensión de la inflamación tipo 2, también lo hacen los enfoques de la práctica clínica.

“La inflamación de tipo 2 proporciona un marco para comprender la complejidad clínica de la dermatitis atópica, así como su manejo…”

Reconocemos 3 tipos de respuesta inmunitaria mediada por células: tipo 1, tipo 2 y tipo 3. Cada respuesta está asociada con un conjunto específico de células inmunitarias primarias y citocinas asociadas que se coordinan para proporcionar defensas específicas”.

La inflamación de tipo 2 ocurre sistémicamente y puede estar presente tanto en la piel lesionada como en la no lesionada. Varias citocinas contribuyen a la inflamación de tipo 2. IL-4, IL-13 e IL-31 son impulsores clave de la inflamación de tipo 2 y contribuyen a las características clínicas de la enfermedad de la EA.3,7,11–13,15

Si bien los tres tipos de respuestas inmunitarias están bien reconocidos, la ilustración anterior es una simplificación. Las tres respuestas inmunitarias pueden superponerse funcionalmente, interactuar y cambiar con el tiempo.

Dirigirse selectivamente a receptores clave y citoquinas dentro de la vía de inflamación tipo 2 ha demostrado beneficios clínicos en la EA.16–23

Los tratamientos de la DA dirigidos a citoquinas específicas tienden a asociarse con menos efectos secundarios que los tratamientos con amplia actividad inmunosupresora debido a su inmunomodulación más selectiva.16–23

Una mayor comprensión y experiencia en torno a la inflamación tipo 2 puede ayudarlo a seleccionar enfoques específicos que mejoren los resultados a largo plazo para sus pacientes y optimicen su manejo clínico.1–15,19,23,24

Referencias

1. Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. Toma de decisiones inmunológicas: ¿cómo decide el sistema inmunitario montar una respuesta de células T colaboradoras? Inmunología. 2008;123(3):326–338.

2. Annunziato F, Romagnani C, Romagnani S. Los 3 tipos principales de inmunidad efectora innata y adaptativa mediada por células. J Allergy Clin Immunol. 2015;135(3):626–635.

3. Gandhi NA, Bennett BL, Graham NM, Pirozzi G, Stahl N, Yancopoulos GD. Dirigirse a los impulsores proximales clave de la inflamación tipo 2 en la enfermedad. Nat Rev Descubrimiento de drogas. 2016;15(1):35–50.

4. Gause WC, Wynn TA, Allen JE. Inmunidad tipo 2 y cicatrización de heridas: refinamiento evolutivo de la inmunidad adaptativa por helmintos. Nat Rev Inmunol. 2013;13(8):607–614.

5. Hashimoto T, Kursewicz CD, Fayne RA, et al. Mecanismos fisiopatológicos del prurito en el penfigoide ampolloso. J Am Acad Dermatol. 2020;83(1):53–62.

6. Park K, Park JH, Yang WJ, Lee JJ, Song MJ, Kim HP. Activación transcripcional del gen IL31 por NFAT y STAT6. J Leukoc Biol. 2012;91(2):245–257.

7. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Dermatitis atópica. Imprimadores Nat Rev Dis. 2018;4(1):1.

8. Miake S, Tsuji G, Takemura M, et al. IL-4 aumenta la interacción del receptor alfa IL-31/IL-31 que conduce a una mayor producción de Ccl 17 y Ccl 22 en células dendríticas: implicaciones para la dermatitis atópica. Int J Mol Sci. 2019;20(16):4053.

9. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. La IL-31 humana es inducida por IL-4 y promueve la inflamación impulsada por TH2. J Allergy Clin Immunol. 2013;132(2):446–454.e5.

10. Rabenhorst A, Hartmann K. Interleukin-31: un nuevo marcador de diagnóstico de enfermedades alérgicas. Curr Allergy Asthma Rep. 2014;14(4):423.

11. Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. La etiopatogenia de la dermatitis atópica: alteración de la barrera, trastorno inmunológico y prurito. Inflamm Regen. 2017;37:14.

12. Hammad H, Lambrecht BN. Células epiteliales de barrera y el control de la inmunidad tipo 2. Inmunidad. 2015;43(1):29–40.

13. Erickson S, Nahmias Z, Rosman IS, Kim BS. Agentes inmunomoduladores como antipruriginosos. Dermatol Clin. 2018;36(3):325–334.

14. Silverberg JI, Kantor R. El papel de las interleucinas 4 y/o 13 en la fisiopatología y el tratamiento de la dermatitis atópica. Dermatol Clin. 2017;35(3):327–334.

15. Hamilton JD, Ungar B, Guttman-Yassky E. Revisión de evaluación de fármacos: dupilumab en dermatitis atópica. Inmunoterapia. 2015;7(10):1043–1058.

16. Corcho MJ, Danby SG, Ogg GS. Epidemiología de la dermatitis atópica y necesidad insatisfecha en el Reino Unido. J Tratamiento dermatológico. 2020;31(8):801–809.

17. Simpson EL, Bruin-Weller M, Flohr C, et al. ¿Cuándo justifica la dermatitis atópica una terapia sistémica? Recomendaciones de un panel de expertos de International Eczema Co

LAS TERAPIAS CON CÉLULAS CAR-T

 

 

Las terapias con células CAR-T se están investigando y utilizando cada vez más para tratar cánceres hematológicos , incluida la leucemia linfocítica aguda (LLA), la leucemia mieloide aguda (LMA), el linfoma y el mieloma múltiple (MM). 1

Este tipo de terapia celular utiliza células T extraídas de un paciente o de un donante y modifica genéticamente las células para que expresen un receptor de antígeno quimérico (CAR).

El CAR es un receptor de células T sintético que consiste en un fragmento variable de cadena única (scFv) derivado de un anticuerpo extracelular que se une a un antígeno diana específico, unido a una o más secuencias de señalización intracelular que promueven la activación de las células T después de la unión de scFv.

Una vez que las células T modificadas con CAR se expanden, se vuelven a infundir en el paciente, donde se unen a su antígeno específico en la superficie de las células tumorales del paciente y se activan, lo que les permite atacar y destruir las células tumorales.

Evaluar la expresión de CAR después de la transducción retroviral o lentiviral de las células T del paciente es un paso importante para comprender la dosis de CAR+ Células T que se transfieren nuevamente al paciente. Las proteínas marcadas con un colorante fluorescente permiten que las células diana que expresan el CAR correspondiente se tiñen y detectan directamente mediante citometría de flujo .

Evaluación de la expresión de CAR en células CAR-T mediante proteínas marcadas con fluorescencia

La capacidad de evaluar la expresión de un receptor de antígeno quimérico (CAR) después de la transducción de células T es un paso fundamental en la producción de células CAR-T para la inmunoterapia contra el cáncer. Las fluorocinas de R&D Systems están diseñadas para simplificar la detección de un receptor de antígeno quimérico (CAR) específico en las células CAR-T u otro tipo de célula de interés. Los fluoróforos se conjugan con la proteína bioactiva a través del marcaje con amina y las fluorocinas resultantes se prueban rigurosamente para garantizar un marcaje consistente en cada lote. Todo el proceso de fabricación se controla para reducir la variabilidad de lote a lote y garantiza una relación F/P constante. Finalmente, cada proteína se somete a pruebas de control de calidad mediante citometría de flujo.

