El blog del Dr. Enrique Rubio

Categoría: General (Página 22 de 50)

EL TÁLAMO PRIMITIVO

El Tálamo ha  sido muy estudiado a lo largo de la historia y recientemente pese a los modernos mecanismos que poseemos sigue siendo una incógnita porque no es producto de una evolución resiente, es antigua forman  PARTE del  CEREBRO DE LOS REPTILES de forma qué la parte más antigua, se localiza en el núcleos reticulares e intralaminares  y  cuando se interrumpen desconectan la emoción del sentimiento , como se deduce de los trabajos de Enrique Rubio Una función antigua y otra mas diferenciada que analiza las emociones, el sentimiento

El término tálamo deriva de la palabra griega “thalamos” que significa “cámara interna” o“lecho nupcial”. Galeno (130-200 d. C.)

El  sistema nervioso central (SNC) esta  integrado por dos grandes regiones, el encéfalo y la médula espinal.

El encéfalo, constituido por todas las estructuras del SNC situadas dentro del cráneo, está formado por el cerebro (hemisferios cerebrales y diencéfalo) y el tronco encefálico (mesencéfalo, protuberancia /cerebelo y bulbo raquídeo).

El diencéfalo está constituido por un conjunto de estructuras nerviosas situadas alrededor del tercer ventrículo y recubiertas en gran parte por los hemisferios cerebrales. Macroscópicamente puede verse en la región basal del encéfalo donde podemos localizar las estructuras diencefálicas inferiores, las que forman el suelo del diencéfalo: quiasma óptico, hipófisis y cuerpo mamilar. En contacto directo con la base del cráneo, sólo separado del hueso por las meninges y espacios entre membranas. En la parte más caudal el diencéfalo se continúa con estructuras mesencefálicas y a derecha e izquierda con los hemisferios cerebrales.

El tálamo

La estructura mayor del diendcefalo compuesta por  dos ovoides unidos por una comisura.

Las caras mediales de ambos tálamos están unidas entre sí por un conjunto de fibras intertalámicas conocidas con el nombre de masa intermedia, adherencia intertalámica o comisura gris intertalámica. La cara lateral de forma cóncava, está separada del núcleo lenticular por el brazo posterior de la cápsula interna.

Neuronas del Tálamo.

En el tálamo existen dos tipos de neuronas desde un punto de vista funcional:

 1.- neuronas principales o de proyección (transmiten información fuera del tálamo), las cuales representan cerca del 75% de la población neuronal total; y

 2.- interneuronas locales o de circuitos locales (pueden recibir información de las mismas fuentes que las neuronas principales pero sólo entran en contacto con células talámicas que participan en la misma etapa de procesamiento), las cuales constituyen alrededor del 25%.

Las neuronas principales envían sus axones a la corteza cerebral, donde liberan un neurotransmisor excitatorio (glutamato generalmente) para activar las neuronas corticales. El glutamato y el aspartato son neurotransmisores excitatorios presentes en las terminaciones corticotalámicas y cerebelosas y en las neuronas de proyección talamocortical. Una excepción lo constituyen las aferencias subcorticales de los núcleos grises de la base que son GABA-érgicas, inhibitorias.

Las neuronas de circuitos locales liberan ácido gammaaminobutírico (GABA) en las células de proyección para inhibirlas. Este neurotransmisor inhibitorio se localiza en las terminaciones que provienen del globo pálido, en las neuronas de circuitos locales y en las de proyección del núcleo reticular y cuerpo geniculado lateral. Son proyecciones GABA-érgicas las principales proyecciones del segmento palidal medial hacia el ventral anterior (parvocelular) y el ventral lateral (pars oralis) y las proyecciones de la parte reticular de la sustancia negra al núcleo ventral anterior (magnocelular) y dorsomedial (paralaminar). Estas aferencias desempeñan un papel fundamental en la función motora [2]. Las neuronas GABA-érgicas han sido identificadas en todas las láminas del cuerpo geniculado lateral, siendo más abundantes en las láminas 1 y 2 (magnocelulares).

Las aferencias procedentes de regiones subcorticales y de la corteza cerebral que se dirigen hasta los núcleos talámicos, excitan (despolarizan) a las neuronas de proyección e interneuronas locales de dichos núcleos. A su vez las neuronas de circuitos locales inhiben (hiperpolarizan) a las neuronas de proyección, el neurotransmisor utilizado es el GABA. Así las aferencias hacia el tálamo influyen sobre las neuronas de proyección (tálamocorticales) a través de dos vías: una excitatoria directa y una inhibitoria indirecta (por medio de las neuronas de circuitos locales). Las neuronas de circuitos locales modulan la actividad de las neuronas de proyección, las cuales envían sus axones a los destinos extratalámicos. Además las células de proyección envían una rama colateral a las neuronas del núcleo reticular talámico, el cual contiene el neurotransmisor inhibitorio GABA, actuando como neuronas de circuitos locales. Las células del núcleo reticular talámico envían ramas axónicas a las neuronas de proyección y de circuitos locales por lo que ambas son inhibidas. La corteza cerebral, la cual recibió proyecciones aferentes excitatorias de las células talámicas de proyección, envía axones excitatorios de regreso a todos los tipos celulares talámicos, por lo que las aferencias corticales activan a las neuronas de proyección así como a las inhibitorias de circuitos locales y del núcleo reticular.

De esta forma el tálamo no sólo es un simple relevo de información entre los centros aferentes y la corteza, sino que es el encargado del procesamiento de la información, influyendo por tanto sobre las funciones corticales [3].

Grupos nucleares talámicos

En el  tálamo,se han identificado hasta 50 núcleos talámicos [4], varios de los cuales son subdivisiones microscópicas. La nomenclatura de los núcleos talámicos es muy compleja y en algunos casos se desconocen sus conexiones y la significación funcional de los más pequeños [2].

 Su complejidad ha permitido diferentes formas de clasificar sus núcleos y las funciones y pproyecciones de estos.

I- CLASIFICACIÓN DESDE UNA PERSPECTIVA EVOLUTIVA.
II- CLASIFICACIÓN ANATOMO-FUNCIONAL.
III- CLASIFICACIÓN BASADA EN CRITERIOS CITOARQUITECTÓNICOS.
IV- CLASIFICACIÓN TENIENDO EN CUENTA LAS CONEXIONES.
                                            V- CLASIFICACIÓN BASADA EN LAS CARACTERÍSTICAS COMPARTIDAS DE CONECTIVIDAD DE FIBRAS Y FUNCIONES.

Desde una perspectiva evolutiva, los Núcleos de la línea media tienen escaso desarrollo en seres humanos y son difíciles de delimitar, localizados en la sustancia gris periventricular, por encima del surco hipotalámico. Mantiene estrechas relaciones con el hipotálamo, los núcleos intralaminares y el núcleo dorsomedial .

Entre los núcleos de la línea a destacar el:
– Núcleo paratenial
– Núcleo paraventricular
– Núcleo reuniens
– Núcleo romboide

Participan en las emociones, la memoria y la funciones autonómica.

Núcleos intralaminares
Constituyen una numerosa serie de acúmulos neuronales situados en el espesor de la lámina medular interna del tálamo (figura 3). Los dos núcleos principales desde el punto de vista funcional en humanos son el:
– Núcleo centromediano
– Núcleo parafascicular
Otros núcleos que se localizan más hacia la región rostral incluye el:
– Núcleo paracentral
– Núcleo central lateral

– Núcleo central medial.

 Los núcleos intralaminares, elementos que funcionan, llevando y modulando sensibilidades plurales inespesificas  muy primitivas

Los núcleos intralaminares influyen sobre la actividad cortical a través de otros núcleos talámicos. Desempeñan una función global activadora, debida a sus conexiones múltiples extratalámicas y corticales y una función específica. Las conexiones que estos núcleos mantienen con el putamen y el caudado contribuyen al control motor subcortical.

 Núcleos reticulares
Recubren el polo anterior y la cara lateral del tálamo, del que queda separado por una delgada hoja de sustancia blanca, la lámina medular externa. Se localizan entre la lámina medular externa y la cápsula interna

Entre estos núcleos reticulares destacamos los siguientes:
– núcleo reticular. es una delgada lámina de sustancia gris vertical, que se apoya sobre la cara externa del tálamo.
– núcleos reticulares de la línea media. pequeñas masas grises adosadas a la cara medial del tálamo.
– núcleo centro mediano. es un núcleo grande situado en el espesor de la lámina medular externa.
los núcleos intralaminares, reticular y de la línea media considerados habitualmente como inespecíficos, están relacionados con el DESPERTAR, CONTROL MOTOR Y LA CONCIENCIA DE LAS EXPERIENCIAS SENSORIALES.

CLASIFICACIÓN TENIENDO EN CUENTA LAS CONEXIONES

Se diferencian dos grandes grupos nucleares talámicos: específicos e inespecíficos.

1.- Núcleos específicos: aquellos que tienen una relación específica y selectiva con una parte concreta de la neocorteza. Es decir, son eslabones intermedios en el procesamiento de la información hasta la corteza y funcionan de un modo complejo, colaborando en la integración, selección, procesamiento y transmisión hacia el cortéx cerebral. Cada uno de estos núcleos recibe proyecciones desde el área de la corteza cerebral a la que ha enviado sus eferencias, es decir existe una reciprocidad entre estos núcleos y la corteza cerebral. Se conocen también como núcleos corticodependientes.
Dentro de estos núcleos específicos se diferencian dos tipos:
– Núcleos específicos de relevo: reciben aferencias directas de las áreas subcorticales y se proyectan a la capa IV de la corteza cerebral. Este grupo lo integran los siguientes núcleos: grupo nuclear anterior, núcleo VA, núcleo VL, VP, CGL y CGM. Según Martín [10] los núcleos de relevo son esenciales para todas las funciones cerebrales, y cada uno de ellos desempeña un papel diferente en la percepción, la volición o la cognición, transmitiendo información desde estructuras subcorticales concretas a una porción limitada del córtex.
– Núcleos específicos de asociación: reciben aferencias corticales y de otros núcleos talámicos y a su vez ellos se proyectan a diversas capas corticales (I, III y VI). Este grupo lo integran los siguientes núcleos: DL, LP, DM y pulvinar.

