Enriquerubio.net El blog del Dr. Enrique Rubio

7 enero 2021

“L A ETICA EN LA INTELIGENCIA ARTIFICIAL”

Filed under: FUNCIONES PSIQUICAS,NOTABLES — Enrique Rubio @ 15:21

 “L A ETICA EN LA INTELIGENCIA ARTIFICIAL”

Este articulo de la vanguardia, hecho por IMA Sanchis, sobre una entrevista a la doctora Galdon, despierta mi curiosidad, porque creo que desde la filosofía clásica hasta nuestros tiempos se  han llegado a conclusiones, tras una serie de hechos. Que aun no están consolidados y en consecuencias tienen que perfeccionarse

Que es un ALGORITMO

Conjunto ordenado de operaciones sistemáticas que permite hacer un cálculo y hallar la solución de un tipo de problemas.

Por definición, generalmente son diseños rigurosos y lógicos, como operaciones matemáticas, que han probado ser óptimos para solucionar alguna dificultad en cuestión. Básicamente un algoritmo es la mejor solución conocida para un problema en particular. Según su estrategia y su función existen muchos tipos de algoritmos. Los algoritmos tienen distintos usos en muchos campos. Desde el área de computación, pasando por las matemáticas hasta el área de marketing. Existen miles de algoritmos apropiados para resolver problemas en cada área.

La inteligencia emocional es un algoritmo.

Y es la capacidad para identificar, entender y manejar las emociones correctamente, de un modo que facilite las relaciones con los demás, la consecución de metas y objetivos, el manejo del estrés o la superación de obstáculos.

Que es un SILOGISMO:  una forma de razonamiento lógico deductivo, cuya estructura fija consta de dos proposiciones distintas actuando como premisas y una tercera como conclusión del razonamiento. A las dos primeras se las conoce como premisa mayor o universal y premisa menor o particular respectivamente.

De forma que entiendo que siempre que se utilicen una serie de verdades para llegar a una conclusión se le puede aplicar el nombre de algoritmo o silogismo , la única diferencia es que los Algorismo , son una serie de datos  que llegan a una conclusión y que están hecho para ser utilizados en Informatica , ya que el análisis de la maquina, permite obtener conclusiones de miles de datos, hasta llegar a una conclusión. mientras que Silogismo, de dos proposiciones distintas actuando como premisas y una tercera como conclusión del razonamiento , son computables solo en pequeñas cantidades .

Pero la sucesión de hechos relatados tienen que ser verdaderos y morales. De lo contrario el resultado es falso

Esrte articulo de la Dra. Galdon, esta basado en el desacierto que a veces tiene la inteligencia artificial, y que son producto, de que se están iniciando, y hace falta más experiencia de hecho ella se dedica a la ética dentro de la Comisión Europea como experta en ética y proyectos de tecnología puntera. Hacen falta datos para computarse, que obedezcan a una moral, y no a una costumbre.

Nació contra los algoritmos.

Sí, mi madre me tuvo con 14 años. Cualquier sistema informático o cálculo de probabilidades hubiera dicho que mis posibilidades, no solo de nacer sino de tener una vida normal, eran casi nulas.

Todos los algoritmos prevén que los hijos de preadolescentes tendrán problemas psicoafectivos, de relación, de inserción social y laboral.

¿Fue un estigma?

Sí. Dejó de serlo cuando yo lo acepté y dejé de sufrir por ello, pero en el entorno sociocultural en el que me crié y en la escuela fue muy estigmatizante. Los niños son muy crueles.

¿A dónde le llevó ese estigma?

A preocuparme de las personas que no encajan, y eso en tecnología es muy importante. Para un algoritmo lo aceptable es la muestra más representativa: hombre blanco de mediana edad. El resto somos discriminados.

Ellos no son la mayoría.

Pero son la norma. Por ejemplo, a las mujeres en los algoritmos crediticios siempre se nos asigna más riesgo, aunque tengamos un historial perfecto y como grupo seamos mejores pagadoras que los hombres, pero estamos infrarrepresentadas en la muestra.

¿Por qué?

Los algoritmos los definen hombres blancos ingenieros que están codificando un mundo que no entienden. En los hospitales de EE.UU. un estudio ha revelado que los algoritmos decían a qué personas se atendía antes en urgencias partiendo de criterios económicos y no médicos.

¿Los algoritmos deciden muchas cosas sobre nuestra vida?

¡Muchísimas! Cada vez se automatizan más decisiones vitales en los sectores público, privado y social. Los algoritmos deciden qué trabajo te ofrecen, la asignación de ayudas públicas, el riesgo de las mujeres maltratadas, la probabilidad de reincidencia de un preso…

Si lo hacen bien…

Estamos rodeados de algoritmos ineficientes y discriminatorios. Lo que estamos viendo es lo peor de la interacción humano-máquina.

Vaya.

En Washington un algoritmo decidía anualmente si se les rescindía el contrato a los maestros. Un maestro llevó su caso a juicio y descubrimos que se valoraban los resultados del profesorado en función de los de sus alumnos exclusivamente en matemáticas y en lengua. Ser docente es mucho más que ese resultado.

Sí, debería de serlo.

Además introdujo incentivos muy perversos porque los profesores se concentran en matemáticas y lengua sabiendo que lo demás es totalmente irrelevante.

¿Cómo se puede vender un algoritmo que no entiende la función educativa?

Porque no tenemos ningún tipo de control sobre esas tecnologías. En el último accidente de un coche autónomo, que funcionan con algoritmos, descubrimos que el coche no estaba programado para identificar personas humanas fuera de un paso de peatones.

¿Todo lo que pasa por nuestros móviles lo deciden algoritmos?

Sí. El modelo de negocio de Facebook, Google y Microsoft se basa en la publicidad segmentada. Te encajan en un perfil, te heteronormalizan y te ofrecen y muestran de acuerdo con ese perfil.

Un perfil reduccionista.

Esos datos acaban revendiéndose en el mercado para entrenar a otros algoritmos que acaban tomando decisiones sobre nuestras vidas.

¡Qué espanto!

Por eso me dedico a esto. La estructura tecnológica es de muy mala calidad, está impactando en las personas de manera muy nociva y no hay mecanismos para controlarlo.

Usted es experta ética en la Comisión Europea. El reconocimiento facial asusta.

De nuevo el algoritmo considera que la norma es: hombre blanco de mediana edad, y todo lo demás es excepcional y potencialmente peligroso. Muchos países se plantean ilegalizarla.

¿Pero funciona?

Solo en laboratorio. La policía británica, pionera en la aplicación de reconocimiento facial, publicó que fallaba en el 98% de los casos. En tecnología se vende mucho humo.

En China están a la última en ese tema.

Hay mucho teatro tecnológico y seguritario. La videovigilancia no reduce el crimen, pero la seguimos instalando porque nadie cuestiona la innovación.

¿Hay quien consigue burlarla?

Por ejemplo en la selección de personal. La gente introduce en su currículo en letras blancas, que el ojo humano no percibe pero sí los algoritmos, palabras como Harvard o Princeton .

Entiendo.

Los algoritmos son como coches sin cinturón ni control de velocidad ni de emisiones. Tenemos que acordar como sociedad cuáles son las garantías que imponemos a la innovación.

Todavía no sé si la inteligencia artificial es inteligente.

La inteligencia artificial no es inteligente. Pero es que la tecnología nos fascina, y eso nos hace ser poco críticos. Cuando un político dice que va a invertir en tecnología gana las siguientes elecciones, son estadísticas.

Lo dicho, hace falta mas experiencia para que los algoritmos, sean eticos

Rferencias

Gemma Galdon,doctora en Políticas Tecnológicas y auditora de algoritmos

IMA Sancchis La Vanguardia

Heuristic algorithms. Recuperado de students.cei.upatras.gr

What is algorithmic pricing (2016). Recuperado de simplicable.com

Numeral analysis. Recuperado de wikipedia.org

Probabilistic algorithms (2001). Recuperado de users.abo.fi

What are algorithms (2015). Recuperado de simplicable.com

Monte carlo algorithm. Recuperado de technopedia.com

Tipos de algoritmos. Recuperado de lostipos.com

What are reverse algorithms? Recuperado de simplicable.com

Algorithm: types and classification. Recuperado de gonitsora.com

5 enero 2021

ACTIVACIÓN E INHIBICIÓN DEL SISTEMA NERVIOSO

Filed under: FUNCIONES PSIQUICAS,Memoria — Enrique Rubio @ 21:25
 ACTIVACIÓN  E INHIBICIÓN DEL SISTEMA NERVIOSO
Charles Scott Sherrington, 

El concepto de inhibición es imprescindible para entender el funcionamiento de las funciones superiores concretamente de la memoria y de la tensión. Y también para la actividad motora y senitiva

Al igual que el arco reflejo , existen unos receptores, unos procesadores intermedos y unos efectores Todo esta soportado, por una anatomía, una bioquímica , y una respuesta , atención y memoria.

Al igual que el músculo para contraer el Bíceps el necesario una estructura intermedia que dé órdenes al Triceps, para que se relaje .

Toda esta complejidad fue ya estudiada por Charles Scott Sherrington,  fue un médico neurofisiólogo británico, premio Nobel de Medicina, que estudió las funciones de la corteza cerebral.

Fue galardonado en 1932 con el premio Nobel de Medicina 

 y fue el primer autor que se preocupó de la inhibición del sistema nervioso. Este concepto estaba fuera del pensamiento de los científicos,. Era muy difícil introducir este concepto casi místico en la anatomía. Don Santiago, no se le ocurrió esta idea, porque era absolutamente somaticista en lo que al sistema nervioso se refiere.

Se tardo mucho tiempo en entender este mecanismo, de la acción  y de la inhibición. Aunque era evidente, que para que actúe, un musculo efector, tiene que relajarse el musculo antagonista.  Esta observación de Sherrington, se siguió del mecanismo a nivel molecular.  La inhibición empieza a nivel celular, tras una química, muy compleja, donde los activadores, trabajan conjuntamente con los inhibidores y esto permite , no solo la motricidad, sino también la conducción nerviosa,  y permite que el estimulo llegue a los múltiples receptores cerebrales, y provoque  su efecto.

El término  inhibición lateral es un fenómeno aplicable a una célula , cuando inhibe a otra adyacente para su, crecimiento o actividad. y diferenciación

Este fenómeno se lleva a cabo por la vía Notch, que media interacciones célula-célula. La célula inhibidora va a expresar: unas proteínas de membrana  Delta, Jagged o Serrete. Estas van a ser ligando del receptor de membrana Notch, presente en las membranas de la mayoría de las células. Claude

Esta interacción provoca un cambio conformacional en Notch, que lleva al movimiento del dominio citoplasmático de esta, que es cortada por la proteasa Presennilina I. La porción escindida se transloca al núcleo, donde se va a unir a factores de transcripción de la familia CSL. Esta unión va a permitir que los CSL interaccionen con sus dianas génicas y las activen.

Se piensa que esta activación promueve el reclutamiento de histonacetiltransferasas, y con ello la descompactación de la cromatina. Las proteínas Notch son receptores muy importantes en el desarrollo del sistema nervioso, en el que esta vía es activada por la expresión de los genes proneurales, y llevan a la inhibición de determinadas células a neuronas

Anatomía y fisiología de los ganglios basales

   Los ganglios basales son grandes estructuras neuronales subcorticales que forman un circuito de núcleos interconectados entre sí cuya función es la iniciación e integración del movimiento. Reciben información de la corteza cerebral y del tronco del encéfalo, la procesan y proyectan de nuevo a la corteza, al tronco y a la médula espinal para contribuir así a la coordinación del movimiento. Este circuito está compuesto por varias estructuras que se pueden categorizar según su anatomía o su función.

   Anatómicamente los ganglios basales son masas de sustancia gris en el telencéfalo que incluyen: 1) núcleo caudado, 2) n lenticular (formado por el n putamen y el globo pálido externo e interno, 3) y la amígdala. Funcionalmente se relacionan a través de múltiples conexiones con núcleos próximos que incluyen al núcleo subtalámico (en el diencéfalo), la sustancia negra pars compacta y reticulata (en el mesencéfalo) y el n pedúnculopontino (en el puente).