La principal ventaja de las fluorocinas es que las células diana que expresan el CAR correspondiente pueden teñirse y detectarse directamente mediante citometría de flujo. Este método de evaluación de la expresión de CAR es altamente específico, reduce el tiempo de procesamiento y elimina la tinción de fondo que puede ocurrir mediante la detección indirecta de CAR usando un antígeno diana marcado con epítopo y un anticuerpo secundario marcado con fluoróforo. Dado que la detección directa de un CAR con un antígeno diana marcado es actualmente el método de elección para evaluar la expresión de CAR, estamos trabajando diligentemente para ampliar nuestra selección de proteínas marcadas con fluorocinas fluorescentes. Como método alternativo, también ofrecemos proteínas biotiniladas Avi-tag , que se pueden detectar usando estreptavidina marcada con fluorocromo. Además, si no puede encontrar la proteína marcada con fluorescencia o biotinilada que necesita en nuestro sitio web, nuestro equipo de Servicios de proteínas personalizadas puede trabajar con usted para crear una solución de proteína personalizada que satisfaga sus necesidades de investigación específicas.

Proteínas marcadas con fluorocinas fluorescentes para detectar células CAR-T

Gráfico que muestra que un receptor de antígeno quimérico (CAR) en las células CAR-T puede unirse a su antígeno objetivo expresado en una célula tumoral o a una proteína marcada con fluorescencia purificada, lo que permite evaluar el porcentaje de células T que expresan CAR

Demostración de la utilidad de una fluorocina para evaluar la expresión de CAR. (A)  La terapia con células CAR-T se basa en el principio de que las células T extraídas de un paciente o donante pueden modificarse genéticamente para expresar un receptor de antígeno quimérico específico (CAR). Una vez que estas células CAR-T se vuelven a infundir en el paciente, CAR se unirá a su antígeno objetivo específico en la superficie de las células tumorales del paciente, activando las células T y permitiéndoles atacar y destruir las células tumorales. (B)  La capacidad de evaluar la expresión de CAR después de la transducción de células T es un paso importante en la producción de células CAR-T. Las células T que expresan CAR se pueden teñir directamente usando una fluoroquina (antígeno diana) y el porcentaje de células que expresan CAR se puede detectar mediante citometría de flujo. (C) Las células T CD4+CD8+ se transdujeron con un hCD19-CAR (izquierda) o no se transdujeron (derecha) y luego se cultivaron durante 11 días. Las células se tiñeron con PE-Cy7-CD4 y  proteína recombinante humana CD19 Fc quimera Atto 488  (n.º de catálogo ATJ9269), y se detectaron mediante citometría de flujo.

Ventajas de las proteínas marcadas con fluorocinas fluorescentes para evaluar la expresión de CAR:

Las células diana que expresan un receptor de antígeno quimérico específico (CAR) se pueden teñir directamente con la fluoroquina adecuada

La tinción directa con una fluoroquina reduce el tiempo de procesamiento y elimina la tinción de fondo que puede ocurrir mediante la detección indirecta de CAR utilizando un antígeno diana marcado con epítopo y un anticuerpo secundario marcado con fluoróforo.

Las fluorocinas están validadas para unirse a perlas conjugadas con el anticuerpo monoclonal correspondiente

Algunas fluoroquinas también se prueban para garantizar que tiñen las células CAR-T apropiadas mediante citometría de flujo.

Las fluoroquinas muestran una consistencia de lote a lote y retienen el mismo alto nivel de actividad que la proteína recombinante etiquetada con Fc sin marcar

Datos de citometría de flujo que muestran la tinción de células CD19-CAR-T por CD19 Fc Chimera Atto 488 humano recombinante, con células T CD4+CD8+ que no se transdujeron con un hCD19-CAR que sirve como control negativo

Detección de perlas fluorescentes conjugadas con BCMA antihumano con proteína recombinante humana BCMA/TNFRSF17 Fc Chimera Atto 488 . Las perlas fluorescentes conjugadas con anticuerpo monoclonal anti-BCMA humano se tiñeron con (A) proteína recombinante humana BCMA/TNFRSF17 Fc quimera Atto 488 (n.º de catálogo ATJ193) o (B) sin teñir y se detectaron mediante citometría de flujo.

Datos de citometría de flujo que muestran la tinción de perlas conjugadas con anti-BCMA con proteína recombinante humana BCMA/TNFRSF17 Fc Chimera Atto 488, con perlas conjugadas con anti-BCMA sin teñir que sirven como control negativo.

Detección de células CD19-CAR-T con proteína recombinante humana CD19 Fc Chimera Atto 647N. Las células T CD4 + CD8 + se transdujeron (A) con un hCD19-CAR o (B) no se transdujeron y luego se cultivaron durante 11 días. Las células se tiñeron con PE-Cy7-CD4 y proteína recombinante humana CD19 Fc quimera Atto 647N (n.º de catálogo ATM9269), y se detectaron mediante citometría de flujo.

Datos de ensayo de bioactividad que muestran la unión de diferentes concentraciones de tres lotes diferentes de proteína recombinante humana BCMA Fc quimera Atto 647N o la proteína recombinante humana BCMA Fc quimera sin marcar a recombinante humano APRIL. Los datos demuestran una bioactividad consistente entre las proteínas marcadas con fluorescencia y las no marcadas y una consistencia de lote a lote en la bioactividad de los diferentes lotes de la proteína marcada con fluorescencia.

Pruebas de bioactividad y consistencia lote a lote de proteína recombinante humana BCMA Fc Chimera Atto 647N. Se inmovilizó APRIL/TNFSF13 humano recombinante (n.° de catálogo 5860-AP) a 0,1 ug/mL, 100 ul/pocillo, y se inmovilizaron las concentraciones indicadas de tres lotes independientes de BCMA Fc Chimera Atto 647N humano recombinante (n.° de catálogo ATM193; rojo, verde, líneas naranjas) o Quimera Fc BCMA Humana Recombinante sin marcar (Catálogo # 193-BC; línea azul). Los datos demuestran una bioactividad consistente entre las proteínas marcadas con fluorescencia y las no marcadas y una consistencia de lote a lote en la bioactividad de los tres lotes diferentes de la proteína marcada con fluorescencia.

Pico de SARS-CoV-2 marcado con fluorescencia y proteínas ACE-2

Con Alexa Fluor Dyes con brillo y fotoestabilidad insuperables Proteínas de pico de SARS-CoV-2 de Alexa Fluor®

Alexa Fluor es una marca registrada de Molecular Probes, Inc., Eugene, OR.

 

Alexa Fluor Spike Proteins detecta la expresión de ACE-2 en células HEK293

Alexa Fluor® Spike Proteins detecta la expresión de ACE-2 en células HEK293 . Las células HEK293 transfectadas con ACE-2 humano se tiñeron con (A) 1 µg/mL (100 µL/pocillo) Pico de SARS-CoV-2 recombinante (GCN4-IZ) Su-tag Proteína Alexa Fluor® 488 (n.º de catálogo AFG10561) o (B) sin teñir. Casi todas las células fueron positivas para la expresión de ACE-2 en comparación con el control no teñido.