2.- Núcleos inespecíficos: se proyectan a varias regiones corticales y subcorticales. Son los núcleos de la línea media, intralaminares y reticulares. Para estos núcleos la corteza cerebral no es su lugar de proyección principal. Se ha comprobado que los dos primeros envían proyecciones a regiones subcorticales precisas, por lo que no son tan inespecíficos como se pensaba [2]. Actúan en el despertar y regulando la excitabilidad de las regiones más amplias de la corteza cerebral [10]. Se le denomina también núcleos corticoindependientes.
V- Clasificación basada en las características compartidas de conectividad de fibras y funciones
Según Afifi y Bergman [6] en general se utilizan dos sistema de nomenclatura:

A).- Núcleos talámicos agrupados en tres categorías generales teniendo en cuenta la conectividad de las fibras.
1.- De modalidad específica: comparten las siguientes características:
a.- reciben aferencias directas de tractos ascendentes largos relacionados con información somatosensorial, visual y auditiva (VPL y VPM, CGL y CGM) o cualquier proceso de información derivado de los núcleos grises de la base (VA, VL), el cerebelo (VL) o el sistema límbico (núcleo anterior y DL).
b.- tienen conexiones recíprocas con áreas corticales bien definidas (área somatosensorial primaria, auditiva y visual, áreas premotoras y motoras primaria y giro cingulado)
c.- Se degeneran mediante la ablación de las áreas corticales específicas a las que se proyectan.
2.- Multimodal asociativo: no reciben aferencias directas de los tractos ascedentes largos y se proyectan áreas de asociación en los lóbulos frontales, parietal y temporal. Incluyen, el DM y el complejo nuclear pulvinar-lateral posterior.
Tienen la siguientes características en común: 1- No reciben aferencias de los tractos ascendentes largos; 2- la mayor parte de sus aferencias provienen de otros núcleos talámicos; 3- su proyección principal se dirige a las áreas de asociación de la corteza cerebral.
3.- Inespecíficos y reticular: se caracterizan por proyecciones corticales indirectas difusas y amplias y por aferencias de la formación reticular troncoencefálica. Incluyen los núcleos intralaminares, de la línea media y reticulares.

B).- Teniendo en cuenta la función que desempeñan
1.- Motores: reciben aferencia motoras de los núcleos grises de la base (VA) o el cerebelo (VL) y se proyecta a las cortezas premotoras y motoras primarias.
2.- Sensitivos: recibe aferencias de los sistemas ascendentes somatosensoriales (VPL y VPM), auditivo (CGM) y visual (CGL).
3.- Límbicos: se relacionan con estructuras límbicas (cuerpos mamilares, hipocampo, giro del cíngulo).
4.- Asociativos: se corresponden con los núcleos multimodales asociativos.
5.- Inespecífico y reticular: corresponden a la misma categoría del otro sistema de nomenclatura.
Conexiones tálamo-corticales y cortico-talámicas

La organización en el seno de la corteza cerebral de las proyecciones tálamo-corticales y cortico-talámicas y las propiedades neurofisiológicas de las fibras que ascienden o descienden a o desde la corteza cerebral son la base de las complejas relaciones entre los diferentes núcleos talámicos y la corteza cerebral [11].

Fue Lorente de Nó [12] quien describió las aferencias tálamo-corticales como: fibras tálamo-corticales específicas y fibras tálamo-corticales inespecíficas. Las primeras tienen su origen en los núcleos específicos del tálamo, sinaptan en la capa IV de la corteza y son portadoras de información de la sensibilidad general y especial (excepto la olfativa). Las segundas son fibras ascendentes con colaterales fundamentalmente a las capas I, II y VI. Estas vías inespecíficas están relacionadas con las vías tálamo-corticales difusas, procedentes de los núcleos de la línea media e intralaminares hacia el córtex cerebral [13,14] y relacionados con los mecanismos de arousal.

Macchi [13] en estudios realizados en gatos señala que existen cuatro tipos de conexiones tálamo-corticales, en función de la difusión de sus eferencias.

La primera incluye todos los núcleos que envían sus proyecciones sobre un área anatomofuncional homogénea de la corteza cerebral, según una topografía ordenada, como es el caso de los núcleos VPL y VPM y el núcleo DM.
La segunda categoría viene dada por todos los núcleos cuyas eferencias fundamentalmente se dirigen a áreas corticales funcionalmente homogéneas, proyectándose también sobre otras áreas corticales alejadas de las primeras, aunque funcionalmente iguales. Se incluirían en esta categoría el LP y el pulvinar.

La tercera categoría engloba aquellos núcleos que envían sus eferencias a varias áreas corticales funcionalmente diferentes. Pertenecen a esta categoría los núcleos intralaminares, VL y VA. Por ejemplo hacia la corteza motora y hacia la corteza límbica.

La última categoría, incluye a los núcleos talámicos que se proyectan de manera difusa, en zonas corticales sensoriales y perisensoriales somatoauditivas. El complejo posterior y en particular por el CGMmc son los representantes de esta categoría.

Hemos de señalar también que existen proyecciones recíprocas de todos los núcleos de relevo y de algunos núcleos de asociación que van desde el tálamo a la corteza y desde la corteza al tálamo a través de la cápsula interna, denominadas radiaciones talámicas. Tales fibras irradian desde y hacia el tálamo como si fuera un abanico dando así lugar a la corona radiada. A pesar de que estas radiaciones establecen conexiones prácticamente con todas las partes de la corteza, la riqueza de las conexiones varia en las diferentes áreas corticales. Las más abundantes son hacia la circunvolución precentral y postcentral, área calcarina circunvolución de Heschl, región parietal posterior y partes adyacentes del lóbulo temporal [2]. Se agrupan en cuatro grupos de fibras o pedúnculos talámicos:

1.- Pedúnculo anterior, asciende hacia el lóbulo frontal por el brazo anterior de la cápsula interna. Constituido por la proyecciones del núcleo anterior del tálamo con el cíngulo y del DM con la corteza prefrontal.
2.- Pedúnculo superior, finaliza en la corteza parietal tras recorrer la porción lenticulotalámica de la cápsula interna. Formado por la fibras del núcleo VP y los núcleos VA y VL.
3.- Pedúnculo inferior, ocupa la porción sublenticular de la cápsula interna y contiene la radiación auditiva que finaliza en la corteza auditiva.
4.- Pedúnculo posterior, a través de la porción retrolenticular del brazo posterior de la cápsula interna se dirige al lóbulo occipital. Lo integran las proyecciones o radiaciones ópticas del CGL y del complejo nuclear talámico lateral posterior-pulvinar.
Conexiones de los núcleos talámicos

A continuación analizaremos las principales aferencias que llegan a los diferentes núcleos talámicos y las eferencias que de ellos parten. Utilizaremos para este fin la clasificación anatomo-funcional mencionada anteriormente.

1.- Grupo nuclear anterior
Las principales aferencias a este grupo nuclear proceden del hipotálamo (cuerpos mamilares) y formación hipocámpica. El tracto mamilo-talámico está topográficamente organizado, de modo que el núcleo mamilar medial se proyecta ventralmente al AV, AM y el lateral lo hace al AD. Las fibras de la mitad lateral del tracto, que comprende todas las fibras procedentes del núcleo mamilar lateral y la mitad lateral del medial, se proyectan de forma bilateral. El resto son homolaterales.
Las principales eferencias las envía hacia la circunvolución cingulada (corteza asociativa límbica). También envía sus axones a la corteza prefrontal, corteza motora medial, áreas orbitarias de la corteza frontal y áreas de asociación visual.

2.- Núcleo dorsomedial
Las aferencias del núcleo DM proceden del bulbo olfatorio (DMmc), la amigdala (DMmc), sustancia negra (DMpl), pálido (DMmc, DMpc), TCS (DMpl), núcleos talámicos intralaminares y de la hilera dorsal.
Las conexiones del DM-córtex prefrontal y el córtex frontal-DM son extitatorias -glutaérgicas-, mientras que las aferencias procedentes del pálido y sustancia negra son inhibitorias -GABA-érgicas- [15]. El DM estable conexiones recíprocas con diversas áreas corticales donde sus fibras acaban en la capa I, III y VI. Entre ellas destacan la corteza prefrontal e insular (DMmc, DMpc), la corteza de asociación (DMmc) y la corteza del campo ocular (área 8) (DMpl).

GRUPO NUCLEAR LATERAL

ZONA DORSAL
El núcleo DL recibe impulsos del hipocampo (a través del fórnix) tal vez de los cuerpos mamilares y áreas asociativas de la corteza parietal. Se proyecta al giro del cíngulo y zonas asociativas del lóbulo parietal.
No se conocen bien las aferencias del LP, pero parece ser que proceden de los núcleos de relevo adyacentes en especial del núcleo VP, CGL del TCS y de la corteza sensorial secundaria (área 2) con la que establece conexiones recíprocas. Los estudios de transporte retrógrado indican que el LP emite sus eferencias a las áreas asociativas 5 y 7 de la corteza parietal [2]. Se proyecta también a la corteza visual (áreas 17, 18 y 19).

Zona ventral
El núcleo VA recibe aferencias fundamentalmente del núcleo dentado del cerebelo, del globo pálido y de las porciones reticulares de la sustancia negra y áreas no motoras como el TCS. Hasta él llegan también fibras procedentes de los núcleos intralaminares y de la línea media. Las eferencias se dirigen fundamentalmente hacia los núcleos intralaminares, áreas 6 y 8 y áreas orbitofrontales.

Las aferencias del núcleo VL proceden fundamentalmente de los núcleos cerebelos profundos. El sistema dentotalámico constituye la principal aferencia. Aunque el sistema de fibras pálido-talámicas se proyectan en su mayor parte sobre las neuronas del núcleo VA algunas fibras alcanzan el núcleo VL. Hasta esta zona talámica llegan también aferencias procedentes de la corteza prefrontal, motora primaria (área 4) y núcleos intralaminares.
Este núcleo envía sus eferencias hacia la corteza motora primaria, premotora y motora suplementaria y áreas somatosensitivas no primarias en la corteza parietal (áreas 5 y 7).