El estriado es la estructura funcional «receptora» de aferencias extrínsecas a los ganglios basales, a través de diferentes neurotransmisores, en su mayoría excitatorios. Recibe proyecciones: 1) de la corteza cerebral (glutamatérgicas), 2) del tálamo (glutamatérgicas), y 3) de estructuras del tronco del encéfalo: SNpc (dopaminérgicas), del Núcleo pedúnculo pontino (NPP) del puente (glutamatérgicas y colinérgicas), del n dorsal del rafe (serotoninérgicas) y del locus coeruleus (noradrenérgicas).

   La estructura eferente de los ganglios basales es el globo pálido interno, que envía proyecciones gabaérgicas para comunicarse con la corteza frontal a través los núcleos motores del tálamo (ventral anterior y ventrolateral). Las vías eferentes se dividen clásicamente en dos: la vía directa y la vía indirecta.

   La vía directa se activa mediante los receptores dopaminérgicos tipo 1 (D1). Las neuronas espinosas medianas del estriado, producen una inhibición gabaérgica del GPI y la SNr que a su vez inhibe el tálamo cuya función es excitatoria sobre la corteza frontal. Por tanto, cuando el estriado recibe las proyecciones dopaminérgicas de la SNpc, se activa la vía directa y se activa la corteza motora (ya que se inhibe la proyección inhibitoria del GPI sobre el tálamo). La función de la vía indirecta es la contraria y normalmente está inhibida por las proyecciones dopaminérgicas de la SNpr a través de receptores dopaminérgicos D2. Al encenderse, a través de proyecciones gabaérgicas levanta el freno sobre el NST, cuya función habitual es la activación del GPI, que como se ha mencionado previamente, actúa como inhibidor tálamico y de la corteza.

  En presencia de dopamina, neurotransmisor aferente fundamental de los ganglios basales, se activa la vía directa y por tanto la corteza está activada, mientras que se apaga la vía indirecta, y por tanto la corteza no esta inhibida.

   Los trastornos de los ganglios basales se producen como consecuencia de la neurodegeneración o agresión secundaria de cualquiera de sus estructuras, produciendo un desequilibrio en este complicado circuito y por tanto una alteración de la coordinación motora. Se dividen en patologías hipocinéticas que implican pobreza de movimiento y en patologías hipercinéticas caracterizadas por exceso de movimiento

Los circuitos de formación de memoria se originan a partir de información procesada en áreas de asociación polimodal como la corteza frontal, temporal y parietal, de ahí el circuito lleva la información a la corteza parahipocámpica y corteza perirrinal y de ahí a la corteza entorrinal. Esta se comunica a través de la vía perforante con la circunvolución dentada, esta proyecta sus axones a través de las fibras musgosas a la región CA3 del hipocampo, que a su vez se conecta, con la vía colateral de Schaffer, a la región CA1 del hipocampo. Esta región se une con el subículo, el cual proyecta de vuelta a la corteza entorrinal. De aquí la información viaja hacia la corteza parahipocámpica y entorrinal y de ambas vuelve a las cortezas de asociación polimodal

El  circuito consta de dos sub-circuitos: la vía directa y la vía indirecta. La sustancia negra compactada proyecta axones dopaminérgicos al putamen provocando la activación de este núcleo (cuando estimula los receptores D1), que aumenta su inhibición sobre el globo pálido interno y la sustancia gris reticulada mediante sus axones gabaérgicos. Esto produce una disminución de la actividad inhibitoria sobre el tálamo, el cual aumenta su activación sobre la corteza motora. De esta forma se comienza el movimiento. Este circuito es conocido como la vía directa Por otra parte, la sustancia negra compactada provoca la inhibición del putamen (cuando estimula los receptores D2), que disminuye su inhibición sobre el globo pálido externo, lo cual provoca un aumento de la actividad inhibitoria de este núcleo sobre el subtalámico, pero que al mismo tiempo este es excitado por las vías glutamatérgicas que vienen de la corteza, lo que permite que active al globo pálido externo y sustancia gris reticulada. Al ocurrir esto las vías inhibitorias de estos núcleos afectan al tálamo disminuyendo su activación, por lo cual ya no puede estimular la corteza motora y el movimiento se termina. Este circuito es conocido como la vía

Los procesos de memoria más estudiados son la habituación y la sensibilización. Un estímulo excitatorio que se repite produce una disminución del potencial sináptico de la neurona sensitiva sobre las interneuronas y sobre la neurona motora, lo que provoca que la respuesta disminuya. Esta disminución del potencial sináptico se produce por una disminución en la movilización de las vesículas que contienen el neurotransmisor glutamato, lo que provoca una menor liberación de la sustancia química y por ende disminuye la fuerza de la sinapsis, situación que puede durar varios minutos.

Este mecanismo es el que produce la memoria de corto plazo para la habituación. El sistema molecular de la memoria de corto plazo para la sensibilización es más complejo que el de la habituación.

Un estímulo nocivo aplicado en una vía produce un aumento de intensidad en otra vía a la cual se le aplica un estímulo no nocivo, esto mediante una interneurona facilitadora.

Existen dos vías de activación del botón terminal de la neurona sensitiva mediado por esta interneurona: a) en la primera vía la serotonina (5-HT) activa el receptor de la neurona sensitiva que a su vez activa una proteína G que aumenta la actividad de adenililciclasa que convierte el ATP en AMPciclico, el cual activa la proteincinasa dependiente de AMPc (PKA), esta fosforila los canales de potasio (k + ), esto prolonga el potencial de acción y permite más entrada de calcio (Ca ++ ) al botón terminal, lo que aumenta la liberación de glutamato (Glu) a la hendidura sináptica (Fig. 8.6); b) en la segunda vía la serotonina (5-HT) activa otro receptor de la neurona sensitiva que a su vez activa una proteína G que activa la fosfolipasa C (PLC) que a través del diacilglicerol, activa la proteincinasa C (PKC). Está en conjunto con PKA permiten la apertura de canales de Ca ++ con lo cual aumenta la liberación de Glu (Fig. 8.7). En ambos casos se produce una facilitación presináptica, ya que la interneurona facilitadora ayuda a la liberación del neurotransmisor de la neurona sensitiva ( …

Actualmente se acepta que la atención no es una función unitaria y que puede clasificarse en 2 grandes grupos: atención involuntaria y atención voluntaria. La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

Se acepta que la atención no es un proceso único, sino que puede ser caracterizado como diversas funciones:

a) Estado de alerta, que corresponde a la atención involuntaria y sirve para aumentar la disposición para recibir información del entorno;

b) Atención selectiva, que corresponde a un tipo de atención voluntaria y sirve para seleccionar un estímulo específico ignorando los demás;

c) Atención sostenida, otro tipo de atención voluntaria, que corresponde a la capacidad de mantener una misma conducta a través del tiempo y la fatiga;

 d) Atención alternante, un tipo de atención voluntaria, que se manifiesta como la capacidad de cambiar el foco de atención de un objeto a otro;

e) Atención dividida, otro tipo de atención voluntaria, que corresponde a la capacidad de focalizarse en dos o más estímulos al mismo tiempo (Maureira y Flores, 2016). El ejercicio físico puede mejorar los niveles de muchas funciones cognitivas, constituyéndose como una herramienta importante para potenciar la actividad cerebral

1 enero 2021

EL CEREBRO UNA CAJA NEGRA

Filed under: ANATOMIA,FUNCIONES PSIQUICAS — Enrique Rubio @ 14:48

La ‘caja negra’ del cerebro

La comprensión de cada una de las partes de las áreas cerebrales necesita de muchos y variados enfoques y su conocimiento total se dilatará en el tiempo.

Esto es un buen sistema, entre muchos investigadores trabajando, ofrecen opiniones a veces muy distintas, y de ellas se obtiene lo mas cercano a la verdad, ponerse de acuerdo, ya es otra cosa. Esta  cuestión esmuy difícil pero es el producto de la competitividad.

La frase del cantor Vicente Fernández – El Rey

“que no hay que llegar primero pero hay que saber llegar”, es una llamada a la templanza. Todo se adquiere con la tenacidad, pero piano.

Descifrando el cerebro humano.

La ‘caja negra’ del cerebro

La comprensión de cada una de las partes de las áreas cerebrales necesita de muchos y variados enfoques y su conocimiento total se dilatará en el tiempo.

Esto es un buen sistema, entre muchos investigadores trabajando, ofrecen opiniones a veces muy distintas, y de ellas se obtiene lo mas cercano a la verdad, ponerse de acuerdo, ya es otra cosa. Esta  cuestión esmuy difícil pero es el producto de la competitividad.

La frase del cantor Vicente Fernández – El Rey

“que no hay que llegar primero pero hay que saber llegar”, es una llamada a la templanza. Todo se adquiere con la tenacidad, pero piano.

Descifrando el cerebro humano.

Este artículo debía llamarse “buscando” y ofrece verdades personales sin terminar, y recoge opiniones de eruditos qué tienen como proyecto descifrar el cerebro

“El cerebro sigue siendo un misterio y desvelar su funcionamiento total es uno de los grandes retos por alcanzar”, señala Javier de Felipe, neurocientífico del Instituto Cajal del CSIC, en Madrid. Es más, Carmen Cavada, catedrática de Anatomía Humana y Neurociencia de la Universidad Autónoma de Madrid (UAM), considera que “el cerebro humano es el gran reto de la ciencia; no sólo de la neurociencia, también de la sociología, de la pedagogía…”

Francisco Clascá:  “Ante una ingente maraña de datos, hay que establecer bases de datos con formatos y lenguajes comunes”

¿Se traducen estas consideraciones en que se ha avanzado menos de lo esperado desde que en los años noventa empezara a acuñarse la idea del comienzo de la “era del cerebro”? Ciertamente, los avances que se producen en neurociencia pueden parecer pequeños si se sopesan las patologías que se encierran en el cerebro humano, pero los investigadores consideran que en esta parcela del conocimiento se aúna el mayor el número mundial de científicos, incluidos los profesionales dedicados a la psiquiatría, neurología y neurocirugía.

En España, por ejemplo, “la neurociencia ya tiene mucha calidad y tradición”, advierte Cavada, quien introduce un nuevo punto de especial relevancia: la inversión que, en lo que se refiere a investigaciones, “no sólo debe aumentar, sino diversificarse en cuanto a su origen para poder investigar más y más”. El desarrollo de programas como el estadounidense Brain Initiative, impulsado por la anterior administración Obama, y el Brain Human Project de la UE, empiezan a aportar datos, centrados especialmente en el desarrollo de tecnologías de computación que profudicen el conocimiento cerebral. Pero, además, proyectos específicos de grupos de neurocientíficos aportan su grano de arena a la ingente producción de datos sobre áreas concretas del funcionamiento del cerebro.

En último término, los resultados de estos trabajos necesitan un punto de encuentro común que facilite la transmisión del conocimiento. “Comprender el cerebro necesita de muchos enfoques, como el estudio de la organización y funcionamiento de los circuitos y sistemas que sustentan las funciones nerviosas, sin dejar de lado aspectos que podrían aportarse si se llegara a desarrollar un genoma cerebral como ayudar a entender riesgos de sufrir ciertas enfermedades o sus mecanismos”, puntualiza Cavada.

Carmen Cavada: “El cerebro humano es el gran reto de la ciencia; no sólo de la neurociencia, sino de la sociología, de la pedagogía…”

Juan Lerma, del Instituto de Neurociencias CSIC-Universidad Miguel Hernández, de Elche, Alicante, y editor jefe de Neuroscience, redunda en la idea del actual desconocimiento de muchas de las funciones fundamentales del cerebro y de cómo se organizan, pero sí subraya dos avances, a su juicio significativos, producidos en neurociencia durante este último año.