Se han generado células CAR-T que expresan CAR específicas para diferentes moléculas de superficie, incluidas CD19 y BCMA , y se están evaluando como terapias contra el cáncer. CD19 es un antígeno que se expresa ampliamente en los cánceres derivados de células B y es uno de los objetivos más populares para las terapias con células CAR-T. 1 La Administración de Drogas y Alimentos de los Estados Unidos (FDA, por sus siglas en inglés) aprobó dos terapias de células anti-CD19-CAR-T. Tisagenlecleucel (KYMRIAH) fue aprobado en agosto de 2017 para el tratamiento de la leucemia linfoblástica aguda de precursores de células B refractaria o en recaída.(ALL), y axicabtagene ciloleucel (Yescarta) fue aprobado en octubre de 2017 para el tratamiento de pacientes adultos con linfoma difuso de células B grandes (DLBCL) en recaída o refractario. Aunque se ha observado una remisión clínica notable usando células CAR-T anti-CD19, también se han producido recaídas debido al escape y proliferación de células tumorales CD19-, o factores que pueden contribuir a la pérdida de células CAR-T o CAR-T. la función celular, incluida la pérdida de la persistencia de las células CAR-T, la muerte o senescencia celular inducida por la activación, o un microambiente tumoral inmunosupresor. 2 Se están aplicando estrategias de focalización dual para tratar de superar estos obstáculos.

El segundo antígeno tumoral más diana para la terapia con células CAR-T es el antígeno de maduración de células B (BCMA). 1 La BCMA participa en la regulación de la maduración y diferenciación de las células B en células plasmáticas y, por lo general, se expresa en niveles más altos en las células plasmáticas malignas que en las células plasmáticas normales. 3, 4 La terapia de células CAR-T anti-BCMA se está buscando actualmente para el tratamiento del mieloma múltiple y hasta ahora ha mostrado resultados prometedores. 3, 4 Otros objetivos principales que se están investigando en ensayos clínicos para terapias con células CAR-T incluyen GD2, EGF R , HER2 , mesotelina , CD20 , CD22 , CD30 , CD33CD123 , Glipicano-3 y NKG2D . 1

Referencias

Yu, JX et al. (2019) Nacional. Rvdo. Descubrimiento de drogas 18 : 821.

Hay, KA & CJ Turtle (2017) Drogas 77 :237.

Mikkilineni, L y JN Kochenderfer (2017) Sangre 130 : 2594.

D’Agostino, M. & N. Raje (2020) Leucemia 34:21 .

EL GEN MYC  

EL GEN MYC

La familia de genes MYC es una de las más ampliamente estudiadas (1). Dichos genes actúan como factores de transcripción y reguladores del ciclo celular e intervienen en la proliferación, apoptosis y diferenciación celular y en la inmortalización (2).

Los genes c-Myc, N-Myc and L-Myc se expresan en diferentes tejidos durante la embriogénesis. Específicamente, el gen c-Myc se expresa principalmente en células con una mayor tasa de proliferación. Por su parte, el N-Myc se expresa a bajos niveles en diversos tejidos neonatales y especialmente en células pre-B, riñón, cerebro e intestino (3, 4). Por otra parte, el L-Myc se expresa durante el desarrollo del riñón y el pulmón y en los compartimentos de diferenciación y proliferación del cerebro y del tubo neural. Los tres genes participan activamente en los mecanismos de señalización celular. Además, sintetizan factores de transcripción que forman heterodímeros con la proteína Max, para luego unirse al ADN; de esta manera, regulan la expresión de múltiples genes (1,5,6). Myc, el gen que ayuda a las células del cáncer a evadirse del sistema inmune

El gen más ampliamente estudiado de esta familia es el c-Myc, que fue el primero en ser descubierto mediante su homología con el gen transformante del virus de la mielocitomatosis aviar MC29 (v-Myc) (7). Los otros dos genes, N-Myc y L-Myc, se descubrieron posteriormente por su homología con el v-Myc en secuencias amplificadas en células de neuroblastoma y en tumores de células pequeñas del pulmón, respectivamente (2,8-10)

En 1911 Peyton Rous observó que el sarcoma del pollo podría transmitirse mediante extractos libres de células de tumores y sugirió que un virus podría ser el agente etiológico de los sarcomas (11,12). Con base en el trabajo de Rous, Bishop y colaboradores (13) llevaron a cabo un estudio en un subgrupo específico de retrovirus aviares, que incluía diversos tumores en pollos, como leucemia mieloide, tumores de hígado, riñón y sarcomas; estos estudios condujeron a la identificación del oncogén v-Myc en pollos. Luego, con el descubrimiento de un gen homólogo, denominado c-Myc en pollos, se corroboró la hipótesis de que los retrovirus aviares oncogénicos podrían interaccionar con genes reguladores del crecimiento celular y transmitir el gen activado.

Por otra parte, se encontró que el gen c-Myc se encuentra alterado en diversos tumores sólidos, leucemias y linfomas, así como en diferentes tumores en animales (2,14-16). En las células neoplásicas es muy frecuente que se presente la amplificación del gen c-Myc en tumores hematopoyéticos debido a translocaciones cromosómicas o aneuploidías. Estas alteraciones inducen una desregulación de la expresión del gen. Se sabe que en el locus del gen c-Myc (8q24) ocurren frecuentemente reordenamientos cromosómicos, además de integración de virus oncogénicos que promueven modificaciones funcionales o estructurales (17,18). Entre las alteraciones cromosómicas más comunes que involucran al locus del c-Myc está la translocación t(8;14) presente en el linfoma de Burkitt (LB) (18-20). Así, el gen c-Myc translocado actúa de forma defectuosa. De otro lado, la amplificación del gen c-Myc es muy frecuente en el cáncer de mama, pulmón, ovario, próstata, leucemias y linfomas; mientras que la pérdida de la regulación es más común en el cáncer de colon, tumores ginecológicos y melanoma (1,18,20).

Estructura y función del gen c-Myc

El proto-oncogén c-Myc participa en una amplia red de vías metabólicas, y por esta razón tiene múltiples funciones como son la progresión del ciclo celular, metabolismo celular, angiogénesis, adherencia celular, reparación del ADN, apoptosis y diferenciación celulares (1) (figura 1).

El gen c-Myc fue descubierto hace más de 25 años como un oncogén retroviral aviar (v-Myc) en células infectadas por el virus de transformación aguda MC29, el cual induce mielocitomatosis y tumores en pollos; posteriormente se identificó el c-Myc en humanos y en otros vertebrados por su homología celular con el v-Myc (1,13,21).

El c-Myc se localiza en la región cromosómica 8q24. Codifica para una proteína con función de factor de transcripción nuclear, que interviene en numerosos mecanismos celulares y vías de transducción. En células normales el c-Myc se encuentra bien regulado, en contraste con la desregulación que presenta en las células cancerosas (9,19-22).

El gen c-Myc se compone de tres exones. El exón 1 tiene dos promotores y no codifica. Los exones 2 y 3 codifican para la proteína Myc que tiene un sitio de inicio para la traducción en el nucleótido 16 del exón 2 (20); en dicho sitio se sintetiza una proteína c-Myc de 64 kDa constituida por 439 aminoácidos y presenta una traducción alternativa que origina dos tipos de proteínas, una de secuencia larga y otra de secuencia corta, denominadas p67 Myc (67 kDa) y MycS (45 kDa). Otros autores también informan un polipéptido de c-Myc de 45-kDa. De otro lado, se tiene un interés particular en las diferentes funciones de dos productos alternativos del gen c-Myc: c-Myc 1 y c-Myc 2. La proteína c-Myc 2 estimula el crecimiento celular, mientras que c-Myc 1 lo suprime; o sea, que las actividades de estas dos proteínas son antagónicas (23). Esta situación, sumada a la ocurrencia de mutaciones en el gen c-Myc en neoplasias humanas, hace más complejo el estudio del papel de este gen en dichas células.