Los núcleos cerebelosos profundos se proyectan fundamentalmente al VL y desde el pálido preferentemente al VA.
El núcleo VP constituye el principal destino de las fibras del lemnisco medio, lemnisco trigeminal y el tracto espino-talámico.
La parte oral del núcleo VPLo recibe proyecciones de los núcleos cerebelosos profundos contralaterales y se proyecta a la corteza motora primaria. La parte caudalis, VPLc recibe aferencias somatosensoriales de la médula espinal y núcleos del bulbo raquídeo a través del lemnisco medial y haces espinotalámicos.

El VPM recibe aferencias somáticas de receptores de la cara y estructuras intraorales. Las fibras trigeminales ascendentes llegan hasta este núcleo.

Ambos núcleos, VPL y VPM también reciben aferencias de la corteza somatosensorial primaria. Sus eferencias poseen una precisa proyección tópica a la corteza de la circunvolución postcentral, áreas 3, 1 y 2 (hómunculo sensitivo).

4.- Grupo nuclear posterior
El pulvinar no recibe proyecciones de las vías sensitivas largas ascendentes, excepto la parte inferior de este núcleo a la cual llega una proyección de las capas superficiales de los TCS.
La parte inferior de este núcleo y la porción adyacente del pulvinar lateral mantiene conexiones recíprocas con la corteza occipital incluida la corteza estriada. Las proyecciones del pulvinar inferior a las áreas 17,18 y 19 constituyen el enlace final en una vía visual extrageniculada.

La parte lateral del pulvinar se proyecta a la corteza temporal y recibe proyecciones recíprocas de la misma región. La parte medial se proyecta a la circunvolución temporal superior.

El complejo pulvinar-lateral posterior y el núcleo DM se conocen en conjunto como núcleos talámicos multimodales de asociación. Se pueden considerar conjuntamente tanto desde el punto de vista de sus conexiones como de sus funciones. Reciben proyecciones desde la retina y TCS, se relacionan con la corteza P-T-O asociativa y también con áreas visuales de la corteza cerebral. Desde un punto de vista funcional se le relaciona con la vía visual y también con el control de movimientos oculares.

La parte ventral del CGM recibe las proyecciones del núcleo central del tubérculo cuadrigémino inferior (TCI) y sus eferencias se dirigen hacia la corteza auditiva primaria (área 41). Esta proyección está tonotópicamente organizada de manera que las frecuencias bajas se sitúan lateralmente y las frecuencias altas lo hacen medialmente. A la región dorsal, llegan aferencias fundamentalmente procedentes del núcleo pericentral del TCI, su organización tonotópica no es tan clara como la de la región ventral y se proyecta a la corteza auditiva secundaria (áreas 22 y 42). La región medial recibe las proyecciones del núcleo externo del TCI y se proyecta sin tonotopía a toda la corteza auditiva (áreas 22, 41 y 42).

El CGL recibe proyecciones de la retina por la cintílla óptica y se proyecta a la corteza calcarina (área 17) a través del haz geniculocalcarino o radiación visual y recibe fibras corticogeniculadas del mismo área. En menor medida se proyecta a las áreas asociativas visuales adyacentes. Establece conexiones internucleares con el pulvinar. Las proyecciones retinogeniculadas estan tópicamente organizadas. Los cuadrantes superiores de ambas retinas (campo visual inferior) finalizan en la mitad superomedial del CGL. Los cuadrantes inferiores (campo visual superior) lo hacen en la mitad inferolateral del núcleo.

 NÚCLEOS DE LA LÍNEA MEDIA
Las principales aferencias hacia estos núcleos proceden del hipotálamo, núcleos del tronco encefálico, amigdala y giro parahipocampal. Envían sus proyecciones hacia la corteza límbica y el núcleo estriado ventral.
NÚCLEOS INTRALAMINARES
Se consideran clásicamente y en conjunto como núcleos que reciben y envían proyecciones de modo inespecífico o difuso. No obstante también es cierto que diferentes porciones de los mismos reciben aferencias distintas y cada una de ellas proyecta de modo topográfico preciso a los ganglios basales y a zonas concretas de la corteza cerebral, no siendo tan inespecíficos como se creía [2].
Las principales aferencias hacia estos núcleos proceden de la formación reticular. El sistema dentorrubrotalámico (cerebelo) se proyecta fundamentalmente al VL y colaterales de este sistema se proyectan a los núcleos intralaminares. La proyección principal de las fibras palidotalámicas es el núcleo VA, colatarerales de esta proyección alcanzan los núcleos intralaminares. La mayor parte de las fibras del tracto espinotalámico y lemnisco trigeminal (fibras ascendentes de las vías del dolor) se proyectan sobre el VP, pero también a los núcleos intralaminares.

Estos núcleos reciben proyecciones también de fibras corticales procedentes de las áreas motoras y premotora. Las fibras que se originan en la corteza motora (área 4) terminan en las neuronas de los núcleos centromediano, paracentral y centrolateral. Las originadas en la corteza premotora (área 6) concluyen en los núcleos parafascicular y centrolateral. En contraste con otros núcleos talámicos, las conexiones entre los núcleos intralaminares y la corteza cerebral no son recíprocas.
Las principales eferencias de los núcleos intralaminares se dirigen a otros núcleos talámicos (fundamentalmente reticulares), estriado (caudado y putamen) y ampliamente sobre áreas asociativas de la corteza cerebral. Por métodos de marcaje retrógrado se ha visto que un pequeño número de neuronas intralaminares, proyectan por colaterales axónicos en áreas corticales bastantes alejadas entre si [16].
7.- Núcleos reticulares
Recibe proyecciones cortico-talámicas, pero carece de proyecciones tálamo-corticales. Se encuentran conectados con muchos núcleos talámicos y además son atravesados, recibiendo colaterales, de las fibras tálamo-corticales y cortico-talámicas, ejerciendo por tanto una acción moduladora sobre la actividad neuronal talámica.

ASPECTOS FUNCIONALES

Incidencia del tálamo en los procesos psicofuncionales básicos: sensitivo/motor

El tálamo junto con la corteza cerebral juegan un papel importante en el análisis e integración de las funciones sensitivas. Toda la información sensorial excepto la olfativa (la información se transmite directamente a la corteza temporal medial) se dirigen al tálamo donde hacen escala y se proyectan a las correspondientes áreas corticales específicas.

El CGM está relacionado con la vía auditiva. El input es bilateral, aunque predominan las aferencias del oido opuesto. Las aferencias de este núcleo, se dirigen hacia las áreas auditivas 41 y 42 (áreas auditivas primaria y secundaria auditiva, respectivamente) y hacia el complejo talámico asociativo dorso-pulvinar, de cual salen eferencias hacia las áreas 21 (área inferotemporal visual, circunvolución temporal, relacionada con la visión de la forma) y 22 (corteza auditiva superior. Área de Wernicke) de la corteza cerebral.

El tálamo está implicado también en los mecanismos de la visión. Las aferencias procedentes de la retina terminan en el CGL. Las eferencias se dirigen hacia la corteza visual (área 17) y hacia el complejo asociativo dorso-pulvinar para proyectarse hacia las áreas 18 (corteza visual primaria), 19 (visual secundaría), 1b (somatosensorial primaria), 39 (asociativa parieto-temporo occipital) y 37 (asociativa parieto-temporo-occipital) de la corteza cerebral.

El tálamo forma parte del sistema somatosensitivo colaborando en la percepción de estímulos mecánicos, térmicos y dolorosos. El núcleo VP recibe los tractos ascendentes largos que conducen las modalidades sensoriales, incluso del gusto, de la mitad contralateral del cuerpo y la cara. Este núcleo envía eferencias al pulvinar y al núcleo LP. Estos a su vez envían eferencias a la corteza parietal zonas esta relacionadas con el reconocimiento somatoestésico.

Gracias a las proyecciones del VP hacia las áreas 5 (corteza sensorial somestésica terciaría, área asociativa parietal posterior), 7 (áreas asociativa parietal posterior, relacionada con la percepción visuo-motora) y área 40 (asociativa parieto-temporo-occipital) es posible llevar a cabo funciones como es el reconocimiento de los objetos por el tacto (esterognosia) y del propio cuerpo (somatognosia).

El VPL actúa como relevo para la información somática del cuerpo y las extremidades, ya que dirige sus proyecciones hacia la corteza somestésica primaria en la circunvolución postcentral (área 3, 1, 2,) en la cual se analiza la información sensitiva cutánea, muscular, tendinosa, articular y visceral, siendo posible de esta manera las percepciones objetivas como la forma, el tamaño, la textura, la temperatura y el peso.

El VPM sirve de centro de relevo sensitivo-talámico de la cabeza y cara. Las eferencias de este núcleo se dirigen a través de la cápsula interna hasta la corteza somestésica primaria del lóbulo parietal.
A través de la proyecciones de esta zona talámica hacia zonas frontales (áreas 4, 8, 6, 44 y 45) el tálamo está involucrado en la sensopercepción de los movimientos.

El tálamo está implicado también en los mecanismos del dolor. Los principales núcleos de destino de los axones ascendentes para el dolor y la temperatura, se encuentran el núcleo VP. El VPM y VPL reciben la mayor parte de estas aferencias. El VPM reciben información nociceptiva desde la cara y el VPL del resto del cuerpo. La disposición similar de los estímulos mecanosensitivos y nocivos es la responsable de los mecanismos discriminativos del dolor [19].

Los núcleos talámicos intralaminares en cuanto al dolor se refiere participan en la evocación de la respuesta desencadenada por un estímulo nocivo a través de las proyecciones que llegan a estos núcleos desde la formación reticular.