Avances significativos

Cita, en primer término, los ensayos llevados a cabo en las universidades de Tufts y Harvard, Estados Unidos, con la aplicación de técnicas de la formación de organoides del cerebro y gracias a las cuales se han “generado mini-cerebros en 3D en una placa de andamiaje, con actividad eléctrica espontánea y que parten de células pluripotentes de la piel humana. Si estas células se obtienen de pacientes con esquizofrenia o con autismo, por ejemplo, se supone que estos mini-cerebros reproducen la enfermedad y posibilitarían analizar qué partes de la comunicación neuronal está alterada”.

Juan Lerma: “La plasticidad es una de las vías más interesantes: usar las propiedades intrínsecas cerebrales, reconducir y restaurar”

Otro de los acontecimientos que abre nuevas posibilidades investigadoras se produjo el pasado mes de noviembre (ver DM del 5-11-2018) cuando el equipo de Grégoire Courtine, de la Escuela Politécnica Federal de la Universidad de Lausana (EPFL), en Suiza, daba a conocer los resultados de la eficacia de la estimulación eléctrica en la médula espinal con neurorrehabilitación para restaurar la función, no sólo motora sino también sensitiva, en el sistema nervioso central (SNC), hecho que ha permitido caminar a tres personas parapléjicas.

Para Lerma, la relevancia de estos trabajos, además de la de permitir la deambulación, es que se ha puesto de manifiesto que “una de las propiedades fundamentales del SNC, la plasticidad, puede ser usada y, de alguna manera, ‘despertada’, para reconducir y reinstaurar circuitos”. De hecho, considera que la plasticidad cerebral es una de las “avenidas de investigación más interesantes del momento: utilizar las propiedades intrínsecas del cerebro para conducir su actividad a valores normales, lo que sería de especial utilidad en autismo, esquizofrenia, trastorno bipolar o adicciones, entre otras alteraciones”, y que han sido objetivos de trabajo del equipo de Elche. En el caso de patología neurodegenerativa -Parkinson o Alzheimer, fundamentalmente- el problema es que la muerte neuronal no se recupera, aunque tal vez se podrían aprovechar los procesos de plasticidad sináptica para recomponer algunos circuitos.

Pequeñas y grandes observaciones, comprobaciones y nuevos hallazgos van desenmarañando, poco a poco, parcelas de los muchos misterios que sigue encerrando el cerebro humano. Es un reto mundial que no se resolverá a corto plazo; necesitará algunas generaciones, pero que “la Humanidad y su ciencia acabarán resolviendo”, considera Clascá. ¿Qué no daríamos todos, y muy especialmente Ramón y Cajal, por estar presentes en ese momento?

Comprender los circuitos y mecanismos que están alterados en algunas enfermedades neurodegenerativas, como el Parkinson, ha aportado beneficios tangibles para los pacientes y es una de las parcelas en las que Carmen Cavada considera que se han producido beneficios notables de la investigación en neurociencia. “Además de poder tratar la enfermedad eficazmente, en fases iniciales sobre todo, con fármacos, es posible paliar sus efectos en fases avanzadas a base de intervenciones sobre el cerebro, como la estimulación cerebral profunda o aplicación de ultrasonidos de alta frecuencia”.

No obstante, y según la catedrática, “con todo ello se consigue controlar los síntomas, pero la neurodegeneración sigue avanzando porque aún no comprendemos su causa. Este es el gran reto: comprender cómo y por qué comienza y se mantiene la neurodegeneración, ya sea en Parkinson o en Alzheimer”. Estos procesos, en su mayoría asociados al envejecimiento, impactan en la sociedad en general, pero no olvida el otro “gran reto de las enfermedades mentales”, cuyos mecanismos patogénicos parecen aún mas inalcanzables que los de las clasificadas como “neurológicas”,

Cada enunciado evoca una multitud de respuestas y divisiones, y no es así como funciona el cerebro.

Una materia de incontables células y millones conexiones, las redes neuronales fabrican el hacer y el pensar y este ultimo, se escapa a nuestros instrumentos de medida.

Es necesario seguir buscando

Este artículo debía llamarse “buscando” y ofrece verdades personales sin terminar, y recoge opiniones de eruditos qué tienen como proyecto descifrar el cerebro

“El cerebro sigue siendo un misterio y desvelar su funcionamiento total es uno de los grandes retos por alcanzar”, señala Javier de Felipe, neurocientífico del Instituto Cajal del CSIC, en Madrid. Es más, Carmen Cavada, catedrática de Anatomía Humana y Neurociencia de la Universidad Autónoma de Madrid (UAM), considera que “el cerebro humano es el gran reto de la ciencia; no sólo de la neurociencia, también de la sociología, de la pedagogía…”

Francisco Clascá:  “Ante una ingente maraña de datos, hay que establecer bases de datos con formatos y lenguajes comunes”

¿Se traducen estas consideraciones en que se ha avanzado menos de lo esperado desde que en los años noventa empezara a acuñarse la idea del comienzo de la “era del cerebro”? Ciertamente, los avances que se producen en neurociencia pueden parecer pequeños si se sopesan las patologías que se encierran en el cerebro humano, pero los investigadores consideran que en esta parcela del conocimiento se aúna el mayor el número mundial de científicos, incluidos los profesionales dedicados a la psiquiatría, neurología y neurocirugía.

En España, por ejemplo, “la neurociencia ya tiene mucha calidad y tradición”, advierte Cavada, quien introduce un nuevo punto de especial relevancia: la inversión que, en lo que se refiere a investigaciones, “no sólo debe aumentar, sino diversificarse en cuanto a su origen para poder investigar más y más”. El desarrollo de programas como el estadounidense Brain Initiative, impulsado por la anterior administración Obama, y el Brain Human Project de la UE, empiezan a aportar datos, centrados especialmente en el desarrollo de tecnologías de computación que profudicen el conocimiento cerebral. Pero, además, proyectos específicos de grupos de neurocientíficos aportan su grano de arena a la ingente producción de datos sobre áreas concretas del funcionamiento del cerebro.

En último término, los resultados de estos trabajos necesitan un punto de encuentro común que facilite la transmisión del conocimiento. “Comprender el cerebro necesita de muchos enfoques, como el estudio de la organización y funcionamiento de los circuitos y sistemas que sustentan las funciones nerviosas, sin dejar de lado aspectos que podrían aportarse si se llegara a desarrollar un genoma cerebral como ayudar a entender riesgos de sufrir ciertas enfermedades o sus mecanismos”, puntualiza Cavada.

Carmen Cavada: “El cerebro humano es el gran reto de la ciencia; no sólo de la neurociencia, sino de la sociología, de la pedagogía…”

Juan Lerma, del Instituto de Neurociencias CSIC-Universidad Miguel Hernández, de Elche, Alicante, y editor jefe de Neuroscience, redunda en la idea del actual desconocimiento de muchas de las funciones fundamentales del cerebro y de cómo se organizan, pero sí subraya dos avances, a su juicio significativos, producidos en neurociencia durante este último año.

Avances significativos

Cita, en primer término, los ensayos llevados a cabo en las universidades de Tufts y Harvard, Estados Unidos, con la aplicación de técnicas de la formación de organoides del cerebro y gracias a las cuales se han “generado mini-cerebros en 3D en una placa de andamiaje, con actividad eléctrica espontánea y que parten de células pluripotentes de la piel humana. Si estas células se obtienen de pacientes con esquizofrenia o con autismo, por ejemplo, se supone que estos mini-cerebros reproducen la enfermedad y posibilitarían analizar qué partes de la comunicación neuronal está alterada”.

Juan Lerma: “La plasticidad es una de las vías más interesantes: usar las propiedades intrínsecas cerebrales, reconducir y restaurar”

Otro de los acontecimientos que abre nuevas posibilidades investigadoras se produjo el pasado mes de noviembre (ver DM del 5-11-2018) cuando el equipo de Grégoire Courtine, de la Escuela Politécnica Federal de la Universidad de Lausana (EPFL), en Suiza, daba a conocer los resultados de la eficacia de la estimulación eléctrica en la médula espinal con neurorrehabilitación para restaurar la función, no sólo motora sino también sensitiva, en el sistema nervioso central (SNC), hecho que ha permitido caminar a tres personas parapléjicas.

Para Lerma, la relevancia de estos trabajos, además de la de permitir la deambulación, es que se ha puesto de manifiesto que “una de las propiedades fundamentales del SNC, la plasticidad, puede ser usada y, de alguna manera, ‘despertada’, para reconducir y reinstaurar circuitos”. De hecho, considera que la plasticidad cerebral es una de las “avenidas de investigación más interesantes del momento: utilizar las propiedades intrínsecas del cerebro para conducir su actividad a valores normales, lo que sería de especial utilidad en autismo, esquizofrenia, trastorno bipolar o adicciones, entre otras alteraciones”, y que han sido objetivos de trabajo del equipo de Elche. En el caso de patología neurodegenerativa -Parkinson o Alzheimer, fundamentalmente- el problema es que la muerte neuronal no se recupera, aunque tal vez se podrían aprovechar los procesos de plasticidad sináptica para recomponer algunos circuitos.

Pequeñas y grandes observaciones, comprobaciones y nuevos hallazgos van desenmarañando, poco a poco, parcelas de los muchos misterios que sigue encerrando el cerebro humano. Es un reto mundial que no se resolverá a corto plazo; necesitará algunas generaciones, pero que “la Humanidad y su ciencia acabarán resolviendo”, considera Clascá. ¿Qué no daríamos todos, y muy especialmente Ramón y Cajal, por estar presentes en ese momento?

Comprender los circuitos y mecanismos que están alterados en algunas enfermedades neurodegenerativas, como el Parkinson, ha aportado beneficios tangibles para los pacientes y es una de las parcelas en las que Carmen Cavada considera que se han producido beneficios notables de la investigación en neurociencia. “Además de poder tratar la enfermedad eficazmente, en fases iniciales sobre todo, con fármacos, es posible paliar sus efectos en fases avanzadas a base de intervenciones sobre el cerebro, como la estimulación cerebral profunda o aplicación de ultrasonidos de alta frecuencia”.

No obstante, y según la catedrática, “con todo ello se consigue controlar los síntomas, pero la neurodegeneración sigue avanzando porque aún no comprendemos su causa. Este es el gran reto: comprender cómo y por qué comienza y se mantiene la neurodegeneración, ya sea en Parkinson o en Alzheimer”. Estos procesos, en su mayoría asociados al envejecimiento, impactan en la sociedad en general, pero no olvida el otro “gran reto de las enfermedades mentales”, cuyos mecanismos patogénicos parecen aún mas inalcanzables que los de las clasificadas como “neurológicas”,

Cada enunciado evoca una multitud de respuestas y divisiones, y no es así como funciona el cerebro.

Una materia de incontables células y millones conexiones, las redes neuronales fabrican el hacer y el pensar y este ultimo, se escapa a nuestros instrumentos de medida.

Es necesario seguir buscando

Nature

Raquel Serrano. Madrid

31 diciembre 2020

COMO PERCIBIMOS EL MUNDO

Filed under: FUNCIONES PSIQUICAS — Enrique Rubio @ 21:20

COMO PERCIBIMOS EL MUNDO Y COMO FUNCIONA EL CEREBRO.

El mundo que nos rodea, lo percibimos y concienciamos, a través del cerebro, que es  el órgano encargado  de disminuir la incertidumbre del mundo que nos rodea

Conocemos el mundo por el  cerebro, y la mente es  su función principal.

El cerebro filtra la información que recibe, la procesa y la conciencia a su manera.

Por tanto, la realidad del mundo que percibimos esta personalizada. Solo lo que existe en nuestra mente nos es conocido, lo demás no existe para nosotros.

Cuando el cerebro se altera, también lo hace la mente.

Los órganos de los sentidos, son los informadores del mundo que nos rodea, y tras su análisis es concienciado. Pero en los poderes de la mente, esta imaginar e imagina lo que no percibe, pero es capaz de convertirlo en realidad

La conciencia, se encarga de reconocer mi yo y mi entorno.

La gran pregunta de todos los tiempos y del actual es :

¿Como la materia de nuestra biología se convierte en imaginación.?