Por otra parte, se sabe que la pérdida de la regulación de la expresión del gen c-Myc ocurre por diferentes mecanismos genéticos, tales como la amplificación, alteraciones cromosómicas numéricas y estructurales, inserción viral o mutaciones puntuales; estas alteraciones se relacionan con la transformación e inmortalización de las células neoplásicas (1,24).

Como resultado de múltiples estudios sobre la regulación de la expresión del gen c-Myc, se ha informado la existencia de una gran variedad de factores de transcripción que interaccionan con él.

El gen c-Myc se regula por mecanismos complejos de transcripción y postranscripción. Se conocen cuatro promotores de transcripción, pero el ARN sintetizado a partir del promotor P2 contribuye con 80% a 90% del total del ARN en las células normales (25,26).

En las células humanas normales el gen c-Myc se transcribe en diferentes tejidos, mientras que en células neoplásicas la transcripción se lleva a cabo de forma anormal (22). La actividad oncogénica del c-Myc se demostró en animales transgénicos y en estudios in vitro con cultivos celulares (27). Asimismo, se encontró que una deleción homocigótica del gen c-Myc es letal en embriones murinos, lo que sugiere que la expresión de este gen es esencial para el desarrollo embrionario (28).

Estructura y función de la proteína c-Myc

Los protooncogenes codifican para proteínas reguladoras de la transcripción, que son fundamentales para muchos procesos celulares. Estas proteínas, cuando se expresan de una forma anormal, actúan como oncoproteínas por lo que se asocian con el desarrollo de diversas neoplasias (16,29-31).

La proteína c-Myc es una fosfoproteína nuclear de 439 aminoácidos que juega un papel importante en la regulación de la expresión génica en células humanas; generalmente forma complejos de cremallera de leucina (LZ, por la sigla en inglés de leucine zipper) con otras moléculas (8,9). Además, tiene varias secuencias estructurales conservadas y posee dos dominios principales. El primero es un motivo de dimerización, denominado helix-loop-helix leucine zipper (HLH/LZ) en el residuo C-terminal que consta de 90 aminoácidos; este dominio se requiere para la dimerización con otras proteínas y con el ADN (28,32). Además, el dominio HLH/LZ permite la dimerización homotípica o heterotípica con otras proteínas HLH/ LZ, como ocurre con la heterodimerización con la proteína Max y con la unión al ADN en una secuencia específica E-box, denominada sitio Myc E-box o EMS (por la sigla en inglés de E-box Myc Site); la alteración de este dominio destruye la actividad biológica de la proteína, indicando que la unión al ADN es esencial para su función (33).

El segundo dominio comprende una gran parte de la proteína c-Myc y se define como el dominio de transactivación. La región N-terminal de c-Myc tiene 140 aminoácidos y contiene grupos ácidos ricos en prolina y glutamina, similares a los asociados con algunos dominios de transactivación (28, 33-35); la secuencia de la proteína c-Myc posee varios dominios N-terminales conservados, que se denominan cajas Myc, y se encuentran en proteínas homólogas relacionadas, como N-Myc y L-Myc. La región rica en glutamina de c-Myc es esencial para la actividad oncogénica. Además, el dominio N-terminal, denominado dominio de activación transcripcional (TAD) (aminoácidos 1 a 143) contiene un elemento rico en prolina que se extiende desde el aminoácido 41 hasta el 103 (36). El dominio TAD es necesario para activar la transcripción de c-Myc y para la transformación celular, la inhibición de la diferenciación celular y la inducción de la apoptosis mediada por c-Myc (28,37).

De otro lado, en 1991 se identificó la proteína Max que interactúa con la proteína c-Myc para formar un heterodímero Myc-Max, complejo que se une luego al ADN (38). La proteína c- Myc tiene una vida media corta, de aproximadamente 20 minutos, mientras que la de la proteína Max es mayor de 24 horas; por lo tanto, en muchos sistemas, la proteína c-Myc es el componente limitante del heterodímero, lo cual es clave en la regulación de la transcripción génica en diversos mecanismos como la proliferación y diferenciación celulares y la apoptosis (5,6,33).

La dimerización de las proteínas Myc y Max mediante los dominios HLH/LZ es importante para la unión de este complejo con el ADN en secuencias específicas de hexanucleótidos, denominadas cajas E (E boxes) (5′-CA[C/T]GTG-3′) (33). Por esta vía, c-Myc activa la transcripción de promotores que contienen la secuencia CACGTG (39). El heterodímero Myc-Max unido al ADN, interacciona a través de la región N-terminal de Myc con una variedad de proteínas involucradas en la transcripción de múltiples genes; entre estas proteínas se incluyen las TRRAP (por la sigla en inglés de transactivation-transformation domain-associated proteins), que se asocian con la histona acetilasa GCN5 (40). La acetilación de histonas puede luego marcar la cromatina para permitir el acceso de factores de transcripción que pertenecen a la maquinaria de aquellos de tipo general (5).

Por otra parte, en estudios in vitro se encontró que la proteína c-Myc es inactiva cuando se encuentra sola, no forma homodímeros, ni se une al ADN; por lo tanto, requiere la dimerización con Max para unirse al ADN (27,39). En contraste, la proteína Max forma fácilmente homodímeros y se une directamente al ADN para inducir la transcripción.

Otro aspecto importante es que la proteína Max puede unirse a otras proteínas como las de la familia Mad, para inducir represión de la transcripción (6,33). Los niveles de la proteína Mad, que son opuestos a los de c-Myc, aumentan durante la diferenciación celular, mientras que una baja expresión de la proteína Mad2 (Mxi-1) se asocia con el desarrollo de tumores en modelos murinos. El complejo Mad-Max, al contrario de Myc-Max, interacciona con las histonas deacetilasas que inducen estructuras compactas de la cromatina, lo cual limita el acceso de los factores de transcripción al ADN (33).

Finalmente, se presentan modificaciones postraduccionales de la proteína c-Myc, como glicosilación y fosforilación, que alteran su vida media; por ejemplo, la fosforilación del dominio de transactivación transcripcional de c-Myc constituye un sustrato para la acción de factores de crecimiento regulados por las proteínas MAP quinasas (por la sigla en inglés de mitogenactivated protein kinases), así como para proteínas quinasas dependientes del ciclo celular. Este dominio tiene gran importancia porque se lo considera un blanco directo para la regulación del ciclo celular y de diferentes vías de señalización (figura 2). De otro lado, se ha observado que la inhibición de la proteína c-Myc podría bloquear vías de señalización mitógenas específicas y de esta manera facilitar la diferenciación celular (34,36,41).