Algunas modalidades sensitivas se perciben a nivel talámico, hecho este que se pone de manifiesto cuando existen lesiones o ablaciones de la corteza cerebral. En estos casos tras la lesión se pierde toda la sensibilidad contralateral a la lesión recuperándose el dolor, la temperatura y la sensibilidad epicrítica (burda). En la clínica está bien descrito este cuadro, conocido como síndrome talámico. En estos casos el umbral de estimulación que producen estas sensaciones es elevado, las modalidades sensoriales son exageradas y displacenteras, además se suelen acompañar con una marcada respuesta afectiva, normalmente atribuible a la indemnidad del núcleo DM (frecuente en lesiones vasculares).

Lesiones vasculares que afectan al territorio talámico postero-lateral (núcleos VPL, VPM, CGM, pulvinar y centromediano) pueden dar lugar a pérdida sensorial contralateral, paréstesias y dolor talámico. Bien descrito es el síndrome de Dejerine y Roussy, caracterizado por un dolor intenso, persistente y paroxístico a menudo intolerable, que se suele presentar en el momento de la lesión o después de un periodo de hemiparesia transitoria, hemiataxia y pérdida sensitiva hemicorporal.

Por otro lado la participación del tálamo en el control motor queda reflejado por las aferencias procedentes de núcleos grises de la base, cerebelo y corteza motora que llegan a él y las eferencias que de él parte hacia la corteza motora y premotora. En el sistema motor intervendran fundamentalmente los siguientes núcleos: VA y VL, núcleos intralaminares y núcleos reticulares y podemos destacar dos grandes sistemas: palidal y cerebeloso. La separación entre ambos circuitos es debido a que las aferencias son distintas y también sus eferencias hacia áreas corticales en donde proyectan. Alteraciones en las proyecciones del VL pueden dar lugar a trastornos motores (discinesias). Lesiones en este núcleo disminuyen los movimientos anormales cerebelosos y de los núcleos grises de la base [6].

Lesiones en el núcleo ventral intermedio (Vim), núcleos ventrales caudales, centromediano, núcleos sensoriales y pulvinar pueden causar gran variedad de alteraciones del movimiento, incluyendo, distonias, temblor, balismo, corea, entre otros [20-22]. Lesiones vasculares que afectan a los núcleos VA, VL, DM y núcleo anterior pueden causar hemiparesia contralateral y trastornos de los campos visuales.

Existe evidencia de que los núcleos intralaminares también están implicados en el control de los movimientos. Este núcleo recibe aferencias principalmente de la formación reticular, del pálido, putamen, núcleos subtálamicos y de áreas corticales (6 y 4). Las conexiones que estos núcleos mantienen con el putamen y el caudado, contribuyen al control motor subcortical.
El núcleo centromediano recibe aferencias del pálido, sustancia negra (zona reticular), zona incierta, núcleos profundos del cerebelo, córtex motor primario y núcleos reticulares [23,24]. Envía amplias proyecciones glutamato-érgicas excitatorias al putamen y proyecciones difusas al borde dorsolateral del núcleo caudado y núcleos subtalámicos [25, 26]. Los núcleos reticulares talámicos, terminan de manera difusa en la corteza cerebral, permitiendo la activación necesaria para el correcto funcionamiento del sistema motor.
Existen trabajos que señalan cierta implicación de los núcleos de la línea media con el sistema motor. Lee y Marsden [21] que señalan las lesiones causantes de las distonías tálamicas no hay que situarlas en los núcleos VA y VL sino en zonas más posteriores o en los núcleos de la línea media.
Podemos describir una semiología motriz que caracterizaría a las lesiones talámicas: 1.- alteraciones del sistema motor voluntario (incoordinación cerebelosa contralateral, sincinesias homolaterales de imitación y contracturas); 2.- alteraciones del sistema motor involuntario; 3- perturbaciones globales del movimiento (mano talámica, caracterizada por movimientos incesantes de los dedos, tanto en el plano horizontal como en el vertical); 4.- alteraciones de la marcha [27].
Incidencia del tálamo en los procesos psicofuncionales superiores: nivel atencional/ emoción/ lenguaje/ memoria/ función ejecutiva
El tálamo regula funciones de la corteza asociativa y es importante en funciones como el lenguaje, el habla y funciones cognitivas, mediadas corticalmente [28].
Hay tres regiones importantes de corteza asociativa: parieto-temporo-occipital, prefontral y límbica, hacia las cuales se proyectan diferentes núcleos talámicos. Así la corteza parieto-temporo-occipital (áreas 39 y 40) está relacionada con funciones perceptivas, visión, lectura y recibe información del pulvinar.
La corteza asociativa prefrontal es importante para la planificación de la conducta y los movimientos, cognición, aprendizaje, memoria y pensamiento. El DM proyecta sus fibras hacia esta zona cortical. Un estudio reciente realizado en monos a los cuales se les realizó una ablación del núcleo DMmc, ha puesto de manifiesto que lesiones en esta zona talámica causan trastornos de memoria debidos principalmente a la interrupción de la función entre este núcleo y el cortex prefrontal [29].
La corteza límbica, relacionada con el aprendizaje, la memoria y la emoción, recibe fundamentalmente eferencias del núcleo anterior talámico.

Tálamo y nivel atencional

La participación del tálamo y de la formación reticular en la regulación del nivel de arousal (vigilancia) se puso de manifiesto ya en la primera mitad del siglo XX con los trabajos pioneros realizados por Morison y Dempsey [30], Jasper [31] y Moruzzi y Magoun [32].
Los núcleos intralaminares están relacionados con la excitabilidad general de la corteza cerebral al transmitir información procedente de la formación reticular mesencefálica a múltiples áreas corticales y al cuerpo estriado, desempeñando un papel importante en el control del sueño y la vigilia. La estimulación eléctrica de estos núcleos provoca una activación generalizada de la corteza cerebral (recruiting response) formando parte del sustrato anatómico del sistema reticular activador ascendente y por lo tanto de los mecanismos del sueño y la vigilia.

Los núcleos de la línea media parecen ser el lugar por el que el tálamo, junto con la formación reticular, controla las señales que acceden a la corteza cerebral. Trabajos realizados en este campo, señalan que el tálamo regula el nivel de arousal cortical a través de las conexiones tálamo-corticales que se originan en los núcleos DM, intralaminares y de la línea media y a través de las interacciones intratalámicas con los núcleos reticulares [23,33].

Los estudios llevados a cabo en especies animales han proporcionado evidencias de que los núcleos reticulares están relacionados con el ciclo sueño-vigilia [23,33]. Se ha comprobado que las neuronas GABA-érgicas de los núcleos reticulares controlan la actividad de las neuronas tálamo-corticales, modulando así la actividad cortical [33,34].

En humanos se ha visto en estudios realizados con técnicas de neuroimagen funcional que existen variaciones en el flujo sanguíneo tálamico en función del nivel de conciencia [35,36]. Kinomura, Larsson, Gulyás y Roland [37] han demostrado cambios en el flujo sanguíneo de los núcleos intralaminares del tálamo y la formación reticular en función del nivel de arousal de sujeto.

En una investigación llevada a cabo por Fiset y cols. [38] donde se manipulaba el nivel de conciencia de los sujetos utilizando Propofol (fármaco con propiedades anestésicas que disminuye el flujo sanguíneo cerebral, lo cual se acompaña de una reducción del requerimiento metabólico cerebral de oxígeno y de la disminución de la presión intracraneal), encontraron relación negativa entre el flujo sanguíneo talámico (con PET) y la concentración de propofol utilizada. Los efectos de esta droga anestésica son más pronunciados en la zona medial talámica, el giro cingulado, giro orbitofrontal y giro angular. Parece ser que las variaciones observadas en el tálamo (especialmente en la zona medial) están significativamente relacionadas con la actividad de la formación reticular. Estos autores sugieren que el sistema reticulo-talámico juega un papel fundamental en la modulación de la conciencia.

En la clínica se ha observado que lesiones vasculares en los núcleos intralaminares y dorsomediales pueden causar mutismo acinético y el síndrome de Kleine-Levin (síndrome de hipersomnia y bulimia). Este síndrome se caracteriza por periodos recurrentes de excesiva somnolencia, hiperfagia, hipersexualidad y alteraciones de la memoria reciente.

Diferentes aspectos de la atención pueden ser atribuibles al córtex prelímbico y núcleo DM [39]. Infartos tálamicos pueden causar negligencia y déficits atencionales del espacio extrapersonal contralateral a la lesión [40-42].

Tálamo y emoción

El tálamo interviene en los procesos emocionales y motivacionales. Los principales núcleos implicados son el VA, DM y grupo nuclear anterior.

El VA recibe aferencias desde el cuerpo mamilar y proyecta fibras hacia el cíngulo.

El núcleo DM recibe desde el hipotálamo y la amigdala, enviando sus fibras hacia el lóbulo prefrontal. El DM con sus proyecciones hasta la corteza prefrontal y estructuras límbicas, participa en la integración de la información visceral con el afecto, las emociones y el pensamiento.

El grupo anterior media información visual y emocional. La estimulación eléctrica y la ablación de este núcleo inducen cambios en la tesión arterial y los impulsos motivacionales.

Tálamo y lenguaje

Penfield y Roberts en [43] fueron los primeros en destacar que el tálamo con sus extensas proyecciones corticales está relacionado con funciones linguísticas.

En el lenguaje intervienen fundamentalmente el pulvinar, el grupo nuclear lateral (fundamentalmente el VPL y VPM) y el grupo nuclear anterior. Existen conexiones reciprocas entre el pulvinar y la corteza cerebral importantes para el lenguaje y el pensamiento simbólico (hacia la encrucijada funcional parieto-temporo-occipital). El VPL y VPM participan en el lenguaje gracias a las relaciones que mantienen con áreas somestésicas y a la integración específica que en ellos se produce.

Existe evidencia electrofisiológica de la participación del tálamo en los aspectos motores del lenguaje. Mateer [44] encontró un incremento en la duración de la respuesta verbal después de estimular el tálamo izquierdo dando como resultado una mala pronunciación de las palabras y cambios articulatorios. Posteriormente Bhatnagar y Andy [45] observaron tras la estimulación del núcleo centromediano izquierdo espasmos motores articulatorios.