La mente identifica al hombre y a su vez nos identificamos con ella.

¿La mente nos ha sido añadida al cuerpo, pero es diferente de el ¿.

Siempre el binomio, cuerpo y alma, o simplemente un todo que funciona .  Lo que si esta claro es que conocernos, nuestro cuerpo  y el mundo que nos rodea, a través de  los sentidos y es nuestra mente, la que lo desifra.

Lo que percibimos esta modificado y es absolutamente irreal, nadie tiene una flor en el cerebro, pero la disfrutamos con realidad, pero es de verdad esta realidad’¿. Y además la mayor parte de los procesos mentales, son inconscientes y los procesos conscientes tienen una base inconsciente de cantidad de procesos, sino en todos.

De forma que esto es muy difícil de entender. Incluso cuando se afirma que el cerebro funciona de tal forma que acopla lo físico y mental. Esto lo sabe todo el mundo, pero como lo hace, no  lo sabemos, pero nos entusiasma su estudio, eso sí lo intentamos y con repetición.

Cuándo el cerebro de los animales después de la fase reptiliana, desarrolló el lóbulo limbico ,  su intervención complicó el resultado, la compresión de lo nuevo y los ambientes sociales, llevan a usar las emociones, como fijadoras de sentimientos que modifican lo percibido, la memoria, los sueños y multiples procesos mas, percibidos y subliminales.

Sobre la organicidad del tejido nervioso, del cerebro, la mente extrae del medio información, la modifica y la incorpora y complica el resultado de forma inimaginable y además confiere a este cerebro de forma progresiva, más y más capacidad. El medio, la influencia, más que los cromosomas.

Solo existe en el cerebro, para poder medir, una energía electroquímica y mediante la actividad de las células nerviosas y sus conexiones podemos percibir lo interno y externo a nuestra biología, que no tiene porque coincidir con la realidad, simplemente lo imaginamos

La idea que la mente esta en el cerebro y fuera de él, es apetitosa, y tranquiza a muchos. Pero la mente con nuestro medir, no es entendible, como materializa nuestras ideas. Quizas  porque estamos hechos de la misma materia que nuestros sueños. Una forma romántica de ayudar a tanto desatino.

Despues de Descartes optamos por la teoría unicista, la mente es el producto de nuestro cerebro. No esta en región alguna y por tanto hasta ahora no se localiza , aunque algunas regiones cerebrales al lesionarse, modifican su función. La mente es una función y estas no se miden o aun no tenemos medios.

Dice Morgado, que las piernas sirven para caminar, pero la voluntad de hacerlo no esta en ellas.

Que hacemos los humanos para tener dentro de la cabeza el universo. El cerebro  inventa la luz o los colores, que no existen fuera, como tampoco está fuera el dolor.  Lo que percibimos en el cerebro, es una realidad virtual producto de la interpretación de las ondas electromagnéticas que nos llegan por los  órganos de los sentidos

Podríamos definir el cerebro como una máquina predictiva encaminada a disminuir la incertidumbre del mundo que nos rodea

El tejido nervioso consta de células nerviosas o neuronas y de células de soporte o glía. La célula nerviosa, o neurona, es propiamente la unidad elemental básica del sistema nervioso. El encéfalo humano contiene 100.000 millones de neuronas junto con una variedad de células gliales que ayudan a sostener y mantener la integridad física y fisiológica de las neuronas. La neurona consta de cuerpo celular o pericarion, partiendo del cuerpo celular neuronal se observan múltiples ramificaciones o dendritas, que son prolongaciones cortas y cónicas que reciben los impulsos nerviosos aferentes. Cada neurona da lugar a un único axón, que transporta los impulsos desde el cuerpo celular y  través de las sinapsis, a otras partes del cerebro o médula espinal, a través de las dendritas.

 El cerebro funciona con electricidad.  Los impulsos eléctricos son transportados desde el axón terminal a dendritas de otras neuronas en zonas diana apropiadas del encéfalo

 El cerebro dispone sus células en su parte externa en lo que denominamos corteza (córtex cerebral) y en acúmulos más profundos que constituyen los ganglios basales

Es en la corteza cerebral donde se sitúan las funciones  más finas sensitivas, motoras, y psicológicas. Según su arquitectura, es decir del número de capas en que se disponen las neuronas, en la corteza cerebral, se pueden diferenciar, claramente dos zonas: por un lado el paleo y arquicórtex, formada por tres capas de neuronas y por otro, el neocórtex.

La organización de las conexiones del encéfalo permite que múltiples impulsos excitatorios e inhibitorios sean integrados en una única experiencia mental.

Zonas específicas de la corteza cerebral reciben las aferencias de partes concretas del organismo, mientras que el córtex calcarino está retinotópicamente organizado, y el córtex auditivo está tonotópicamente organizado. Cada región sensitiva primaria tiene conexiones con áreas de asociación de modalidad específica, donde tiene lugar la convergencia e integración de diferentes atributos de la experiencia sensorial. Los  axones de diferentes áreas sensitivas de asociación de modalidad específica, empiezan a converger en lo que se denominan áreas de asociación multimodal. En estas áreas se ha demostrado que existen neuronas, que por ejemplo, se activan en respuesta al estímulo visual, encontrándose entremezcladas con neuronas que responden a estímulos auditivos, y con neuronas que responden a estímulos sensitivos múltiples. Es decir forman una red neuronal, donde probablemente, todo se conecta con todo.

Una de las características del homo sapiens es el peso de su cerebro,  el espesor de la corteza cerebral,  la amplitud del lóbulo frontal y el diámetro biparietal. El cerebro humano pesa 1300 gramos,  mientras que el del chimpancé pesa sólo 350. No siempre el peso del cerebro es expresivo de la capacidad cerebral ya que la ballena los elefantes y otros animales tienen un mayor peso del cerebro así como un mayor volumen de este. La relación del volumen del cerebro comparado con el peso del animal es la proporción que marca la potencia intelectual de  un mamífero.

Antonio Damasio experto en neurofisiología dice que la vida psíquica es el esfuerzo permanente entre dos cerebros un, cerebro emocional inconsciente preocupado sobre todo por sobrevivir y ante todo conectado al cuerpo. Otros cerebro cognitivo, consciente, racional y volcado en el mundo externo. Es todo cerebro son independientes entre cada uno de ello contribuye de forma diferente a nuestra experiencia de vida y a nuestro comportamiento.

El doctor Francisco Mora de una manera dramática dice “ como un montón de neuronas enmarañadas unas con otras pueden dar lugar a un a un individuo que piensa y siente, que llora y ríe y con ello levanta su mirada hacia el infinito universo y se pregunta por su existencia y su sentido”.

El estudio del cerebro sus funciones y su vida psíquica, están solo suavemente conocidas. Hace falta un gran esfuerzo y tiempo para entenderlas enteras.

El conocimiento parcial de las maquinas que funcionan con espíritu, no esta terminado y por supuesto el error está asegurado casi siempre que vaticinamos. Solo lo que está en mi mente existe, pero para mi , no para los demas .

Bibliografia

Ignacio Morgado. Como percibimos el mundo. Ariel

30 diciembre 2020

SOBRE LA CONCIENCIA

Filed under: FUNCIONES PSIQUICAS — Enrique Rubio @ 14:49

SOBRE LA CONCIENCIA

La conciencia es la cualidad o el estado de conocimiento de objetos externos o de algo interno a uno mismo.

La conciencia es constitutiva de todo estado mental,.

 EXISTE UNA INTUICION GENERAL DE LO QUE ES LA CONCIENCIA y que une a todas las definiciones anteriores. Todo el mundo sabe lo que es la conciencia.

Pero nada más. y sabe lo que es estar dormido y lo que es estar despierto cuando se duerme no se tiene conciencia , salvo el apartado de los sueños .

Dado esto, el sustento de la conciencia , es inimaginablemente  complejo

La conciencia es lo más genuinamente humano, es la interpretación subjetiva de lo que nos pasa. Todo lo que nos sucede viene prendado de señales procedentes de nuestros sentidos y nuestro entorno, pero además viene unido a emociones y recuerdos.

¿

Nuestro cerebro, que es materia activa altamente organizada genera una sensación consciente

¿Qué tiene de especial el cerebro para genera la conciencia?,

¿Dónde está la conciencia?
Las definiciones sobre el asiento de la conciencia son varias y casi todas tienen un poco de razón, ,desde los que la parcializan …

La corteza prefrontal lateral del cerebro, el lugar donde, según investigadores de Oxfort 2 feb. 2014 , se aloja la voz de la conciencia.

SIn embargo la conciencia es mucho mas y esta representada en áreas mas difusas.

La conciencia es lo más genuinamente humano, interpreta subjetivamente lo que nos pasa. Quizá sea el fenómeno más misterioso del mundo.

El Cerebro  genera la conciencia y como lo hace: ¿por qué una pieza de materia activa altamente organizada genera una sensación consciente? ¿Le ocurriría a cualquier otro material igualmente complejo?

¿Dónde está la conciencia?

Se ha tratado de decir que la conciencia involucra a todo el sistema nervioso, pero es evidente que la médula espinal no está involucrada, ni tampoco lo está en el cerebelo, que  contiene casi un 70% del total de las neuronas del encéfalo.

La conciencia se caracteriza por una integración (palabra clave en la conciencia) muy íntima, de ida y vuelta y en todas direcciones.

Esta capacidad de integración se encuentra en la materia gris que constituye la corteza cerebral. La conciencia tiene que ver con las láminas superpuestas de la zona del neocórtex. Las sensaciones se generan allí.

La perdida de pequeñas zonas  del córtex posterior,  puede perder grandes aspectos de la experiencia consciente. Los pacientes, por ejemplo, pueden ser incapaces de reconocer caras, no ser capaces de observar el movimiento, el color o el propio espacio. Esa zona posterior del córtex no se integra durante el sueño y, por eso, aunque las neuronas se disparan, no hay conciencia.

Los perfiles de la conciencia, no son concretos y se mezclan con el contenido de ella, que nos hacen diferentes a cada humano.

Las estructuras que soportan la conciencia son múltiples y las redes neuronales intervien en este  soporte

Formación reticular.

s la estructura más antiguamente conocida para el soporte de la conciencia. Sus funciones son varias pero siempre estimulando funciones excitatorias desde el tronco   del cerebro a todas las regiones del mismo .

Interviene además en:

control cardiovascular

modulación del dolor

sueño y vigilia

habituación

desencadenamiento del vómito

La formación reticular es una estructura del tallo encefálico, desde la parte rostral de la protuberancia anular hasta la parte caudal del diencéfalo, que se encarga de los ciclos circadianos de sueño/vigilia. Filogenéticamente es una de las partes más antiguas del encéfalo. Está formada por neuronas de diferentes tamaños y formas esparcidas en la sustancia blanca. A este sistema se le conoce como SARA (Sistema Activador Reticular Ascendente). Este sistema parece intervenir en el estado de conciencia. De igual manera, la formación reticular modula el alertamiento y está compuesta de sistemas difusos neuronales con diferentes monoaminas como neurotrasmisores.

La formación reticular la componen más de 100 pequeñas redes neurales cada una con sus funciones:

Una lesión masiva en el tallo cerebral puede causar severas alteraciones en el nivel de conciencia como producir un estado de coma por sus efectos sobre la formación reticular.1​ La lesión bilateral de la formación reticular del tallo cerebral puede conllevar ya sea al coma como a la muerte.2

Se han encontrado lesiones en la formación reticular de personas que habían sufrido de polio, y algunos estudios de neuroimagen han mostrado actividad anormal en esa área en personas con el síndrome de fatiga crónica, indicando la posibilidad de que una lesión en la formación reticular sea la responsable de la fatiga que se experimenta en este síndrome.

Tálamo y conciencia

Investigadores de EE UU han conseguido estimular el tálamo lateral central de un macaco anestesiado y han encontrado vínculos entre esta región y la capacidad de experimentar sensaciones conscientes. Las técnicas empleadas podrían servir para despertar a la gente que se encuentra en coma. El estado de coma es una alteración grave del nivel de conciencia. Que es el coma, un paciente presenta un estado de completa falta de respuesta (exceptuando únicamente algunos reflejos automáticos).