Función del c-Myc en la regulación del ciclo celular

El gen c-Myc participa junto con muchos otros genes en la regulación del ciclo celular. Sin embargo, no se conoce bien su función en la activación de las redes metabólicas citosólica y mitocondrial durante la entrada de la célula al ciclo celular (42); c-Myc no solamente promueve el paso de las células de G0 a G1, sino que también durante toda la fase G1 del ciclo celular induce la transcripción de genes e interviene en el crecimiento y la proliferación celulares y en la apoptosis. Los estudios sugieren que c-Myc tiene la capacidad de activar la maquinaria del ciclo celular y se lo considera un gen »maestro» para la activación de muchos genes por diferentes vías metabólicas. Se sabe que este gen es clave para la activación de la glucólisis, mediante la regulación de genes que intervienen en ella con el fin de proporcionar energía durante todo el ciclo celular (21,43).

En células en reposo la proteína c-Myc estimula el inicio de la mitosis, lo que sugiere que es una proteína esencial para el crecimiento celular continuo; además, es necesaria para varias fases del ciclo celular. No solo c-Myc es indispensable en el punto de transición G0/G1 de dicho ciclo, sino que también, como resultado de su activación, permite a las células salir de la fase G0 y continuar con la progresión del ciclo (42,44-47).

Con respecto a las funciones del c-Myc en el ciclo celular, varios estudios determinaron, mediante la recombinación homóloga, que la inactivación de los dos alelos de este gen produce una prolongación significativa de la fase S (28,47). Asi mismo, se demostró en células Myc-nulas, es decir, que no expresan L-Myc ni N-Myc, una mayor prolongación de las fases G1 y G2, mientras que la fase S transcurre en un tiempo normal, por lo que se concluye que c-Myc es esencial durante las fases G1 y G2 del ciclo celular.

Por otra parte, está bien definido que proteínas como las ciclinas, las quinasas dependientes de ciclinas (CDK, por la sigla en inglés de cycline-dependent kinases), inhibidores de las CDK (CKI, por la sigla en inglés de cycline kinases inhibitors) y otras proteínas reguladoras del ciclo celular son importantes para el funcionamiento de c-Myc. Una de las vías por las cuales c-Myc participa en la progresión del ciclo celular es la regulación de los genes de las ciclinas; por ejemplo, una expresión desregulada de c-Myc se asocia con un aumento en la expresión de las ciclinas A y E (42, 44,45).

Además, en cuanto a la regulación de la fase G1, la interacción entre c-Myc y ciclina D1 es compleja y depende de diferentes estímulos. Además, c-Myc aumenta la expresión de las CDK por varios mecanismos, por ejemplo: coopera con la proteína RAS (por la sigla en inglés de RA-t sarcoma) para inducir el promotor de CDC2 (CDK1). Otra relación directa entre c-Myc y el ciclo celular es la capacidad de activar directamente genes como cdc25A y el de la ciclina E durante la progresión de dicho ciclo (42,45).

El gen cdc25A codifica para una proteína fosfatasa que a su vez activa a CDK2 y CDK4. Además, la expresión de c-Myc disminuye el nivel del inhibidor p27 durante la regulación del ciclo celular en el punto G1/S; sin embargo, no se conoce con claridad el mecanismo por el cual c-Myc interfiere con la actividad del p27 (48).

En la década de los años 90 Cleveland y colaboradores encontraron en estudios con líneas mieloides de células progenitoras que la desregulación del gen c-Myc induce el mecanismo de apoptosis (28,49); estas células dependen de la interleucina-3 (IL-3) para su crecimiento y para la expresión de c-Myc. En ausencia de IL-3, la expresión anormal de c-Myc conduce a las células hacia la fase S, para luego activar por esta vía la apoptosis y detener el ciclo celular; además, se observó que c-Myc afecta la transcripción de diferentes genes que intervienen en la apoptosis, como es el caso de TP53.

c-Myc en la oncogénesis

El proto-oncogén c-Myc es uno de los genes más comúnmente relacionados con el origen de una gran variedad de neoplasias humanas (14,34,44). La pérdida de regulación de c-Myc juega un papel importante en el origen del cáncer. Estudios con animales transgénicos demostraron que la desregulación de c-Myc es el principal evento que podría explicar la carcinogénesis en la mayoría de los tejidos (16), además de que induce a la transformación celular en modelos in vitro e in vivo (44). De los anteriores hallazgos, también se concluye que la sobrexpresión de c-Myc se encuentra en más del 50% de las neoplasias humanas y se asocia con un mal pronóstico y un fenotipo invasor.

En el locus 8q24 del gen c-Myc ocurren con frecuencia alteraciones cromosómicas que afectan su estructura y función (18,22). Entre las alteraciones más comunes de c-Myc que lo relacionan con la oncogénesis está la translocación recíproca t(8;14) en individuos con linfoma de Burkitt, una malignidad hematológica de células B, caracterizada por ser muy agresiva y con un alto grado de proliferación (19,20). En este tipo de tumor c-Myc se transloca con uno de los genes de la cadena pesada de las inmunoglobulinas (IGH, por la sigla en inglés de immunoglobulin heavy chain) localizado en el cromosoma 14 (18,19,22,50). Estos dos genes translocados se activan de una forma anormal en las células afectadas, lo que conduce a una expresión del gen c-Myc constitutiva y desregulada; así se alcanzan niveles altos de expresión del producto del gen. Además, el gen IGH potencia la desregulación de c-Myc. La t(8;14) se observa en cerca del 85% de los casos de linfoma de Burkitt (50-52); sin embargo, dicha translocación no es exclusiva de este linfoma sino que también se la ha encontrado en otras neoplasias humanas, como es el caso de leucemias y del mieloma múltiple (19,53). Por otra parte, en otros estudios se encontró que en el linfoma de Burkitt también puede ocurrir que el gen c-Myc se transloque con otros genes de las inmunoglobulinas, generando translocaciones cromosómicas variantes como la t(2;8) y la t(8;22), como resultado de los diferentes sitios de ruptura cromosómica (18,54). De los anteriores hallazgos se concluye que el gen c-Myc juega un papel importante en la patogénesis del linfoma de Burkitt (19,55).

Finalmente, otras alteraciones frecuentes en el locus 8q24 que afectan la expresión del gen c-Myc son deleciones, aneuploidías del cromosoma 8, amplificación, mutaciones puntuales e inserción viral (15,18,24,53); todas estas alteraciones se presentan en diversas neoplasias como en los cánceres de mama, pulmón, ovario, próstata, colon y estómago, así como en leucemias y linfomas (18,56-59).

Inestabilidad genética en cáncer inducida por c-Myc Desarrollan un fármaco para atacar a Myc, un gen clave en la mayoría de  tumores | TN

El cáncer es un proceso evolutivo en el que las células normales adquieren un fenotipo maligno a partir de la acumulación de diversas alteraciones genéticas y epigenéticas que afectan a protooncogenes, genes supresores de tumores y genes de reparación del ADN (19,60-63). La inestabilidad genética (IG) es una característica propia de las células tumorales; este fenómeno favorece la aparición de aneuploidías y, además, genera un aumento en la tasa de mutaciones (64). En la IG se identifican dos tipos: la inestabilidad microsatelital (MSI, por la sigla en inglés de microsatellite instability), también conocida como MIN, en la que se presenta expansión o contracción del número de repeticiones de oligonucleótidos presentes en secuencias de microsatélites de genes de reparación, como es el caso de los genes MLH1 y MSH2 en individuos con cáncer colorrectal hereditario sin poliposis (63,64); el otro tipo es la inestabilidad cromosómica (CIN, por la sigla en inglés de chromosomal instability), que se refiere a las alteraciones cromosómicas numéricas y estructurales presentes en las células neoplásicas (63,65-67). Se considera que cerca del 50% de los tumores sólidos tienen alteraciones cromosómicas. Los dos tipos de inestabilidad se presentan en una amplia variedad de neoplasias. Cabe mencionar que entre los tipos de IG en el cáncer también se propone la inestabilidad telomérica, que a su vez promueve la inestabilidad cromosómica (63,65,68); este tipo de inestabilidad afecta la integridad del telómero y se la ha observado en varias neoplasias (66).