Johnson y Ojemann [46] señalan que la zona ventro-lateral del tálamo izquierdo (especialmente la parte central) participa en la integración de los mecanismos motores del habla, incluyendo la respiración, ya que tras la estimulación de esta zona talámica se observa una inhibición de la respiración, enlentecimiento del habla y presencia de perseveraciones.

El pulvinar, no está sólo intercalado entre las vías óptica y acústica, sino que proyecta a zonas corticales importantes para el lenguaje y el pensamiento simbólico (encrucijada parieto-temporo-occipital). Lesiones en el núcleo anterior o en el pulvinar pueden causar anomia, parafasias semánticas y errores sintácticos [47].

Ojemann [48] encontró que tras la estimulación de la zona anterior (parte más lateral) del tálamo aparecen repeticiones de palabras que previamente han sido denominadas correctamente. Si la estimulación se realiza en la parte central de la zona ventrolateral aparecían perseveraciones. La estimulación de la parte posterior de la zona ventrolateral y pulvinar anterior daba lugar a la aparición de omisiones y errores en la denominación de objetos.

Tálamo y memoria

En cuanto a la memoria se refiere parece ser que son los núcleos talámicos anteriores, núcleos de la línea media, núcleos dorsomediales y núcleos intralaminares los implicados en los procesos mnésicos, aunque no existen evidencias concluyentes que indiquen cual de estas estructuras es crucial para el buen funcionamiento de la memoria anterógrada [49].
Weiskrantz [50] señala que los déficits de memoria que suelen aparecer en pacientes con lesiones talámicas son similares a los observados tras lesiones en el lóbulo temporal medial: déficits en la codificación de nueva información dando como resultado una alteración en la memoria anterógrada, estando intacta la memoria a corto plazo.

Existe evidencia de alteraciones mnésicas tras lesiones talámicas específicas, en especial en el núcleo DM [51], núcleo anterior [52, 53] y núcleos intralaminares [54].

Parece ser que el núcleo anterior está relacionado con el proceso de consolidación de la información permitiendo la formación de trazos mnésicos y con la memoria de trabajo [55].

Recientemente Celerier, Ognard, Decorte y Beracochea [56] han demostrado en ratones que lesiones en el núcleo anterior causan alteraciones en la ejecución de tareas mnésicas. Según estos autores este grupo nuclear está relacionado con el mantenimiento de la información en el tiempo independientemente de la naturaleza de la información y con los procesos asociativos de la información unimodal y polimodal.

Los núcleos anteriores del tálamo están implicados en los procesos de organización temporal de la memoria [57]. Los núcleos intralaminares permiten la salida de trazos mnésicos ya memorizados, es decir el proceso de activación.

En los procesos de organización temporal de los recuerdos recientes y antiguos intervienen los núcleos DM. Lesiones en estos núcleos pueden dar lugar a una desorganización temporal del recuerdo que afectaría no solo a la información nueva, sino también a la antigua. Pueden aparecer fabulaciones como las descritas en el síndrome de Korsakoff. Victor, Adams y Collins [58] que en los pacientes con síndrome de Korsakoff el núcleo DM está afectado en el 100% de los sujetos, junto con los cuerpos mamilares. El déficit es más severo si están implicados los núcleos DM del tálamo y los núcleos de la línea media [59]. Además, en el síndrome de Korsakoff [60] se ha encontrado relación entre la amnesia anterógrada y el grado de atrofia en los núcleos de la línea media, no evidenciándose relación con la atrofia en los cuerpos mamilares, hipocampo o giro parahipocampal.

Gaffan y Parker [29] en un estudio realizado con monos han encontrado que la parte magnocelular del núcleo DM juega un papel importante en la memoria. Una lesión en esta zona da lugar a una alteración en esta función cognitiva atribuible a la desconexión con el córtex prefrontal.

Sin embargo y a pesar de estos resultados, todavía existe controversia de si lesiones en el DM pueden causar déficits de memoria. En una extensa revisión realizada por Van der Werf y cols [61] sobre los déficits neuropsicológicos que pueden aparecer tras infartos talámicos señalan, que no existe evidencia suficiente para poder establecer la relación del DM con los problemas mnésicos que ocurren después de lesiones diencefálicas. Concluyen que los déficits mnésicos que pueden aparecer y que son compatibles con un “síndrome amnésico”, dependen de la integridad del tracto mamilo-talámico.

La participación del tálamo en el procesamiento mnésico se ha puesto también de manifiesto a través de los estudios electrofisiológicos realizados. Ojemann [48] encontró que la estimulación ventrolateral talámica afecta a la memoria verbal a corto plazo. La estimulación de esta zona durante la presentación del material que posteriormente será evocado reduce el número de errores. La estimulación del pulvinar izquierdo altera el procesamiento mnésico verbal, mientras que la estimulación del pulvinar derecho altera el procesamiento mnésico no verbal [46].
Tálamo y función ejecutiva

Lesiones en el tálamo también pueden causar alteraciones en las funciones ejecutivas, atención, iniciativa, inhibición y organización temporal de la conducta, funciones estas relacionadas con el córtex prefrontal.
Se ha propuesto que entre los núcleos talámicos implicados en la función ejecutiva se encuentran el DM, los intralaminares y los núcleos de la línea media.
Algunos pacientes muestran deterioro en el funcionamiento ejecutivo después de infartos selectivos del DM [52, 62]. Mennemeier y cols. [63] han señalado que los pacientes con lesiones talámicas pueden presentar dificultad para utilizar estrategias mnésicas, más que padecer un defecto de codificación de la información. Se ha propuesto que una interrupción entre el núcleo DM y el córtex prefrontal puede ser la responsable de la aparición de estos déficits.

Sin embargo, existen datos que ponen de manifiesto la aparición de un deterioro similar en la función ejecutiva después de infartos talámicos que no implican al núcleo DM. Se han descrito como lesiones en los núcleos intralaminares y partes adyacentes de los núcleos de la línea media pueden causar déficits en la función ejecutiva [52, 63].

Van der Werf y cols. [61] señalan que lesiones que impliquen a un único núcleo tálamico, por si mismas no son suficientes para que aparezca deterioro en la función ejecutiva,siendo necesaria la afectación de dos o más núcleos (DM, intralaminares y de la línea media).