Se pueden identificar diferentes grados de nivel de conciencia, que va desde el estado de alerta normal hasta lo que se conoce como muerte cerebral.

Estado de alerta: situación normal en una persona sana, tanto en vigilia como en sueño fisiológico.

Obnubilación-confusión: cuando existe una disminución moderada del nivel de conciencia, pero el paciente se puede despertar fácilmente con estímulos, hay una alteración de la atención y respuestas lentas. Puede aparecer también desorientación témporo-espacial y agitación (estado confusional), especialmente nocturna, alternando con periodos de lucidez.

Estupor: el paciente está dormido, con un nivel de conciencia muy disminuido, y con mínimas respuestas verbales y motoras a los estímulos.

Coma: estado de falta de respuesta ante cualquier estímulo. El paciente permanece con los ojos cerrados. Durante un estado de coma el tronco encefálico, parte del cerebro que controla las funciones vitales como la respiración, está activo. Así, el organismo es capaz de mantenerse mientras se suplan necesidades básicas como la alimentación. El paciente respira, regula las constantes vitales, pero no hay actividad en las áreas superiores del cerebro ni aparece movimiento alguno que indique un mínimo nivel de conciencia.

Estado vegetativo persistente: estado de falta de conciencia total pero que mantiene apertura espontánea ocular durante periodos de despertar. Los pacientes mantienen la función respiratoria, alternando periodos de sueño aparente con periodos de vigilia con los ojos abiertos. No hay ninguna actividad motora voluntaria

Muerte cerebral: situación de ausencia total de respuesta cerebral que incluye la ausencia de funciones automáticas como la respiratoria. Es una situación irreversible.  

Estudios previos, incluyendo algunos en humanos, sugerían que ciertas áreas, como la corteza parietal y el tálamo, estaban involucradas en dicha capacidad y destacaban la comunicación ellas. “Decidimos ir más allá del enfoque clásico, que estudiaba la actividad de cada área de una en una”, dice Yuri Saalmann, profesor de la Universidad de Wisconsin-Madison (EE UU) y autor principal. “Grabamos múltiples áreas al mismo tiempo para ver cómo se comportaba toda la red”,.

Según Michele  Redinbaugh, estudiante de posgrado en el departamento de psicología de la institución estadounidense y autora del trabajo.

La corteza cerebral tiene seis capas que desempeñan diferentes papeles en el procesamiento y la comunicación neuronal. “Utilizamos sondas laminares que pueden abarcar las capas corticales y grabar desde todas ellas simultáneamente”,  consiguieron limitar las partes del cerebro que eran importantes y las vías de comunicación de las capas que estaban más vinculadas a la conciencia. También descartaron otras áreas que anteriormente se habían relacionado con ella.

Animales despiertos de la anestesia

Para llevar a cabo la investigación, los científicos utilizaron macacos como modelo animal y los estudiaron despiertos, dormidos y anestesiados. Estimularon el tálamo lateral central, que se encuentra en el centro del cerebro anterior (prosencéfalo), con unos electrodos más pequeños de lo habitual, diseñados específicamente para esta prueba.

“Actuaron como si estuviesen despiertos y, cuando desconectamos la estimulación, los animales volvieron directamente a estar inconscientes”

Estimular esta área fue suficiente para despertar a los animales que estaban anestesiados y provocar comportamientos normales de vigilia. “Cuando estimulábamos esta zona, podíamos despertar a los animales y restablecer toda la actividad neuronal que normalmente tendrían en la corteza cerebral durante la vigilia”, afirma Saalmann. “Actuaron como si estuviesen despiertos y, cuando desconectamos la estimulación, los animales volvieron directamente a estar inconscientes”.

Acercamiento a los trastornos de la conciencia

Para comprobar el estado de vigilia, se examinó su respuesta neuronal a una estimulación auditiva que consistía en activar una serie de pitidos intercalados con otros sonidos aleatorios. Los animales respondieron de la misma manera en la que los animales despiertos lo harían.

El objetivo de su estudio es entender los mecanismos mínimos del estado de conciencia para dirigir clínicamente la parte correcta del cerebro.

“Es posible que podamos usar este tipo de electrodos estimulantes del cerebro para sacar a la gente del coma. Nuestros hallazgos también pueden ser útiles para desarrollar nuevas formas de monitorear a los pacientes bajo anestesia clínica, para asegurarnos de que estén inconscientes de manera segura”, explica.

El Coma de Pase, es un problema en neurología y los que hemos tenido ocasión de tratar este tipo de pacientes, nos desesperábamos al igual que sus familias. Al ver enfermos en coma, siempre.

En resumen. La conciencia es la función mas importanate conque cuenta el ser humano, todo el mundo sabe lo que es la conciencia y que esta difusamente asentada en todo el cerebro, pero como funciona, no es todavía comprendido

Referencia bibliográfica:

Javier Pérez Castells | 08 de agosto de 2019

Redinbaugh, M. et al. “Thalamus Modulates Consciousness via Layer-Specific Control of Cortex”. Neuron. 12 de febrero de 2020

María Marín  12/2/2020 17:00 CEST Dra. Eva Ormaechea

Especialista en Medicina Intensiva Médico consultor de Advance Medical

 Tindall SC (1990). «Level of consciousness». In Walker HK, Hall WD, Hurst JW. Clinical Methods: The History, Physical, and Laboratory Examinations and the Ana banana. Butterworth Publishers. Retrieved 2008-07-04.

The Human Brain: An Introduction to its Functional Anatomy 5th ed by J Nolte chpt 11 pp. 262–290

24 diciembre 2020

LA CONSCIENCIA YA SE PODRÍA CREAR EN LABORATORIO

Filed under: FUNCIONES PSIQUICAS — Enrique Rubio @ 14:46

LA CONSCIENCIA YA SE PODRÍA CREAR EN LABORATORIO

 Falso color de una porción de organoide cerebral humano de un paciente con trastorno del espectro autista. Forto: Alysson Muotri, UC San Diego Health.

Los científicos dicen que hay razones por las que podría ser necesario crear consciencia en laboratorio para estudiar determinadas enfermedades neurológicas en seres humanos y que después habría que destruirla.

Cuando todavía no sabemos qué es la conciencia , ni tan siquiera donde asienta,  es sorprendente que se intente crear conciencia en orgánulos, (grupos celulares) sin que los patrones del registro elemental que utilizamos cómo es el EEG, la puedan medir

QUE ES LA  CONCIENCIA
La conciencia es la capacidad de mantenernos despiertos y reconocer nuestro entorno.
La conciencia se pierde cuando estamos dormidos, anestesiados o bajo el efectos de traumas o medicación. La perdida de conciencia es el coma. Que estructura del cerebro nos mantiene conscientes? En 1949 Moruzzi y Magoun descubrieron una estructura situada a todo lo largo del tallo encefálico y región diencefálica, especialmente adaptada para cumplir el papel de mecanismo activador de la corteza cerebral, denominada por estos autores formación reticular

De los núcleos de la formación reticular del tallo cerebral y del diencéfalo se originaban conexiones descendentes hacia los sectores intercalados y eferentes de los segmentos del tallo cerebral y de la médula espinal. Por intermedio de estas conexiones descendentes se condicionaban respuestas motoras, viscerales y se regulan la entrada de aferencias por las diferentes vías específicas de la sensibilidad: visceral, gustativa, propioceptiva, éxteroceptiva, vestibular y auditiva, regulándose también por mecanismo semejante la entrada de las aferencias olfatorias y visuales por parte de las estructuras suprasegmentarias respectivas. El SARA aferente y eferente

El lóbulo prefrontal tiene un papel preponderante en la conducta pero no participa en el estado de conciencia. La alteración de la razón, toma de decisiones y afectividad se altera marcadamente en la lesión bilateral de ambos lóbulos frontales. Pero conciencia no se altera.
El tálamo es el receptor en el cerebro de la información de los diferentes órganos de los sentido y distribuye esta información por diferentes áreas de la corteza cerebral. Esta actuación del tálamo es imprescindible para el mantenimiento de la conciencia

Las lesiones de los núcleos intraláminares talamicos, producen cierto grado de indiferencia afectiva y al dolor, pero sin alteración de la conciencia.
Después de esta breve descripción de las vías de la conciencia, llegaremos a la conclusión que la parte de conciencia que percibimos tiene unas vías comunes amplias y difusas, que explicarían de manera grosera los caminos de la conciencia voluntaria que pertenecería al sistema nervioso somático o voluntario.
Una vez despierto, efectuar una vida de relación está en gran parte regido por nuestros este voluntario y hasta aquí esto es entendible. Pero que no es entendible es la amplia difusión que el sistema nervioso tiene por nuestras visceralidad, que es un la mayor proporción del sistema nervioso, y que no está sometida a nuestra voluntad, pero si es consciente, la maneja otro tipo de conciencia que se escapa a una voluntad consciente

Deaspues de esta complicada descripción de la conciencia y sus redes, este articulo parece el sueño de un poeta. Pero está dentro de lo deseable

Un debate ético condiciona el desarrollo de estas investigaciones, porque en la práctica resulta más difícil ponerse de acuerdo sobre lo que es la consciencia cerebral, que crear pequeños órganos cerebrales en laboratorio que muestren indicios de consciencia o sensibilidad: algo que ya está ocurriendo.

Varios hitos surcan esta trayectoria: en 2018, científicos del El Instituto Salk de Estudios Biológicos (California) implantaron mini-cerebros humanos (organoides) en ratones y descubrieron que se desarrollan hasta alcanzar la madurez, aunque sin añadir inteligencia alguna a los roedores.

En 2019, científicos de la Universidad de Yale revivieron parcialmente los cerebros de cerdos que llevaban muertos más de cuatro horas. Les inyectaron un cóctel de productos químicos y restablecieron algunas funciones vitales de sus cerebros: no observaron señales eléctricas generalmente asociadas con la función cerebral normal.

Un detalle. La posible reacción de consciencia fue deliberadamente bloqueada con los medios químicos, por lo que la posibilidad de que se pudiera generar algo de consciencia en los cerebros muertos no puede descartarse: el cableado neuronal creado por los recuerdos y experiencias que el animal tuvo mientras estaba vivo seguramente perduró un tiempo.

La mayor sorpresa llegó ese mismo año: mini cerebros humanos creados en laboratorio registraron una actividad cerebral similar a la de los cerebros de los bebés prematuros, nacidos entre las 25 y las 39 semanas posteriores a la concepción.

Todavía no se sabe si estos mini cerebros, creados por investigadores de la Universidad de California, podrían generar consciencia en algún momento de su desarrollo, porque la investigación se suspendió por la desorientación ética provocada.

Según Nature, estos episodios han preparado el escenario para un debate entre aquellos que quieren evitar la creación de consciencia en laboratorio, y aquellos que ven los organoides complejos como un medio para estudiar enfermedades neurológicas devastadoras para las personas.

Muchos neurocientíficos piensan que los organoides del cerebro humano podrían ser la clave para comprender las condiciones exclusivamente humanas como el autismo y la esquizofrenia, que son imposibles de estudiar en detalle en modelos de ratón. Para lograr este objetivo necesitarían crear consciencia deliberadamente.

No es un asunto baladí: lo que se ha demostrado hasta ahora es que las neuronas creadas en laboratorio pueden mostrar indicios de formar una especie de sistema cognitivo capaz de reaccionar a los estímulos de su mundo, tal como hacen los cerebros complejos. El descubrimiento significa que la consciencia podría crearse desde cero en un laboratorio.

La frontera del conocimiento humano nunca había llegado tan lejos y enfrentado a los científicos a un debate que trasciende la biología y la neurociencia: no les resulta sencillo ponerse de acuerdo para definir la consciencia y cómo medirla, para saber si un organoide es o no consciente. Todo lo que nos ha valido hasta ahora para definir la consciencia no es que no sirva, sino que se queda corto.