La relación del gen c-Myc con la IG en las células tumorales se podría explicar por sus funciones en la proliferación y regulación del ciclo celular, pero más específicamente por la inducción de especies reactivas de oxígeno y la promoción de CIN, especialmente aneuploidías y tetraploidías (64,68). Por consiguiente, la desregulación de c-Myc afecta su interacción con otros genes responsables de la integridad del genoma, como son los genes supresores de tumores y los de la reparación del ADN, lo que ocasiona que se alteren diversos mecanismos celulares y genéticos; de esta forma se induce la aparición de un fenotipo mutador en las células neoplásicas. De lo anterior se concluye que el gen c-Myc actúa como un gen »maestro» que coordina la expresión de múltiples genes (1,18,42,64). Además, c-Myc también contribuye a la oncogénesis mediante la inducción de la IG por alteraciones específicas en el punto de control G1/S del ciclo celular, en el cual se presenta la respuesta al daño del ADN; en consecuencia, se acumulan diversos tipos de daños en la célula (42,64).

Amplificación del gen c-Myc en la oncogénesis

La amplificación es una de las alteraciones más comunes del oncogén c-Myc en diversas neoplasias humanas (30,69,70). Muchos estudios demuestran que la amplificación y la sobrexpresión del oncogén c-Myc son claves en la iniciación y progresión del cáncer, tal como se informa en leucemias, linfomas y tumores sólidos. Además, la amplificación se relaciona con la sobrexpresión de oncogenes, produciendo una ventaja selectiva y mayor tasa de proliferación a las células transformadas (60-62). El oncogén c-Myc se encuentra expresado en altos niveles en diversas neoplasias como las de mama, próstata, pulmón, colon y linfomas, y en la mayoría se asocia con mal pronóstico de la enfermedad (14,71,72); por ejemplo, las frecuencias de amplificación y sobrexpresión de c-Myc en el cáncer de mama varían ampliamente entre 1% y 94% y de 22% a 95%, respectivamente (60,61,73-76).

En otro estudio en el que se analizaron cerca de 1.000 casos de cáncer de mama se encontró que la amplificación de c-Myc fue del 17%; además se halló que esta alteración se correlaciona con un mal pronóstico de la enfermedad (77,78). La amplificación de c-Myc también se ha observado en un 29% de los casos de cáncer de próstata y en un 40% de los de cáncer gástrico (57,58).

La amplificación es una alteración genética que conduce al aumento en el número de copias de un gen o de grupos de genes contiguos, lo que ocasiona una expresión génica anormal (18,62). Entre las causas cromosómicas que originan la amplificación del oncogén c-Myc están las translocaciones, trisomías, duplicaciones e isocromosomas que involucren el locus 8q24 (51,68). Asimismo, dichas alteraciones afectan las vías de regulación de c-Myc sobre otros genes, tales como TP53 y RB, por lo que se propone que la amplificación de este gen se asocia con la inestabilidad genómica, la cual a su vez promueve la oncogénesis (14,66,78).

Un tipo de amplificación son los cromosomas dobles diminutos (DM) (double minutes), que son pequeños fragmentos extracromosómicos que contienen genes amplificados, están presentes en múltiples copias y son frecuentes en diversos tumores sólidos y linfomas (17-19,53); los cromosomas DM generalmente se detectan con técnicas de citogenética convencional o molecular (FISH, por la sigla en inglés de fluorescent in situ hybridization). Otro tipo de amplificación son las denominadas regiones homogéneamente coloreadas (HSR, por la sigla en inglés de homogeneous staining regions) presentes en determinadas regiones cromosómicas, como en la del locus 8q24 del gen c-Myc; las HSR son un producto del conjunto de genes amplificados; estas regiones contienen varios cientos de genes amplificados y tienen un patrón de bandeo cromosómico anormal (17).

Estos dos tipos de amplificación son comunes durante el desarrollo y la progresión del cáncer y afectan por lo general el número de copias de proto-oncogenes, las cuales alteran la tasa de proliferación celular, lo que promueve la inestabilidad genómica y, a su vez, el proceso de carcinogénesis en diversas neoplasias (18,64).

Se puede detectar la amplificación de oncogenes en muestras de tumores humanos con las técnicas de hibridación in situ fluorescente (FISH) e hibridación genómica comparativa (CGH, por la sigla en inglés de comparative genomic hybridization), que son muy específicas y sensibles para ese propósito (53,60,79).

En numerosos estudios con estas técnicas han hallado niveles altos de amplificación de muchos genes en células neoplásicas, especialmente con los genes c-Myc y HER-2 en tumores primarios de mama. Se considera que la co-amplificación de estos dos genes se relaciona con la presencia de otros tipos de alteraciones genéticas, al igual que con tumores más agresivos y del mal pronóstico (60,62,80).

Por lo anterior, la amplificación de los genes c-Myc y HER-2 en el cáncer de mama se considera como un marcador molecular recurrente con valor pronóstico para las pacientes (60,62,81,82). Además, los hallazgos sugieren que la amplificación de c-Myc podría ocurrir en las etapas iniciales del desarrollo del cáncer de mama y simultáneamente presentarse mutaciones en el gen TP53. Estos conocimientos son de gran importancia para la biología del cáncer, porque han permitido el desarrollo de nuevas drogas antineoplásicas que inhiban la amplificación génica en determinadas neoplasias; el caso más conocido y de gran utilidad en oncología ha sido el del trastuzumab (Herceptin®), una droga diseñada para bloquear la amplificación del gen ERBB2 durante el tratamiento del cáncer de mama; el estudio de la amplificación de este gen es importante porque se considera un marcador de recurrencia de la enfermedad (62,80,83).

En un estudio hecho por el Grupo de Genética Médica, evaluando la amplificación del gen c-Myc en muestras de cáncer de mama incluidas en bloques de parafina con la técnica FISH (datos sin publicar), se encontró una alta frecuencia de aneuploidía del cromosoma 8 y de amplificación del gen c-Myc, corroborando lo informado en la literatura que ambas alteraciones son comunes en este tipo de cáncer (figura 3). En los estudios con FISH es posible detectar la heterogeneidad genética intratumoral que se presenta durante el desarrollo del cáncer, lo que es una ventaja de la técnica FISH con respecto a otras técnicas moleculares.

Finalmente, la caracterización molecular de las alteraciones del gen c-Myc continúa siendo un tema de gran interés en la genética del cáncer, debido a la asociación de estas alteraciones con la génesis de muchas neoplasias en humanos; los nuevos conocimientos aportarán información valiosa para desarrollar nuevas estrategias terapéuticas con el fin de controlar eficazmente la expresión del gen c-Myc en el desarrollo del cáncer. Un equipo de científicos ha verificado que inhibir la proteína Myc, implicada en el desarrollo de diversos tumores, es una estrategia terapéutica eficaz también contra el tumor cerebral más frecuente y de peor pronóstico, el glioma.