REFERENCIAS

1. Sherman SM, Guillery RW. Exploring the Thalamus. San Diego: Academic Press; 2001
2. Carpenter MB. Neuroanatomía. Fundamentos. (4ªed.). Buenos Aires: Editorial Médica Panamericana; 1994
3. Ralston HJ. Tálamo. En Wong-Riley MMT, ed. Secretos de las Neurociencias. Mexico: McGraw-Hill; 2001. pp. 275-81.
4. Amaral DG. Organización funcional de la percepción y el movimiento. En Kandel ER, Schwartz JH, Jessell TM, eds. Principios de Neurociencia (4ªed.). Madrid: McGraw-Hill Interamericana 2001; pp. 337-48.
5. Elliot HC. Textbook of Neuroanatomy. Philadelphia: Lippincatt Co; 1969
6. Afifi AK, Bergman RA. Neuroanatomía Funcional. Texto y Atlas. México: McGraw-Hill Interamericana; 1999
7. Armengol JA. Centro y vías nerviosas I. Médula espinal, tronco del encéfalo y cerebelo. En Delgado JM, Ferrús A, Mora F, Rubia FJ, eds. Manual de Neurociencia. Madrid: Síntesis; 1998. pp. 359-392.
8. Morel A, Magnin M, Jeanmonod D. Multiarchitectonic and Stereotactic Atlas of the Human Thalamus. The Journal of Comparative Neurology 1997, 387: 588-630.
9. Hirai T, Jones, EG. A new parcellation of the human thalamus on the basis of histochemical staining. Brain Research Reviews 1989, 14: 1-34.
10. Martin JH. Neuroanatomía (2ªed.). Madrid: Prentice Hall; 1997
11. Steriade M, Deschenes M. The thalamus as a neuronal oscillator. Brain Research Reviews 1984, 8: 1-63.
12. Lorente de Nó R. Cerebral cortex: Architecture, intracortical connections, motor projections. En Fulton J, ed. Physiology of the Nervous System. Oxford: Oxford University Press; 1938. pp. 291-325.
13. Macchi, G. The intralaminar system revisited. En Minciacchi D, Molinari M, Macchi MG, Jones EG eds. Thalamic Networks for Relay and Modulation. Oxford: Pergamon Press; 1993. pp. 175-184.
14. Jones EG. Viewpoint: the core and matrix of thalamic organization. Neuroscience 1998; 85: 331-45.
15. Kuroda M, Yokofujita J, Murakami K. An ultrastructurd study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Progress in Neurobiology 1998; 54(4): 417-58.
16. Bentivoglio M, Macchi C, Albanese A. The cortical projection of the thalamic intralaminar nuclei, as studied in cat and rat with multiple fluorescent retrograde tracing techique. Neurosci Lett 1981; 26: 5-10.
17. Stephens RB, Stilwell DL. Arteries and veins of the human brain. Springfiel: Charles C. Thomas; 1969.
18. Tatu L, Moulin Th, Bogousslavsky J, Duvernoy H. Arterial territories of the human brain. Neurology 1998; 50, 1699-1708.
19. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO. Invitación a la Neurociencia. Madrid: Editorial Médica Panamerica; 2001
20. Ghika j, Bogousslavsky J, Maeder P y Regli F. The “Jerky distonic unsteady hand”: a delayed motor syndrome in posterior thalamic infarctions. Journal of Neurology 1994; 241: 537-42
21. Lee MS, Marsden CD. Movement disordres following lesions of the thalamus or subthalamic region. Movement Disorders 1994; 9(5): 493-507.
22. Lee MS, Kim YD, Yang JW, Lyoo CH, Oh SH, Kim HS. Clinical and anatomical factors associated with thalamic dyskinesias. Journal of the Neurological Sciences 2001; 182: 137-142.
23. Steriade M, Parent T, Hada A. Thalamic projections of nucleus reticularis thalami of cat: a study using retrograde transport of horseradish peroxidase and fluorescent tracers. J. Comp. Neurol 1984; 229: 531-47.
24. Royce GJ, Bromley S, Gracco C. Subcortical projections on the centromedian and parafascicular thalamic nuclei in the cat. J Comp Neurol 1991; 306: 129-55.
25. Parent A. Extrinsic connections of the basal ganglia. Trends in Neurosciences 1990; 13: 254-8.
26. Groenewegen HJ, Berendse HW. The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends in Neurosciences 1994; 17: 52-7.
27. Perea MV. Fundamentos de Neuropsicología. Psicobiología del Movimiento. Salamanca: Ediciones Universidad de Salamanca; 1989
28. Bhatnagar SC, Andy OJ. Neurociencia para el estudio de las alteraciones de la comunicación. Barcelona: Masson-Williams & Wilkins; 1997.
29. Gaffan D, Parker A. Mediodorsal thalamic function in scene memory in rhesus monkeys. Brain 2000; 123: 816-27.
30. Morison RS, Dempsey EW. A syudy of thalamocortical relations. Americam Journal of Physiology 1942; 135: 281-92.
31. Jasper HH. Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalography and Clinical Neurophysiology 1949; 1: 405-19.
32. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology 1949; 1: 455-73.
33. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679-85.
34. Destexhe A, Contreras D, Sejnowski TJ, Steriade M. A model os spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of Neurophysiology 1994; 72: 803-18.
35. Hofle N, Paus T, Rutens D, Fiset P, Gotman J, Evans AC, Jones BE. Covariation of regional cerebral blood flow with delta and spindle activity during slow wave sleep in humans. Journal of Neurocience1997; 17: 4800-08.
36. Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Pretides M, Evans AC. Time-related changes in neural systems underlying attention and arousal during the performance of and auditory vigilance tesk. Journal of Cognitive Neuroscience 1997; 9(3): 392-408.
37. Kinomura S, Larsson J, Gulyás B, Roland PE. Activation by atttention of the human reticular formation and thalamic intralaminar nuclei. Sciencie1996; 271: 512-4.
38. Fiset P, Paus, T, Daloze Th, Plourde G, Meurte P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC. Brain mechanisms of Propofol-induced loss of consciousness in human: a Positron Emission Tomographic study. Journal of Neuroscience 1999; 19(13): 5506-13.
39. Chudasama Y, Muir JL. Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei?. Behavioral Neuroscience 2001; 115(2): 417-28.
40. Watson RT, Heilman KM. Thalamic neglect. Neurology 1979; 29: 690-4.
41. Graff-Radford NR, Damasio H, Yamada T, Eslinger PJ, Damasio AR. Nonhemorrhagic thalamic infarction. Brain; 1985; 108: 485-516.
42. Barrett AM, Schwartz RL, Crucian GP, Kim M, Heilman, KM. Attentional grasp in far extrapersonal space after thalamic infarction. Neuropsychologia 2000; 38: 778-84.
43. Penfield W, Roberts L. Speech and Brain Mechanisms. Princenton: Princenton University Press; 1959.
44. Mateer C. Asymmetric effects of thalamic stimulation on rate os speech. Neuropsychologica 1978; 16: 497-9.
45. Bhatnagar SC, Andy OJ. Allevation of acquired stuttering with human centremedian thalamic stimulation. Journal Neurology, Neurosurgery and Psychiatry 1989; 52: 1182-4.
46. Johnson M D, Ojemann GA. The role of the human thalamus in language and memory: Evidence from electrophysiological studies. Brain and Cognition 2000; 42(2): 218-30.
47. Crosson B. Subcortical functions in language in memory. New York: Guilford Press; 1992.
48. Ojemann GA. Asymmetric function of the thalamus in man. Annals of New York Academy of Science 1977; 299: 380-96.
49. Bentivoglio M, Aggleton JP, Mishkin M. The thalamus and memory formation. En Steriade M, Jones EG, McCormick DA, eds. Thalamus. Volume II. Experimental and clinical aspects. Oxford: Elservier Science Ltd; 1997; pp. 689-720.
50. Weiskrantz L. On issues and theories of the human amnesic syndrome. En Weinberger NM, McGaugh, JL, Lynch G, eds. Memory systems of the human brain: animal and human cognitive processes. New York: Guilford; 1985.
51. Guberman A, Stuss DT. The syndrome of bilateral paramedian thalamic infarction. Neurology 1983; 33: 540-6.
52. Graff-Radford NR, Tranel D, Van Hoese GW, Brandt JP. Diencephalic amnesia. Brain 1990; 113: 1-25.
53. Parkin AJ, Rees JE, Hunkin NM, Rose PE. Impairment of memory following discrete thalamic infarction. Neuropsychologia 1994; 32: 39-51.
54. Calabrese P, Haupts M, Markowitsch H, Gehlen W. Case Report: The cognitive-mnesic performance profile of a patient with bilateral asymmetrical thalamic infarction. International Journal of Neuroscience 1993; 71: 101-6.
55. Peru A, Fabbro F. Thalamic amnesia following venous infarction: evidence from a single case study. Brain and Cognition 1997; 33: 278-94.
56. Celerier A, Ognard R, Decorte L, Beracochea D. Deficits of spatial and non-spatial memory and of auditory fear conditioning following anterior thalamic lesions in mice: comparison with chronic alcohol consumption. The European Journal of Neuroscience 2000; 12(7): 2575-84.
57. Tranel D, Damasio AR. Neurobiological Foundations of Human Memory. En Baddeley AD, Wilson BA, Watts FN. eds. Handbook of Memory Disorders. Chichester: Wiley; 1995. pp. 27-47.
58. Victor M, Adams RD, Collins GH. The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition. (2nd ed.). Philadelphia: Davis; 1989.
59. Zola-Morgan S, Squire LR. Neuroanatomy of memory. Annual Review Neuroscience 1993; 16: 547-63.
60. Visser PJ, Krabbendam L, Verhey FRJ, Hofman PAM, Verhoeven WMA, Tuinier S, et al. Brain correlates of memory dysfunction in alcoholic Korsakoff’s syndrome. Journal of Neurology, Neurosurgery and Psychiatry 1999; 67(6): 774-8
61. Van der Werf YD, Witter MP, Uylings HBM, Jolles J. Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 2000; 38: 613-27.
62. Stuss DT, Guberman A, Nelson R, Larochelle S. The neuropsychology of paramediam thalamic infarction. Brain and Cognition 1988; 8: 348-78.
63. Mennemeier M, Fennell E, Valenstein E, Heilman KM. Contributions of the left intralaminar and medial thalamic nuclei to memory. Comparisons and report of a case. Archives of Neurology 1992; 49: 1050-8.

Share this:

Enriquerubio.net. El dolor persiste pero ya no me molesta

LA IMPORTANCIA DEL CRISPR

Las maneras más innovadoras de utilizar el CRISPR

El científico estadounidense James Wason y el británico Francis Crick culminaron su descubrimiento de la estructura molecular del ADN, en forma de doble hélice. Ese hallazgo revolucionó entonces la ciencia, al permitir entender cómo funciona la molécula portadora del programa genético de los organismos vivos. Ahora, esto tiene implicaciones aún más profundas gracias a la tecnología de edición de genes CRISPR —las siglas en inglés de repeticiones palindrómicas cortas agrupadas y regularmente espaciadas—, que permite a los científicos cortar y alterar con precisión el ADN de cualquier célula.

Aunque CRISPR —también conocido como “tijera molecular”— aún no ha curado enfermedades ni ha acabado con el hambre en el mundo, ya se está utilizando de algunas maneras sorprendentes.

Convertir cerdos en donantes de órganos

Durante décadas, la mejor solución que han concebido los científicos para reducir la lista de las miles de personas que esperan recibir un trasplante de órganos en todo el mundo ha sido utilizar órganos de animales en humanos. Por ejemplo, el primer trasplante de corazón se realizó en 1964, cuando el órgano de un chimpancé fue implantado en un humano, que falleció dos horas después de la cirugía.

Además de que el cuerpo humano rechaza tejidos extraños, otro riesgo de esa alternativa es la posibilidad de que las infecciones de los animales puedan transmitirse a los receptores humanos. Pero la empresa eGenesis, que nació en el laboratorio del genetista George Church de la Universidad de Harvard, cree que el CRISPR puede resolver o eliminar estos obstáculos.

La empresa eGenesis ha utilizado la edición genética para eliminar una familia de virus que se encuentran en el ADN de los cerdos. Crédito: eGenesis

El equipo de Church ha utilizado la edición genética para eliminar una familia de virus que se encuentran en el ADN de los cerdos, para que estos —cuyos pulmones y el corazón son de tamaño similar a los de los humanos— puedan ser donantes a personas sin riesgo de contaminación.

La compañía también está experimentando con CRISPR para modificar los genes relacionados con el sistema inmunológico y evitar que el cuerpo humano rechace los órganos de donantes. Sin embargo, los científicos advierten que todavía quedan algunos años para que se pueda hacer un ensayo clínico de trasplantes humanos con órganos producidos en cerdos genéticamente modificados.

Alternativas a la insulina

Las personas con diabetes tipo 2 (resistente a la insulina) podrían tener una opción para sustituir las inyecciones con un injerto de piel. Se trataría de un injerto que contiene una versión modificada por CRISPR de una proteína que ayuda a la insulina a regular los niveles de glucosa en la sangre. Investigadores de la Universidad de Chicago están utilizando CRISPR para para alterar el gen GLP-1, responsable de la codificación de la hormona péptido 1, que provoca la liberación de insulina y luego ayuda a eliminar el exceso de glucosa de la sangre.

Usando CRISPR, los científicos han comprobado que el gen GLP-1 podría modificarse para que sus efectos de regulación tengan larga duración. Cerca del 80% de los injertos de piel que se aplicaron en ratones liberaron con éxito la hormona editada en la sangre, regulando los niveles de glucosa durante cuatro meses y revirtiendo la resistencia a la insulina y el aumento de peso en los pacientes.