Durante años, científicos y médicos han definido la consciencia de diferentes formas, según objetivos concretos, pero es complicado resumirlas en una definición clara que podría valer para decidir si es o no ético continuar perfeccionando mini cerebros humanos en laboratorio, destaca Nature.

La electroencefalografía para medir la actividad cerebral no es concluyente al respecto. Las pruebas médicas que se utilizan, midiendo reacciones corporales en estado vegetativo, no se pueden aplicar a neuronas de laboratorio.

Aunque todavía nadie ha informado de haber creado consciencia en laboratorio, la posibilidad ya está al alcance de la mano: bastaría con intensificar las conexiones neuronales de los organoides para alcanzar la barrera de la consciencia animal.

Aunque los organoides actuales no tienen esa capacidad, ni tampoco lo han pretendido, un desarrollo tecnológico de estos mini cerebros humanos podría, hipotéticamente, crear ese primer estado de consciencia.

De momento no podemos pensar en la capacidad de replicar artificialmente la creación de pensamientos humanos: la mayoría de los organoides están diseñados para reproducir solo una parte del cerebro, la corteza.

Pero, dado que los organoides cerebrales se cultivan a partir de células madre humanas, es posible recrear también otras partes del cerebro que se coordinen entre sí y formen los circuitos neuronales necesarios para el alumbramiento de una forma de consciencia artificial más compleja.

Si este trabajo, se llamara, “Cosas sobre la conciencia”, me pareceria interesante. Pero a las alturas de nuestro conocimiento, pues me hace dudar de su utilidad.

Pero esperar y ver es una frase que todo lo tapa

Me sigue fascinando el párrafo del Dr. Mora

Referencia

Can lab-grown brains become conscious? Sara Reardon. Nature 586, 658-661 (2020). DOI:https://doi.org/10.1038/d41586-020-02986-y

 Eduardo Martínez de la Fe: cerebroconscienciaorganoidesorganoides cerebrales

21 diciembre 2020

Síndrome de savant:

Filed under: FUNCIONES PSIQUICAS,General,Memoria,MENTALES — Enrique Rubio @ 21:38

Síndrome de savant:

He tenido ocasión de vivir muchos, años con un medico intimo amigo mío que era una especie, de listo y despistado.

Fue siempre un autista social, moderado a buen estudiante y un buen profesional. Era un buen medico y mas de una vez nos salvo a un enfermo. Pero sus despistes eran tan evidentes, que era tratado indistintamente como sabio y tonto.  Se caso con una mujer guapísima, con la que tuvo 9 hijos. Y ella giro en torno a él.  Su capacidad de introducir innovaciones en medicina, eran manifiesta así como la de hacer buenos negocios con las artes y al mismo tiempo de un desprendimiento y bondad con todo el mundo. Nunca cuido el intelecto y sus amigos preferentes eran gente no recomendable. Como amigo, era magnifico.

Siendo ya muy mayores  y en una cena, se rompió todo.

Ya venia fallando en  su conducta y sus compañeros, empezaban a alarmarse y atribuirlo estupidamente al alcohol.

Tenia trastornos de la marcha, incontinencia de orina , un discreto despiste.

Una TAC mostro que tenia una enorme hidrocefalia por estenosis congénita del acueducto de Silvio. Una serie de derivaciones del liquido cefalo raquideo, no consiguieron mejorarlo.

Tuvieron que pasar 50 años de conocerlo, hasta que una noche me diera cuenta que su marcha y deterioros sociales no eran normales y si evolutivos. Mi querido amigo se fue y nunca me perdone, no haberme dado cuenta de la organicidad de sus cosas.

Yo no se si esto me motivo a entusiasmarme por los SAVAN, pero ahora los sigo al menos en la literatura, con mucha atención.

El término «idiot savant» («idiota erudito» en francés) fue utilizado por primera vez para describir la condición en 1887 por el médico británico John Langdon Down, conocido por su descripción del síndrome de Down. El término «sabio idiota» se consideró posteriormente erróneo, puesto que no todos los casos reportados se ajustaban a la definición de idiota, originalmente utilizada para una persona con una discapacidad intelectual muy severa. El término «sabio autista» también se utilizó como descripción del trastorno. Pero al igual que «sabio idiota», el término llegó a ser considerado inapropiado porque solo la mitad de los diagnosticados con el síndrome del sabio eran autistas. La necesidad de precisión en el diagnóstico y de no afectar a la dignidad de los afectados,

Sufren desórdenes mentales y discapacidades físicas, mentales o motrices, pero “a cambio” poseen habilidades mentales increíbles. .

Benjamín Rush describió el síndrome de savant por primera vez en 1789. Vio un paciente que era capaz de calcular la edad de las personas tan solo observándolas durante unos segundos.

No siempre estos sabios tienen desordenes de conducta o intelectuales y por ello me preocupo de tres casos que me ha impresionada.

El mas significativo.

Kim Peek: que inspiro la película Rain Man

Nació con macrocefalia, una malformación permanente en el cerebelo, y agenesia en el cuerpo calloso.

Esto le convirtió en una persona muy dependiente, incapaz de realizar tareas básicas, como abrocharse una camisa. Sin embargo, sorprendió al mundo entero con sus portentosas capacidades intelectuales. Tenía una de las memorias más extraordinarias que la ciencia ha podido datar.

Fue capaz de aprenderse cerca de los 8.000 libros que había leído y podía leer dos páginas al mismo tiempo, una con cada ojo. Además, reproducía cosas habiéndolas escuchado o leído tan solo una vez. Llegó a saberse de memoria todos los mapas de Estados Unidos, de manera que aunque no hubiera hecho nunca un determinado recorrido, podía realizarlo sin necesidad de indicaciones o señales.

Su nivel de procesamiento mental era impresionante. Pero, por otro lado, sus limitaciones motrices y cognitivas también eran manifiestas. Por ejemplo, era incapaz de interpretar un poema o inferir conclusiones de una obra. No tenía aptitudes musicales, sin embargo, si escuchaba una canción, podía reproducirla tocando en un piano sin mayor dificultad.

Otro caso es también de una dificultad prodigiosa. Tras un traumatismo se convierte en un superdotado

Jason Padgett: síndrome de savant adquirido

No nació con sus habilidades, sino que estas llegaron cuando tenía 30 años.

Jason era un joven superficial, pero con una conducta normal. Una noche, saliendo con ellos, fue agredido violentamente. Sufrió una conmoción cerebral y, tras pasar por el hospital y volver a casa, se dio cuenta de que todo había cambiado.

Por un lado, empezó a sufrir distintos trastornos como TOC, agorafobia o depresión. Y, por otro lado, llego a ser genial en matemáticas,. Realizaba cálculos mentales y visualizaba la realidad mediante patrones geométricos.

El atrevimiento medico estudiaron al chico y vieron que, tras sufrir la conmoción cerebral, algunas áreas del cerebro que en su día a día permanecían inactivas, con el golpe se activaron para sustituir las funciones dañadas.

Esto es una mentira romántica. Pero si no es verdad, está bien contado.

No tenia estudios, previos, como compararon con registros postraumáticos. Esto es como tantas veces ocurre una mentira para terminar bien.

Pero el caso mas esplendido y delicioso, lo escribe Don Jose Luis Borges,  del que dijo “es una larga metáfora del insomnio”.

Después de un día bochornoso, una enorme tormenta color pizarra había escondido el cielo. La alentaba el viento del Sur, ya se enloquecían los árboles; yo tenía el temor (la esperanza) de que nos sorprendiera en un descampado el agua elemental. Corrimos una especie de carrera con la tormenta. Entramos en un callejón que se ahondaba entre dos veredas altísimas de ladrillo. Había oscurecido de golpe; oí rápidos y casi secretos pasos en lo alto; alcé los ojos y vi un muchacho que corría por la estrecha y rota vereda como por una estrecha y rota pared. Recuerdo la bombacha, las alpargatas, era  “Funes el memorioso”, Bernardo le gritó imprevisiblemente: ¿Qué hora son Ireneo? Sin consultar el cielo, sin detenerse, el otro respondió: Faltan cuatro minutos para las ocho, joven Bernardo Juan Francisco. La voz era aguda, burlona. Yo soy tan distraído que el diálogo que acabo de referir no me hubiera llamado la atención si no lo hubiera recalcado mi primo, a quien estimulaban (creo) cierto orgullo local, y el deseo de mostrarse indiferente a la réplica tripartita del otro. Me dijo que el muchacho del callejón era un tal Ireneo Funes, mentado por algunas rarezas como la de no darse con nadie y la de saber siempre la hora, como un reloj. Agregó que era hijo de una planchadora del pueblo, María Clementina Funes, y que algunos decían que su padre era un médico del saladero, un inglés O’Connor, y otros un domador o rastreador del departamento del Santo. Vivía con su madre, a la vuelta de la quinta de los Laureles. Los ochenta y cinco y ochenta y seis veraneamos en la ciudad de Montevideo. El ochenta y siete volví a Fray Bentos. Pregunté, como es natural, por todos los conocidos y, finalmente, por el “cronométrico Funes”. Me contestaron que lo había volteado un redomón en la estancia de San Francisco, y que había quedado tullido, sin esperanza.  Me dijeron que no se movía del catre, puestos los ojos en la higuera del fondo o en una telaraña. En los atardeceres, permitía que lo sacaran a la ventana. Llevaba la soberbia hasta el punto de simular que era benéfico el golpe que lo había fulminado…

Ireneo, en su rancho de las orillas, no tardó en enterarse del arribo de esos libros anómalos. Me dirigió una carta florida y ceremoniosa, en la que recordaba nuestro encuentro, desdichadamente fugaz, “del siete de febrero del ochenta y cuatro”, ponderaba los gloriosos servicios que don Gregorio Haedo, mi tío, finado ese mismo año, “había prestado a las dos patrias en la valerosa jornada de Ituzaingó”, y me solicitaba el préstamo de cualquiera de los volúmenes, acompañado de un diccionario “para la buena inteligencia del texto original, porque todavía ignoro el latín”.

Arribo, ahora, al más difícil punto de mi relato. Éste (bueno es que ya lo sepa el lector) no tiene otro argumento que ese diálogo de hace ya medio siglo. No trataré de reproducir sus palabras, irrecuperables ahora. Prefiero resumir con veracidad las muchas cosas que me dijo Ireneo. El estilo indirecto es remoto y débil; yo sé que sacrifico la eficacia de mi relato; que mis lectores se imaginen los entrecortados períodos que me abrumaron esa noche. Ireneo empezó por enumerar, en latín y español, los casos de memoria prodigiosa registrados por la Naturalis historia; Ciro, rey de los persas, que sabía llamar por su nombre a todos los soldados de sus ejércitos; Mitríades Eupator, que administraba la justicia en los 22 idiomas de su imperio; Simónides, inventor de la mnemotecnia; Metrodoro, que profesaba el arte de repetir con fidelidad lo escuchado una sola vez. Con evidente buena fe se maravilló de que tales casos maravillaran. Me dijo que antes de esa tarde lluviosa en que lo volteó el azulejo, él había sido lo que son todos los cristianos: un ciego, un sordo, un abombado, un desmemoriado. (Traté de recordarle su percepción exacta del tiempo, su memoria de nombres propios; no me hizo caso.) Diez y nueve años había vivido como quien sueña: miraba sin ver, oía sin oír, se olvidaba de todo, de casi todo. Al caer, perdió el conocimiento; cuando lo recobró, el presente era casi intolerable de tan rico y tan nítido, y también las memorias más antiguas y más triviales. El hecho apenas le interesó. Razonó (sintió) que la inmovilidad era un precio mínimo. Ahora su percepción y su memoria eran infalibles.