El equipo ha confirmado con modelos preclínicos que la inhibición de Myc impide que las células tumorales se dividan y proliferen eficientemente. La inhibición preclínica de Myc se ha validado en ratones como estrategia terapéutica contra el astrocitoma. Este mismo grupo consiguió anteriormente eliminar tumores pulmonares en ratones transgénicos gracias a la misma estrategia, que consiste en expresar el transgén Omomyc en modelos de ratón. Confirmaron, además, que no aparecían efectos secundarios tras administrar tratamientos repetidos y a largo plazo y demostraron que no aparecía resistencia.

Ahora, la inhibición preclínica de Myc se ha validado también como estrategia terapéutica contra el astrocitoma, un tipo de glioma, en modelos de ratón in vivo y en las células progenitoras de estos tumores in vitro. En estos animales, el tratamiento con el transgén Omomyc reduce drásticamente los tumores y mejora los síntomas asociados hasta que el ratón se recupera y actúa con total normalidad. Los ratones tratados con Omomyc sobrevivieron, mientras que no lo hicieron los ratones no tratados.

El impacto terapéutico de Omomyc radica en su estructura, homóloga a la de Myc, que permite el bloqueo de la transcripción de los genes controlados por esta proteína. La inhibición de Myc provoca ‘defectos’ de las células tumorales y a menudo su muerte por inducción de aberraciones mitóticas, es decir, la imposibilidad de dividirse con normalidad.

 

 

BIBLIOGRÁFICA

1. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008 Oct 15;22(20):2755-66.

2. Gustafson WC, Weiss WA. Myc proteins as therapeutic targets. Oncogene. 2010 Mar 4;29(9):1249-59.

3. Chu D-K, Zhang J, Shi H, Dong G-L, Liu X-P, Wang W-Z. [Expression of candidate tumor suppressor gene N-Myc downstream-regulated gene 2 in colon cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2008 Jul;11(4):354-7.

4. Knoepfler PS, Kenney AM. Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle. 2006 Jan;5(1):47-52.        [ Links ]

5. Hurlin PJ, Huang J. The MAX-interacting transcription factor network. Semin Cancer Biol. 2006 Aug;16(4):265-74.        [ Links ]

6. Rottmann S, Lüscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol. 2006 Jan;302:63- 122.        [ Links ]

7. Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol. 1982 Jun;42(3):773-9.         [ Links ]

8. Larsson L-G, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res. 2010 May 1;316(8):1429-37.         [ Links ]

9. Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol. 2006 Aug;16(4):318-30.        [ Links ]

10. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 1985;318(6041):69-73.        [ Links ]

11. Rous P, Murphy JB. The histological signs of resistance to a transmissible sarcoma of the fowl. J Exp Med. 1912 Mar 1;15(3):270-86.         [ Links ]

12. Rous P, Murphy JB. VARIATIONS IN A CHICKEN SARCOMA CAUSED BY A FILTERABLE AGENT. J Exp Med. 1913 Feb 1;17(2):219-31.         [ Links ]

13. Bishop JM. Retroviruses and cancer genes. Adv Cancer Res. 1982 Jan;37:1-32.         [ Links ]

14. Liu G-Y, Luo Q, Xiong B, Pan C, Yin P, Liao H-F, et al. Tissue array for Tp53, C-myc, CCND1 gene overexpression in different tumors. World J Gastroenterol. 2008 Dec 21;14(47):7199-207.        [ Links ]

15. Calcagno D-Q, Leal M-F, Seabra A-D, Khayat A-S, Chen ES, Demachki S, et al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J Gastroenterol. 2006 Oct 14;12(38):6207-11.         [ Links ]

16. Oster SK, Ho CSW, Soucie EL, Penn LZ. The myc oncogene: MarvelouslY Complex. Adv Cancer Res. 2002 Jan;84:81-154.        [ Links ]

17. Alseraye F, Padmore R, Wozniak M, McGowan- Jordan J. MYC gene amplification in double minute chromosomes in an aggressive large B-cell lymphoma with leukemic presentation: a case report. Cancer Genet Cytogenet. 2009 Jul 15;192(2):76-8.         [ Links ]

18. Popescu NC, Zimonjic DB. Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med. 2002;6(2):151-9.         [ Links ]

19. Smith SM, Anastasi J, Cohen KS, Godley LA. The impact of MYC expression in lymphoma biology: beyond Burkitt lymphoma. Blood Cells Mol Dis. 2010 Dec 15;45(4):317-23.         [ Links ]

20. Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene. 2001 Oct 10;20(40):5595-610.         [ Links ]

21. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006 Aug;16(4):253-64.         [ Links ]

22. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7824-7.         [ Links ]

23. Ryan KM, Birnie GD. Myc oncogenes: the enigmatic family. Biochem J. 1996 Mar 15;314 ( Pt 3:713-21.         [ Links ]

24. Yakut T, Egeli U, Gebitekin C. Investigation of c-myc and p53 gene alterations in the tumor and surgical borderline tissues of NSCLC and effects on clinicopathologic behavior: by the FISH technique. Lung. 2003 Jan;181(5):245-58.         [ Links ]

25. Liu Y-C, Li F, Handler J, Huang CRL, Xiang Y, Neretti N, et al. Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One. 2008 Jan;3(7):e2722.         [ Links ]

26. Schmidt EV. The role of c-myc in regulation of translation initiation. Oncogene. 2004 Apr 19;23(18):3217-21.         [ Links ]

27. Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell. 1993 Jan 29;72(2):233-45.         [ Links ]

28. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999 Jan;19(1):1-11.         [ Links ]

29. Croce CM. Oncogenes and cancer. N Engl J Med. 2008 Jan 31;358(5):502-11.         [ Links ]

30. Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004 Apr 19;90(8):1612-9.         [ Links ]

31. O’Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK, et al. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem. 2003 Apr 4;278(14):12563-73.         [ Links ]

32. Prendergast GC, Ziff EB. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 1991 Jan 11;251(4990):186-9.         [ Links ]

33. Ecevit O, Khan MA, Goss DJ. Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, Max, and Mad with cognate DNA. Biochemistry. 2010 Mar 30;49(12):2627-35.         [ Links ]

34. Cowling VH, Cole MD. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol. 2007 Mar;27(6):2059-73.         [ Links ]

35. Kato GJ, Barrett J, Villa-Garcia M, Dang CV. An aminoterminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol. 1990 Nov;10(11):5914-20.         [ Links ]

36. Kato GJ, Dang CV. Function of the c-Myc oncoprotein. FASEB J. 1992 Sep;6(12):3065-72.        [ Links ]

37. Meyer N, Kim SS, Penn LZ. The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol. 2006 Aug;16(4):275-87.         [ Links ]

38. Blackwood EM, Eisenman RN. Max: a helix-loophelix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211-7.         [ Links ]

39. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature. 1992 Oct 1;359(6394):423-6.        [ Links ]

40. McMahon SB, Wood MA, Cole MD. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol. 2000 Jan;20(2):556-62.        [ Links ]