Investigadores de la Universidad de Chicago están utilizando CRISPR para para alterar el gen GLP-1. Crédito: University of Chicago

Los tratamientos en humanos tardarán tiempo en desarrollarse, pero la buena noticia es que los científicos ya pueden hacer crecer el tejido de la piel muy fácilmente en el laboratorio utilizando células madre. La previsión es que esa técnica pueda tratar también enfermedades como la hemofilia (cuando el cuerpo no puede hacer los coágulos de sangre de manera adecuada).

Acabar con enfermedades endémicas

Las enfermedades transmitidas por mosquitos, especialmente la malaria, matan a más de 400.000 personas cada año en todo el mundo. Para reducir esa cifra, algunos científicos proponen utilizar una tecnología llamada unidad genética. Se trata de una herramienta de ingeniería genética diseñada para diseminar ciertos genes a través de una especie. Y aunque no es una idea nueva, estas unidades de genes están más cerca de ser realidad gracias al CRISPR.

En un artículo publicado en septiembre de 2018, los investigadores del Imperial College de Londres mostraron que una unidad genética realizada con CRISPR podría suprimir una población de Anopheles gambiae, el tipo de mosquito que transmite la malaria en el África subsahariana. Los investigadores utilizaron el “corta y pega” genético para atacar el gen Doublesex, responsable por el desarrollo femenino. Cuando los mosquitos hembra heredaron dos copias de este gen modificado, no pudieron picar ni poner huevos.

Una unidad genética realizada con CRISPR podría suprimir una población de Anopheles gambiae, el mosquito que transmite la malaria. Crédito: James D. Gathany

Los investigadores pusieron esos mosquitos en jaulas y encontraron que eran autodestructivos para su especie en su entorno cercano: después de ocho generaciones, ya no quedaban hembras normales para reproducirse y la población se extinguió.

Ese tipo de experimentos no han sido realizados fuera de los laboratorios todavía —existe la posibilidad de que las alteraciones genéticas diseñadas para impactar las poblaciones puedan mutar y transmitir rasgos ventajosos a las demás generaciones—, pero ese estudio comprobó que se transmitió la modificación genética casi el 100% de las veces, evitando la resistencia.

Líderes de la Unión Africana respaldaron la investigación como un esfuerzo por combatir la malaria en sus países, pero aún podrían pasar años antes de que la tecnología se pruebe en la naturaleza.

Cambiar el color de las flores

La herramienta de edición genética interrumpió con éxito el gen responsable del color de los tallos, las hojas y los pétalos. Fuente: Nature

Científicos japoneses están utilizando CRISPR para cambiar el color de la flor de una planta de jardín tradicional (Ipomoea nil). Los investigadores programaron CRISPR para atacar un gen específico, conocido como gen DFR-B y lo insertaron en embriones de plantas.

La herramienta de edición de genes interrumpió con éxito el gen DFR-B, que es responsable del color de los tallos, las hojas y los pétalos, cambiando así el color violeta característico de la flor al blanco.

Joana Oliveira

LAS VACUNAS DE ARN

LAS VACUNAS DE ARN 

UN GRAN AVANCE EN INMUNOLOGIA

Vacunas de ARN mensajero, son aquellas que en las que se emplea ácido ribonucleico para lograr el desarrollo de una respuesta inmune. Se diferencian de las vacunas tradicionales en que no se administran agentes vivos atenuados ni fragmentos del mismo, por lo que no existe el peligro de provocar la enfermedad que se pretende prevenir. Para fabricarlas es preciso encontrar las secuencias de ADN que codifican antígenos esenciales del agente infeccioso y después transcribirlo para obtener el ARN correspondiente, el cual se usará como vacuna. Aunque existen diferentes tipos de ARN, en las vacunas se utiliza ARN mensajero. Una vez administrada, parte del ARN puede degradarse por acción de las ARNasas, pero la porción que entra en las células genera péptidos similares a los del agente patógeno, lo que provoca una respuesta inmune que protege de la infección. 1​ 2​ 3​ 4​ 5

Este proceder es revolucionario y puede ser aplicado y varias enfermedades autoinmunes.

Posiblemente no fue puesto en marcha, hasta que se conoció mejor, la producción desde el ARN, de anticuerpos específicos, sin peligrosidad de enfermedad, ni perdida de inmunidad

Liposoma cargado de ARN mensajero.

Microesferas de lípidos (liposomas) cargadas de ARNm penetran en la célula por un proceso de endocitosis.

Esquema general del proceso de traducción genética mediante el cual se sintetiza una proteína a partir del ARN mensajero (mRNA).

Las vacunas tradicionales contienen el agente infeccioso inactivado o fragmentos del mismo que al introducirse en el cuerpo provocan una respuesta inmune por parte del organismo, el cual de esta forma responde con gran rapidez y eficacia cuando sufre una infección verdadera por el microorganismo específico para el que está diseñada la vacuna. Sin embargo las vacunas de ARN consisten en una secuencia de ácido nucleico que introduce en la célula el código para que la maquinaria celular fabrique la proteína extraña del agente infeccioso, la cual posteriormente es presentada en la membrana celular y reconocida por el sistema inmune, que genera inmunidad contra el mismo; por lo tanto puede decirse que no introduce el antígeno, sino las instrucciones para fabricarlo. 6

El ARN mensajero o ARNm es el ácido ribonucleico que transfiere el código genético desde el ADN a los ribosomas en el citoplasma de una célula. Actúa por tanto como plantilla o patrón para la síntesis de una proteína. Se trata de un ácido nucleico de cadena única (monocatenario), a diferencia del ADN, que tiene dos cadenas enlazadas (bicatenario). Las vacunas de ARN mensajero están formadas por cadenas de esta molécula que codifican un antígeno específico de un patógeno. Cuando el ARNm entra en la célula, el ribosoma sintetiza la proteína codificada que corresponde a un antígeno del patógeno, el cual posteriormente se presenta en la superficie de la célula, donde es reconocido por las células del sistema inmune, generando inmunidad.

Para evitar la rápida degradación de la molécula antes de entrar a la célula, se utilizan varias estrategias, una de ellas emplea microesferas de lípidos (liposomas) en cuyo interior se encuentra el ARN, que de esta forma entra en la célula con facilidad por un proceso de endocitosis. La idea de encapsular ARNm en nanopartículas lipídicas ha resultado atractiva por varias razones. El recubrimiento de lípidos proporciona una capa de protección que evita la rápida degradación, lo que hace posible un proceso de traducción genética para formación de proteínas más eficiente. Además, la capa externa de lípidos puede modificarse, lo que permite que se una a las células deseadas a través de interacciones de ligandos. Las nanopartículas pueden administrarse al organismo a través de diferentes rutas, por ejemplo por vía intravenosa o por inyección intramuscular.

Determinadas vacunas utilizan ARN autoampliflicable (replicón)Nota 1​, es decir, el ARN introducido se multiplica por sí mismo en el interior de la célula, lo que hace que se genere una cantidad muy superior del antígeno contra el que se pretende crear inmunidad. Esta técnica no pueden producir agentes infecciosos activos porque se ha eliminado el gen de la proteína estructural del virus y este no puede formarse completo ni propagarse a las células adyacentes.789

Una de las particularidades de las vacunas de ARN es que desencadenan la respuesta inmune mediante varios mecanismos. Estimulan la formación de anticuerpos y reclutan linfocitos T citotóxicos mediante la unión de la proteína virica producida en los ribosomas al complejo mayor de histocompatibilidad tipo I (MHC). Este doble mecanismo no tiene lugar con otros tipos de vacunas.

Mecanismo de acción de las vacunas de ARN e interacción con el complejo mayor de histocompatibilidad (MHC)

Las vacunas de ARN son menos estables que otros tipos de vacunas y pueden ser degradadas fácilmente por el calor. Por ello deben conservarse congeladas o a temperaturas muy bajas, lo que representa un inconveniente para el proceso de distribución. 2

Las ventajes potenciales de las vacunas de ARN son:

  • Seguridad. No se inoculan microorganismos vivos ni atenuados, por lo que no existe la posibilidad de provocar una infección.3
  • El ARN no se integra en el genoma del hospedador, que está formado por ADN, por lo que no existe la posibilidad de alterar el genoma. 3
  • El ARN se degrada con relativa rapidez, lo que podría evitar la aparición de efectos secundarios a largo plazo. 3
  • El proceso de producción puede ser rápido y más estandarizado que en las vacunas tradicionales, lo que facilitaría una rápida respuesta ante la aparición de nuevos agentes infecciosos.3

Se han realizado ensayos clínicos con vacunas ARN desarrolladas para evitar la aparición de diferentes enfermedades infecciosas causadas por virus, entre otras las provocadas por el virus de la gripevirus de la rabiacitomegalovirusVIHvirus Zika y SARS-CoV-2.10

COVID-19]

Virus Zika

Virus de la gripe 22

Virus de la rabia] .23

Citomegalovirus.24

Cáncer Las vacunas de ARN contra el cáncer no son preventivas, están diseñadas para el tratamiento de personas que ya están diagnósticadas de esta enfermedad e intentan potenciar el sistema inmunológico para que destruya las células malignas del tumor. 25​ 26

Los primeros estudios sobre la eficacia de vacunas de ARNm fueron realizados por Woff en 1990. Posteriormente se desarrollaron dos formas: vacunas de ARNm convencional y vacunas de ARNm autorreplicativo. Los trabajos iniciales no alcanzaron resultados prácticos por la fragilidad de la molécula de ARN y su inactivación por endonucleasas, sin embargo con el tiempo se han desarrollado métodos que aumentan la estabilidad del ARNm y permiten su producción sintética en el laboratorio a partir de plásmidos de ADN, mediante una transcripción enzimática y ARN polimerasa, sin que sean precisos cultivos celulares.27

  • .