Nosotros, de un vistazo, percibimos tres copas en una mesa; Funes, todos los vástagos y racimos y frutos que comprende una parra. Sabía las formas de las nubes australes del amanecer del treinta de abril de mil ochocientos ochenta y dos y podía compararlas en el recuerdo con las vetas de un libro en pasta española que sólo había mirado una vez y con las líneas de la espuma que un remo levantó en el Río Negro la víspera de la acción del Quebracho. Esos recuerdos no eran simples; cada imagen visual estaba ligada a sensaciones musculares, térmicas, etc. Podía reconstruir todos los sueños, todos los entresueños. Dos o tres veces había reconstruido un día entero; no había dudado nunca, pero cada reconstrucción había requerido un día entero. Me dijo: Más recuerdos tengo yo solo que los que habrán tenido todos los hombres desde que el mundo es mundo. Y también: Mis sueños son como la vigilia de ustedes. Y también, hacia el alba: Mi memoria, señor, es como vaciadero de basuras. Una circunferencia en un pizarrón, un triángulo rectángulo, un rombo, son formas que podemos intuir plenamente; lo mismo le pasaba a Ireneo con las aborrascadas crines de un potro, con una punta de ganado en una cuchilla, con el fuego cambiante y con la innumerable ceniza, con las muchas caras de un muerto en un largo velorio. No sé cuántas estrellas veía en el cielo.

La voz de Funes, desde la oscuridad, seguía hablando. Me dijo que hacia 1886 había discurrido un sistema original de numeración y que en muy pocos días había rebasado el veinticuatro mil. No lo había escrito, porque lo pensado una sola vez ya no podía borrársele. Su primer estímulo, creo, fue el desagrado de que los treinta y tres orientales requirieran dos signos y tres palabras, en lugar de una sola palabra y un solo signo. Aplicó luego ese disparatado principio a los otros números. En lugar de siete mil trece, decía (por ejemplo) Máximo Pérez; en lugar de siete mil catorce, El Ferrocarril; otros números eran Luis Melián Lafinur, Olimar, azufre, los bastos, la ballena, el gas, la caldera, Napoleón, Agustín de Vedia. En lugar de quinientos, decía nueve. Cada palabra tenía un signo particular, una especie de marca; las últimas eran muy complicadas…Yo traté de explicarle que esa rapsodia de voces inconexas era precisamente lo contrario de un sistema de numeración. Le dije que decir 365 era decir tres centenas, seis decenas, cinco unidades; análisis que no existe en los “números” El Negro Timoteo o manta de carne.

Había aprendido sin esfuerzo el inglés, el francés, el portugués, el latín. Sospecho, sin embargo, que no era muy capaz de pensar. Pensar es olvidar diferencias, es generalizar, abstraer. En el abarrotado mundo de Funes no había detalles, casi inmediatos. La recelosa claridad de la madrugada entró por el patio de tierra. Entonces vi la cara de la voz que toda la noche había hablado. Ireneo tenía diecinueve años; había nacido en 1868; me pareció monumental como el bronce, más antiguo que Egipto, anterior a las profecías y a las pirámides. Pensé que cada una de mis palabras (que cada uno de mis gestos) perduraría en su implacable memoria; me entorpeció el temor de multiplicar ademanes inútiles. Ireneo Funes murió en 1889, de una congestión pulmonar. 1942 .

Qué duda cabe qué Funes tenía el patrón de SAVANT, pero Borges,  sin ser científico , lo describe como hacen los poetas con más belleza .

y qué decir de la biología de este síndrome, sería correcto decir “no lo sé”. Todo lo que se ha dicho hasta ahora, no encaja claro, que no hace falta que el cerebro esté integro morfológicamente, para que algunas cualidades sean excepcionales.

Pero es posible los condicionamientos sociales,  no se puedan adquirir en cerebros rotos.

19 diciembre 2020

SINAPSIS SU FISIOLOGIA

Filed under: ANATOMIA,FUNCIONES PSIQUICAS,General — Enrique Rubio @ 21:21

Sinapsis

.Proteinas de las vesiculas sinapticas

Cajal mejoró el método de Golgi y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

.

Cajal mejoró el método de Golgi para el estudio histologico del sistema nerviosos y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

]

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

Sinapsis

.

Cajal mejoró el método de Golgi y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

]

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

8 diciembre 2020

EL SISTEMA DE ALARMA. EMOCIÓN Y SENTIMIENTO

Filed under: Emocion y Sentimientos,FUNCIONES PSIQUICAS — Enrique Rubio @ 21:35

EL SISTEMA DE ALARMA. EMOCIÓN Y SENTIMIENTO

La emoción y el sentimiento son parámetros constantes a los que intentamos abordar desde el punto de vista mecánico, pero no hay que olvidar que lo que lo perpetúa es psíquico y difiucil de manejar . El número de pacientes afectados por desórdenes de la emoción y el sentimiento es decir del sistema de alarma es enorme . la complejidad creciente del mundo que vivimos lo incrementa, y llegan a sufrilos de forma aproximada un tercio de la población.

La alteración de la vía periférica, su conducción por el diencéfalo hasta la corteza cerebral sobre todo prefrontal, debe ser muy lábil y  sometido a múltiples agresiones.

De los trabajos más claros que he leído, son los de Antonio Damásio en su libro “El error de Descartes”. Topografíar anatómicamente este circuito es muy difícil y lo es mas su función y química. Y por ello es muy frecuente encontrar marcados errores de interpretación .

Cuando cualquier expresión psíquica se produce, intervienen múltiples estructuras y actúan varios neurotransmisores que actúan armonicamente en la salud, sobre un cerebro cargado de información. Y sirve de manera fundamental a la conservación del sistema de alarma .    

Las emociones y sentimientos se presentan de una manera universal sin importar razas, género, condición social o geográfica.

Son múltiples las teorías que intentan explicar este binomio te emoción y sentimiento y cada  uno lo expresa fundándose en su cultura.

Lo malo de este problema es que los ricos en palabras lo hacen de una manera más romántica y bella que los anatomistas. y así tenemos definiciones múltiples que no se contradicen en sí sino que son expresadas de forma distinta.

La vía periférica diencéfalo cortical , soporta la emoción y el sentimiento. Su anatomía y fisiología son muy complicadas y sometida a interpretaciones humanas  

Pauld Edman, afirmaba que  las emociones no dependían de raza o de género sino que eran universales.

Aristóteles decía de las emociones,  que es toda la afección del alma acompañada de placer o de dolor, y en las que el placer y el dolor son la extensión del Valor que tiene para la vida la situación misma.

René Descartes sostenía lo que él llamaba el dualismo ontológico que sostiene el alma y el cuerpo, que el alma es divina e inmortal y que pertenece a Dios. Mientras que el cuerpo  es terrenal y pertenece a los hombres. Alma y cuerpo están separados

Baruch Spinoza sostiene que la mente humana es la idea del cuerpo, del cuerpo  humano o sea uno mismo. Esta postura es sostenida en el siglo XX por Antonio Damasio

Paul Broca en 1888 hace la primera definición del sistema límbico, lo llamo gran lóbulo límbico o rinencéfalo. El lóbulo límbico se sitúa en la mitad interna de los hemisferios cerebrales que forman un limbo alrededor del tallo cerebral y  creyó que era el lóbulo de la olfasion.

En 1928 Phillid Bard  señala el hipotálamo como el centro crítico para coordinación del comportamiento emocional. Bard extirpo ambos hemisferios cerebrales, corteza y ganglios basales de gato. Y observó que los gatos  presentaban comportamiento de enojo, una intensa. dilación pupilar,  erección de los pelos del dorso y cola y aumento de la presión arterial. Pero esta reacción no se presentaba cuando también separaba el hipotálamo y su unión con el mesencéfalo. Pensó que la corteza cerebral debía estar intacta en los procesos subjetivos de la emoción, pero que la corteza no se utilizaba en los procesos emocionales coordinados.

Walter R Hess estimulaba distintas áreas del hipotálamo en gatos despiertos y observaba las conductas resultantes. Al estimular la zona lateral del hipotálamo se producía una respuesta estereotipada de no y rabia en los datos. Mientras que si estimulaba la zona medial ocurrió lo contrario.

El concepto de sistema límbico nace entre 1930 y 1940 y define un sistema de emociones y de su expresión.

James Papez en 1937, anatomista americano. Propone una estructura donde las distintas formaciones se proyectaban hacia el hipotálamo que se encargaba de regular la expresión de las emociones. Papez encontró un papel fundamental del hipocampo en las emociones. Sus investigaciones las hizo en perros con rabia en los que en la disección post mortem encontraba lesiones extensa en el hipocampo. Su circuito de las emociones se aproximó al modelo moderno. Pero no incluyó la amígdala en el circuito de las emociones.

Según Papez , en las emociones el estímulo externo llega al tálamo y desde aquí toma dos vías. Una larga que llega a la corteza y otra corta que va hacia el hipotálamo pasando por una serie de circuitos.

Kluver y Bucy en 1929 estudiaron lesiones extensas del lóbulo temporal en simios y observaron que la lesión de la amígdala producían una serie de síntomas y convertian los animales en extremadamente dóciles y no tenían miedo a                las serpientes. Dicha síndrome se acompañaba también de hiperoralidad, hipersexualidad y agnosia visual, y se le conoce actualmente como síndrome de Kluver & Bucy. Los monos con los que experimentaban tomaban Mezcalina, para estudiar sus emociones, pero después de la extirpación de las amígdalas no presentaban cambios en las alucinaciones y si en su conducta.

También los seres humanos cuando tienen lesiónes en amígdalas, presentan un cuadro de disturbio de la percepción de las emociones . En el trastornos de Hulbardl Wich, donde se produce la calcificación de ambas amígdalas y la atrofia bilateral de ambos lóbulos temporales. Los pacientes afectados presentan problemas en la evaluación del miedo. No pueden reconocer expresiones faciales de miedo y presentan dificultar para tener dicha emoción

En la actualidad el sistema límbico sigue siendo impreciso. Tiene dos niveles de organización. El lóbulo límbico, organización que es la porción cortical de gran tamaño, que comprende el área subcallosa, el giro parahipocampico, el uncus y el giro del hipocampo y distintos núcleos subcorticales, entre los que se cuentan; núcleos del hipotálamo, núcleo subamigdalino, núcleo medial dorsal del tálamo, núcleos septal, núcleo accumbens y el giro del hipocampo área tegmental ventral. Estos dos últimos forman parte del sistema de recompensa. Algunos autores incluyen la corteza prefrontal en el lóbulo límbico.

Puede servirnos en este trabajo la idea de los dos contactos,  primero a la emoción y después al sentimiento, y nos puede servir la existencia de una vía corta que se encarga de la respuesta estereotipada y rápida que comprende la respuesta propiamente emocional y comprende al tálamo la amígdala, núcleo del tallo cerebral e hipotálamo. Mientras que la segunda vía la larga se encarga de una respuesta más compleja y tiene un análisis  minucioso de los distintos estímulos y es la vía implicada en el origen de los sentimientos que es la perfección subjetiva de las emociones. Y que estaría soportada por el ciruito y limbico y la corteza prefrontal, de forma preferente

Como ejemplo podemos contactar con estructuras que  se van excitando en las emociones. Primero es el tálamo y desde aquí hay dos vías, una corta y una larga. Del tálamo el impulso pasa a la amígdala, que tiene fundamentalmente tres partes; el núcleo lateral, el núcleo basocentral y el núcleo central y en cada uno de ello va a adquirir una propiedad. En el núcleo lateral va a adquirir la memoria a largo plazo sobre todo el miedo que esta entrelazado con el hipocampo y que denota la localización donde ocurrió la emoción. Este núcleo es suficiente para aprender, en los experimentos de Pawlo este núcleo lateral de la amígdala se encarga de evitar que el animal repita una acción que le molesta. Cuando se inyecta en este núcleo inhibidor glutamato, NMDA, se inhibe la propiedad de este núcleo para formar memoria. Se desconoce la utilidad del núcleo vaso lateral y por lo pronto se le cree que es sólo una vía de paso. El núcleo central es un centro de distribución de datos. Tiene una vía corta que envía los estímulos hacia el  hipotálamo que es el encargado de dar las respuestas emocionales, sudoración, taquicardia, gestos y otros. El hipotálamo tiene distintos núcleos con múltiples funciones. El núcleo paraventricular del hipotálamo libera CRH. Que al llegar a la hipófisis va a liberar ACTH que sobre las glándulas suprarrenales va a liberar Corticoides contra el estrés. El hipotálamo tiene también conexiones con la médula espinal donde se ejecutan funciones motoras. Estas, están en encargadas de los movimientos que acompañan a la emoción gestuales y viscerales. No todos los estímulos que nos invaden desencadenan emociones , de forma que existe un sistema controlador. El núcleo paraventricular y supraoptico, liberan oxitocina y esta tiene varias funciones:

Y una de ellas es el inhibir la liberación de CRH para controlar las respuestas no  necesarias. La oxitócica es analgésica y se libera a nivel medular para inhibir el dolor que se produce durante un traumatismo.