41. Hann SR. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin Cancer Biol. 2006 Aug;16(4):288-302.         [ Links ]

42. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009 Jul 9;28(27):2485-91.        [ Links ]

43. Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17834-9.         [ Links ]

44. Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle. 2004 Sep;3(9):1133-7.         [ Links ]

45. Pelengaris S, Khan M. The many faces of c-MYC. Arch Biochem Biophys. 2003 Aug 15;416(2):129-36.        [ Links ]

46. Zörnig M, Evan GI. Cell cycle: on target with Myc. Curr Biol. 1996 Dec 1;6(12):1553-6.        [ Links ]

47. Obaya AJ, Mateyak MK, Sedivy JM. Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene. 1999 May 13;18(19):2934-41.         [ Links ]

48. Hydbring P, Larsson L-G. Cdk2: a key regulator of the senescence control function of Myc. Aging (Albany NY). 2010 Apr;2(4):244-50.        [ Links ]

49. Prendergast GC. Mechanisms of apoptosis by c-Myc. Oncogene. 1999 May 13;18(19):2967-87.        [ Links ]

50. Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000 Nov 1;18(21):3707-21.         [ Links ]

51. Busch K, Keller T, Fuchs U, Yeh R-F, Harbott J, Klose I, et al. Identification of two distinct MYC breakpoint clusters and their association with various IGH breakpoint regions in the t(8;14) translocations in sporadic Burkitt-lymphoma. Leukemia. 2007 Aug;21(8):1739-51.         [ Links ]

52. Mossafa H, Damotte D, Jenabian A, Delarue R, Vincenneau A, Amouroux I, et al. Non-Hodgkin’s lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk Lymphoma. 2006 Sep;47(9):1885-93.         [ Links ]

53. Frater JL, Hoover RG, Bernreuter K, Batanian JR. Deletion of MYC and presence of double minutes with MYC amplification in a morphologic acute promyelocytic leukemia-like case lacking RARA rearrangement: could early exclusion of doubleminute chromosomes be a prognostic factor? Cancer Genet Cytogenet. 2006 Apr 15;166(2):139-45.        [ Links ]

54. Nowell P, Finan J, Dalla-Favera R, Gallo RC, Ar- Rushdi A, Romanczuk H, et al. Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukaemia cell line. Nature. 1983;306(5942):494-7.         [ Links ]

55. Hu H-M, Kanda K, Zhang L, Boxer LM. Activation of the c-myc p1 promoter in Burkitt’s lymphoma by the hs3 immunoglobulin heavy-chain gene enhancer. Leukemia. 2007 Apr;21(4):747-53.         [ Links ]

56. Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific longrange interaction with MYC. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9742-6.        [ Links ]

57. Calcagno D-Q, Leal M-F, Assumpcao P-P, Smith M-A-C, Burbano R-R. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008 Oct 21;14(39):5962-8.         [ Links ]

58 Savinainen KJ, Linja MJ, Saramäki OR, Tammela TLJ, Chang GTG, Brinkmann AO, et al. Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer. 2004 Mar 8;90(5):1041-6.         [ Links ]

59. Qian J, Hirasawa K, Bostwick DG, Bergstralh EJ, Slezak JM, Anderl KL, et al. Loss of p53 and c-myc overrepresentation in stage T(2-3)N(1-3)M(0) prostate cancer are potential markers for cancer progression. Mod Pathol. 2002 Jan;15(1):35-44.         [ Links ]

60. Ismail MF, Aly MS, Khaled HM, Mohamed HM. Detection of HER-2/neu, c-myc amplification and p53 inactivation by FISH in Egyptian patients with breast cancer. Ger Med Sci. 2009 Jan;7:Doc03.        [ Links ]

61. Burkhardt L, Grob TJ, Hermann I, Burandt E, Choschzick M, Jänicke F, et al. Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2010 Oct;123(3):757-65.        [ Links ]

62. Couturier J, Vincent-Salomon A, Mathieu M-C, Valent A, Bernheim A. [Diagnosis of HER2 gene amplification in breast carcinoma]. Pathol Biol (Paris). 2008 Sep;56(6):375-9.        [ Links ]

63. Assumpção PP, Ishak G, Chen ES, Takeno SS, Leal MF, Guimarães AC, et al. Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet Cytogenet. 2006 Aug;169(1):45-9.         [ Links ]

64. Prochownik EV, Li Y. The ever expanding role for c-Myc in promoting genomic instability. Cell Cycle. 2007 May 2;6(9):1024-9.         [ Links ]

65. Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L, Kliskey K, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol. 2010 Mar;23(3):359-66.         [ Links ]

66. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010 Mar;11(3):220-8.        [ Links ]

67. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997 Apr 10;386(6625):623-7.        [ Links ]

68. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen H-T, McBride KM, et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature. 2006 Mar 2;440(7080):105-9.         [ Links ]

69. Chrzan P, Skokowski J, Karmolinski A, Pawelczyk T. Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent nonneoplastic tissue. Clin Biochem. 2001 Oct;34(7):557-62.         [ Links ]

70. Rummukainen J, Kytölä S, Karhu R, Farnebo F, Larsson C, Isola JJ. Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genet Cytogenet. 2001 Apr 1;126(1):1-7.         [ Links ]

71. McNeil CM, Sergio CM, Anderson LR, Inman CK, Eggleton SA, Murphy NC, et al. c-Myc overexpression and endocrine resistance in breast cancer. J Steroid Biochem Mol Biol. 2006 Dec;102(1-5):147-55.         [ Links ]

72. Brenna SMF, Zeferino LC, Pinto GA, Souza RA, Andrade LAL, Vassalo J, et al. c-Myc protein expression is not an independent prognostic predictor in cervical squamous cell carcinoma. Braz J Med Biol Res. 2002 Apr;35(4):425-30.        [ Links ]

73. Chen Y, Olopade OI. MYC in breast tumor progression. Expert Rev Anticancer Ther. 2008 Oct;8(10):1689-98.         [ Links ]

74. Schlotter CM, Vogt U, Bosse U, Mersch B, Wassmann K. C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Res. 2003 Jan;5(2):R30-6.        [ Links ]

75. Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer. 2000 Sep;7(3):143-64.         [ Links ]

76. Deming SL, Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000 Dec;83(12):1688-95.         [ Links ]

77. Stoelzle T, Schwarb P, Trumpp A, Hynes NE. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol. 2009 Jan;7:63.         [ Links ]

78. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res. 2004 Dec 1;64(23):8534-40.         [ Links ]

79. Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003 Nov;38(3):215-25.         [ Links ]

80. Laakso M, Tanner M, Isola J. Dual-colour chromogenic in situ hybridization for testing of HER-2 oncogene amplification in archival breast tumours. J Pathol. 2006 Sep;210(1):3-9.         [ Links ]

81. Theodosiou Z, Kasampalidis IN, Karayannopoulou G, Kostopoulos I, Bobos M, Bevilacqua G, et al. Evaluation of FISH image analysis system on assessing HER2 amplification in breast carcinoma cases. Breast. 2008 Feb;17(1):80-4.        [ Links ]

82. Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, Gelsi-Boyer V, et al. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer. 2006 Jan;6:245.         [ Links ]

83. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007 Oct 4;26(45):6469-87.        [ Links

Mariano Ospina Pérez1; Carlos Mario Muñetón Peña2  Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.

« Entradas anteriores