El núcleo central de la amígdala se va a encargar también de conectarse con el Locus Coeruleus que liberan noradrenalina y el núcleo del Rafe que libera serotonina encargados ambos de la reaccion de despertar y alerta. La vía larga probablemente esta encargada de regulación de la carga moral de la emoción. Elaborar lo que se está sintiendo con la emoción. A la cabecera de las cuales puede estar la reacción del miedo.

La parte de la corteza cerebral más implicadas en el sentimiento, que es la percepción de las emocionres.  El sentimiento se percibe en la corteza prefrontal y de ella la región medial y orbital y la corteza del Cíngulo y también la corteza de la Insula. Los núcleos del rafe y el nucleo coeruleus, activan de abajo hacia arriba y también de forma recíproca la corteza cerebral.  Los núcleo estímulan la corteza y la corteza estímulan los núcleos que hacen que toda la atención se centre sobre la causa del conflicto emocional. La corteza prefrontal va a regular al hipotálamo, al núcleo supraoptico y al paraventricular, para que liberen orden de liberar CRH y a su vez estos liberen más oxitocina, que modulan la reacción excesiva en este caso, tranquilizan.

El sentimiento que se localiza muy ampliamente, es diencefalico y también cortical

La Insula, recibe aferencia tanto de la corteza como de los núcleos subcorticales, que hacen consciente las distintas manifestaciones de la emoción.

Aclarar el concepto de emoción y sentimiento y distinguirlos, ha sido ampliamente estudiado. El libro de Antonio Damasio » el error de descartes», dice que las emociones generan los sentimientos. Ante un peligro primero se corre y después se piensa. Posiblemente esta fácil expresión es una simpleza y en la práctica la explicación es muchísimo más difícil. No obstante es lógica. La emoción, su preferente localización es subcortical, mas cerca del estimulo y mas primitiva en la evolución, como mecanismo de defensa y el sentimiento preferentemente cortical como analizador de las circunstancias.

Podríamos decir que el circuito de alama lo forma la emoción que lo percibe y el sentimiento que lo interpreta y retiene. La cronicidad de este binomio da lugar a angustia, inquietud y múltiples síntomas que constituyen el estrés

Jean Paul Sartre, dice de las emociones:

Denominamos emoción a la caída brusca de la conciencia en lo mágico. Por lo tanto no es necesario ver en la emoción un desorden pasajero del espíritu que vendría a perturbar desde fuera la vida psíquica.

Al contrario, se trata del retorno de la conciencia a la actitud mágica, una de las grandes actitudes que son esenciales.

La emoción es un accidente, es un modo existencia de la conciencia, una de la manera por las que comprende su ser enamoré atreverá en el mundo

Esto dicho así, huele a magia, lo mas alejado de lo que pretendemos, pero muy ilusionante para un grupo de románticos. Es casi un juego de rompecabezas.

4 diciembre 2020

DEL SENTIMIENTO Y LA PINTURA

Filed under: Emocion y Sentimientos,FUNCIONES PSIQUICAS — Enrique Rubio @ 19:37

  DEL SENTIMIENTO Y LA PINTURA

No puedo asegurar que esto que voy a decir, no lo haya dicho antes. Pero después de una charla con mi amigo  el doctor Joaquin Callabed, medico , pintor y critico de arte, pero de los buenos , he recordado su magníficas conferencias, en las que hablaba de la pintura infantil de los grandes pintores de la historia,  me quedé impresionado de la belleza de las fotografías que presentaba y que los grandes pintores habían plasmado en situaciones infantiles.

De forma que empecé a pensar , porque esto a mí me impresionó tanto . Se trata de una pintura en la que intervienen dibujos y colores . y está claro qué significado de la pintura era lo que a mí me impresionaba , y ello era producto de la maestría del pintor y la belleza con que mi amigo Callaved , las presentaba.

Pero la interpretación del conjunto , la tenía que hacer yo,  eso sí motivado por la pintura y por el presentador, de forma que una censura mia , tenía que venir por los sentimientos que me había proporcionado las emociones del conjunto, y  mis sentimientos eran fabricados,  por mí educación , mi cultura , el tener un buen día y en general una serie de manifestaciones aprendidas.

Es verdad que la maestría del pintor y del conferenciante que la presenta tienen una gran influencia sobre el sentimiento que me produce, que es el que interpreta, la emociones  externas. Que no siempre es la misma , depende de múltiples factores orgánicos y psíquicos. De forma que lo que te place un día, no tiende porque persistir.

Tengo una experiencia personal con la pintura que me fascino.

Visitando Toledo, fui a ver el cuadro del “entierro del Conde de Orgaz”. Cuando me puse ante el cuadro, de inmediato sentí una emoción incontrolable y me puse a llorar, pero como un bebe, y además la gente que me rodeaba , lo noto y me fui corriendo y pensando-. Que me había pasado. Me parecía en aquel momento que podría ser una crisis epiléptica. Tardo un rato que calculo de media hora, me tranquilicé, y seguí mi recorrido.

Alguna vez he comentado el acontecimiento. Nunca me haba pasado antes, pese a que con alguna frecuencia visito museos.

Años mas tarde de nuevo en Toledo, me arriesgué a visitar el famosos cuadro, con cierto cuidado de que me pasaría.

Y cuando de nuevo estaba ante el cuadro, “no me paso absolutamente nada”, y me deleito esa maravilla.

Fue una emoción además no controlada, exactamente la misma , que cuando cualquier otra clase de emoción, que se sigue de un sentimiento, que aquella vez me hizo llorar y que esta última. “pues no me emocioné”. O estaba ya vacunado de la vez anterior.

Lo cierto que la interpretación de lo externo, esta sometida a la interpretación, de la emoción que me produce. Es decir, del sentimiento. Y esto depende de múltiples condiciones biológicas externas e internas. Que además no están bajo nuestro control

La belleza, de pende del observador y de todas condiciones que conlleva

Pero estos sentimiento son productos de una elaboración , primero congénita y después educada

Quizás los ejemplos que voy a poner no sean los adecuados, porque no tengo enfermos con lesiones cerebrales y si algunos que me han mostrado sentimientos tras una cirugía. Estaban demasiado enfermos para fijarse en nimiedades  sobre arte  .

Pero quizá valga mi experiencia en lesiones cerebrales, y los trastornos que ellas producían.

La que más me ha impresionado ha sido la respuesta que me daban los enfermos que por sufrir un dolor intratable médicamente tenían que ser sometidos a una lesión con frío de los núcleos intralaminares del tálamo. Se hacían con técnica estereotáctica en enfermo despierto .

Mi sorpresa vino, cuando, al día siguiente de ser operado uno de los pacientes: En la visita de la mañana siguiente, le pregunte; como esta, como ha dormido, ha ido al baño, ha desayunado y así varias preguntas de un cuestionario. Hasta que le pregunte. ¿ Y el dolor, como esta?.

La respuesta. “El dolor esta igual, pero ya no me molesta”. Aquella respuesta me sigue sorprendiendo. Había desconectado el cirduito nervioso, que enlazaba el órgano lesionado y productor de su dolor, de las estructuras  que interpretaban el dolor.

El lector se preguntara y ¿esto que tiene que ver con la apreciación de la pintura?.

Existe un circuito orgánico que permite al cerebro de la recompensa, Lóbulo frontal y limbico,  que tienen que estar permeables para interpretar el dolor. Este circuito no funcionaba y el cerebro no se enteraba del dolor.  Esta explicación de la recepción de los estímulos periféricos, por el cerebro huele a romántica, pero no tengo otra.

Esto se repitió en 20 de los enfermos que tenian dolor  intratable, sobre todo en los dolores por  tumores diseminados y no ocurría en los enfermos con dolores de  desaferentisacion , secuelas de herpes, miembro fantasma, sección neural , neuralgia facial postherpetica.

Al cerebro no llegaban los estímulos dolorosos y por tanto no los interpretaba. La gran pregunta es porque esto no pasaba cuando se lesionaba un nervio. ¿ Llevan estos estímulos otro camino?.

Pineas Gage, hace 125 años trabajaba en los ferrocarriles americanos y era un hombre muy educado, buen jefe y capaz en su trabajo. Estaba haciendo un agujero en la roca, para colocar dinamita y desmontar la roca. Usaba una barra de hierro construida por el mismo que medía 105 cm de longitud y 25 cm de gruesa.

La barra entro por encima del malar y salió disparada a 7 metros de distancia saliendo por un agujero media frontal

Esta mala fortuna del hombre abrió las puerta a las ciencias para ver como una lesión de los lobulos frontales, alteraba marcadamente su personalidad.

Al enfermo, después de unas semanas complicada, pero que en ningún momento perdió concienncia ni se paralizo ninguna función física.

Pero pasado unos meses se convirtió en otro.

Inestable, terriblemente blasfemo, borracho, no se mantenía en ningún empleo y algo inaudito. Le aparece el cuadro del coleccionista. Lo guardada todo. El síndrome mal llamado de Diogenes o como se le llama en la actualidad del “coleccionista”.

Murió años mas tarde, después de una vidas de descalabros y La mujer de Atonio Damasio, 25 años mas tarde recopilo datos y encontró su calavera en un museo, donde se apreciaba en enorme agujero, frontal medial.

Otra interrucion de la percepción de estímulos periféricos, los lóbulos frontales, había sido interrumpida. Había perdido la conexión del deposito de sus capacidades, y se había convertido en algo muy dificil de entender.

Estos dos ejemplos: hablan de la desconexión de los esimulos periféricos en el primero, y el segundo de la destrucción los lóbulos frontales, donde se aloja, lo exquisito y aprendido.

Y repito, esto que tienen que ver con la pintura. Se pueden imaginar que esto tiene muy poca base solida, pero si interesante.

Para apreciar una pintura hace falta tener un cociente intelectual , por lo menos discreto, una educación en pintura y un sentimiento y unas ideas aprendida para la belleza.

¿Qué pasaría si a los visitantes de una pinacoteca, le pudiéramos hacer lesiones en estos dos sistemas?  ¿Seguirían apreciando y valorando la pintura.¿

Seguramente no, no les importaría, tenian necesidades mas primarias que mantener.

Entonces me atrevo a decir, que hace falta tener, para valorar cualquier acontecimiento, físico o psíquico:

Un buen cerebro, con una buena cultura, un buen aprendizaje en arte y un buen acumulo de conocimientos de la belleza. Y no hace falta que se lesione ninguna via, sino que no funcione por algún mecanismo. O simplemente que desvíen, sus aficiones por otra materia.

No es fácil, este problema, pero el mundo que nos rodea, de pende de nuestra interpretación. Y la pintura me hace vibrara o no, de pendiendo de múltiples condiciones. Pero lo que vemos ¸

esta compuesto de materia; la interpretación,  y los sentimientos.

Un chiste ya muy antiguo, se me ocurre

El ministro no muy ilustrado que visita una exposición de arte moderno, tiene a una presentadora un poquito cursi que le va trasladando el contenido del cuadro

Ante un cuadro que representa una cara, con múltiples gartilugios, ella le dice al ministro

“Que cara que gesto”

Y el ministro le repite

Eso digo yo que carajo es esto

Son. Trazos, líneas,  colores, la maestría del pintor, y la del expositor. Pero sobre todo nuestra interpretación, lo más exenta de cursilería posible

Older Posts »

Powered by WordPress