Referencias]

  1.  Vacunas de ARN: la más prometedora generación de vacunas. Autor: María Coronada García Hidalgo. MoleQla, revista de Ciencias de la Universidad Pablo de Olavide. Número 26, 2017. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b Vacunas de ADN o ARN contra el nuevo coronavirus. Schmidt C. Investigación y Ciencia, junio 2020. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b c d e f RNA vaccines: an introduction, phg foundation, 2018. Autor: Laura Blackburn. Consultado el 20 de noviembre de 2020.
    1.  Verbeke, Rein; Lentacker, Ine; De Smedt, Stefaan C.; Dewitte, Heleen (octubre de 2019). «Three decades of messenger RNA vaccine development». Nano Today 28: 100766. doi:10.1016/j.nantod.2019.100766.
    1. ↑ Saltar a:a b mRNA vaccines — a new era in vaccinology. Autores: Pardi, N., Hogan, M., Porter, F. et al. Nat Rev Drug Discov 17, 261–279 (2018).
    1.  Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol., publicado el 27 de marzo de 2019.
    1.  Luis Enjuanes: «Nuestra vacuna será más potente«. Libertad Digital, publicado el 21 de noviembre de 2020
    1.  Amplifying RNA Vaccine Development. N Engl J Med 2020; 382:2469-2471
    1.  Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Molecular Therapy. Volumen 26, ISSUE 2, P446-455, 7 de febrero de 2018.
    1.  Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances 07 agosto 2020: Vol. 6, no. 32. Consultado el 20 de noviembre de 2020.
    1.  Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017 Sep 23; 390(10101): 1511-1520.
    1.  An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. 2017 Mar 21;7(1):252. VV.AA. Consultado el 22 de noviembre de 2020.
    1.  «Safety, Tolerability, and Immunogenicity of mRNA-1325 in Healthy Adult Subjects – Full Text View – ClinicalTrials.gov» (en inglés).
    1. ↑ Saltar a:a b Fernandez, E; Diamond, MS (19 April 2017). «Vaccination strategies against Zika virus»Current Opinion in Virology 23: 59-67. PMC 5576498PMID 28432975doi:10.1016/j.coviro.2017.03.006.
    1.  Pfizer and BioNTech Achieve First Authorization in the World for a Vaccine to Combat COVID-19. Drugs.com, consultado el 3 de diciembre de 2020
    1.  Canadá aprueba la vacuna de Pfizer contra la Covid-19. Diario de Mallorca, publicado el 9 de diciembre de 2020.
    1.  La EMA autoriza la vacuna de Pfizer. La Vanguardia, publicado el 21 de diciembre de 2020.
    1.  «FDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine»U.S. Food and Drug Administration (FDA). Consultado el 18 December 2020.
    1.  Agencia SINC (7 de enero de 2021). «La Comisión Europea autoriza el uso de la vacuna de Moderna». Agencia SINC. Consultado el 7 de enero de 2021.
    1.  «Vaccine Development, Testing, and Regulation — History of Vaccines»www.historyofvaccines.org. Consultado el 28 de enero de 2016.
    1.  «Zika virus: US scientists say vaccine ’10 years away’ – BBC News»BBC News (en inglés británico). Consultado el 28 de enero de 201628 de enero de 2016.
    1.  Una vacuna contra la gripe elaborada a partir del ARN. CORDIS. Resultados de investigación en la UE. Consultado el 9 de diciembre de 2020
    1.  Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Autores: Nicole Armbruster, Edith Jasny, Benjamin Petsch. Vaccines (Basel). Diciembre 2019 ; 7(4): 132. Publicado el 27 de septiembre de 2019. PMID: 31569785
    1.  Laboratorio Moderna. Consultado el 13 de diciembre de 2020.
    1.  Cancer Treatment Vaccines. National Cancer Institute, consultado el 5 de diciembre de 2020.
    1.  Vaccine Strategy in Melanoma. Surg Oncol Clin N Am. Julio 2019; 28(3): 337–351.
    1.  Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. (1990) 247:1465–8.
    1.  Replicones: moléculas de ARN con capacidad para replicarse pero no para propagarse de una célula a otra.

EL LOBULO FRONTAL

ANATOMIA Y FISIOLOGIA DEL LOBULO FRONTAL

El lóbulo frontal es uno de los cuatro lóbulos de la corteza cerebral y constituye una región grande que está situada en la parte delantera del cerebro, justo detrás de la frente. Es el responsable de procesos cognitivos complejos, las llamadas funciones ejecutivas.

El lóbulo frontal se relaciona con el control de los impulsos, el juicio, la producción del lenguaje, la memoria funcional (de trabajo, de corto plazo), funciones motoras, comportamiento sexual, socialización y espontaneidad.

Su nombre, lóbulo frontal proviene del latín: lobus frontalis) es un área de la corteza cerebral de los vertebrados. Los lóbulos frontales son los más “modernos” filogenéticamente. Esto quiere decir que solamente los poseen de forma desarrollada los animales más complejos, Como los vertebrados y en especial los homínidos. En el lóbulo frontal se localizan funciones vitales para la supervivencia .

Las funciones del lóbulo frontal son múltiples y van desde lo puramente somático hasta espiritual solapando esta funciones entre sí

 Esta estandarizado en tres áreas funcionales que tienen una representación anatómica. Teniendo en cuenta que el cerebro la relación forma conjunción es más idea de que real, pero que la necesitamos para entendernos.

Área motora o corteza motora: Proyecta el movimiento que tienen que realizar las extremidades y los movimientos faciales..

Área premotora o corteza premotora: Esta área proporciona el mecanismo para ejecutar los movimiento y selecciona  los movimientos que van a ser ejecutados.

Area prefrontal o corteza prefrontal: Es la que controla los procesos cognitivos para que los movimientos, comportamientos y conductas que se vayan a realizar sean los apropiados al momento y lugar concreto.

Las alteraciones cognitivo-conductuales qué se producen por lesiones en esta área, se pueden estandarizar en:

Dificultad o incapacidad para formar estrategias y/o tomar decisiones correctas en la resolución de problemas.

Dificultad para anticipar, planificar, secuenciar y crear expectativas.

Disminución del pensamiento divergente, el cual está relacionado con la creatividad.

Disminución del habla. Pero no de pérdidas en la capacidad de comunicación, sino de aspectos relacionados con disminución del discurso y la espontaneidad oral, no variación en el tono de voz…

Disminución de la espontaneidad conductual general, como por ejemplo alegrarse tras una buena noticia, llorar por una mala…

Disminución de la flexibilidad conductual, lo cual altera la capacidad de buscar alternativas, cambios o estrategias en las situaciones del día a día. Y además genera rigidez mental produciendo perseverancia en pensamientos o ideas.

Dificultad para inhibir estímulos visuales externos, generando distracción y disminuyendo la capacidad de focalizar y controlar la mirada voluntaria.

Perdida de la memoria de trabajo, lo que dificulta mantener información en el tiempo y por lo tanto generar aprendizajes nuevos.

Disminución o pérdida de la conducta social, que es la que controla que tipo de comportamiento se debe realizar en cada contexto, y por lo tanto aparecerán conductas de desinhibición social como verborrea, irritabilidad, impulsividad, agresividad…

Modificación de la conducta sexual. Pueden aparecer conductas de desinhibición sexual o de indiferencia o disminución del interés sexual.

Disminución o pérdida de la capacidad de asociar acontecimientos personales a situaciones vividas.

A nivel cognitivo-conductual el lóbulo frontal esta encargado de controlar la mayoría de las capacidades relacionadas con la personalidad y las conductas de las persona

Relación de los lóbulos frontales, las funciones ejecutivas y las conductas

Los lóbulos prefrontales son el sustrato anatómico para las funciones ejecutivas, que son aquellas que nos permiten dirigir nuestra conducta hacia un fin y comprenden la atención, planificación, secuenciación y reorientación sobre nuestros actos.

Los lóbulos frontales tienen importantes conexiones con el resto del cerebro. Es el del director de orquesta; que dirige la información de todas las demás estructuras y las coordina para actuar sincrónicamente. Decía Goldberg, en El cerebro ejecutivo.

Los lóbulos frontales también están muy implicados en los componentes motivacionales (motivación) y conductuales (conducta) del sujeto;.​ por lo que si se produce un daño en esta estructura puede suceder que el sujeto mantenga una apariencia de normalidad al no existir déficits motrices, de habla, de memoria o incluso de razonamiento; existiendo sin embargo un importante déficit en las capacidades sociales y conductuales.

Este tipo de pacientes pueden ser por un lado apáticos, inhibidos… o por el contrario desinhibidos, impulsivos, poco considerados, socialmente incompetentes, egocéntricos, etcétera. Este tipo de déficits, al no ser tan evidentes como otros fueron los que llevaron durante mucho tiempo a los médicos a considerar a estos lóbulos como las estructuras «silentes»; es decir, sin función aparente. Solo recientemente se ha reconocido la importancia central del lóbulo frontal en nuestra actividad cognitiva.

El caso de Phineas Gage y Egas Moniz se consideran un prototipos de individuos que tras lesionarse ambos lóbulos frontales, cambiaron marcadamente su conducta.………………………………..

El primer caso en el que se describió un cambio de conducta debido a un daño frontal data de 1848, y fue el posteriormente famoso Phineas Gage, descrito por el doctor Harlow. Actualmente está considerado una de los casos clínicos clásicos dentro de la historia de la neurología y la neuropsicología cognitiva.

El reportaje clínico de Boston destaca la sorpresa del cuerpo médico por la supervivencia de Gage, que debería haber muerto instantáneamente; dice: «inmediatamente después del estallido Gage cayó de espaldas»; algo más tarde tuvo «movimientos convulsivos en las extremidades, pudiendo hablar a los pocos minutos»; los obreros (que le tenían mucho afecto) lo llevaron en brazos hasta la ruta, distante una veintena de metros, y lo subieron a una carreta que lo transportó un kilómetro, hasta el hotel de Joseph Adams; Gage estuvo sentado, muy erguido, todo el trayecto y después «se bajó de la carreta por sí mismo, ayudado por algunos de sus hombres».

John Harlow, uno de los médicos del pueblo. Mientras espera, supongo que dice, «pero señor Gage, ¿qué está pasando?» y una hora más tarde de la explosión, llega el doctor Edward Williams, colega más joven de Harlow. Años después describirá la escena como sigue: «Cuando llegué, Gage estaba sentado en una silla, en la galería del hotel de Adams, en Cavendish; me dijo ‘Doctor, aquí hay trabajo para usted’. Había visto la herida antes de bajar del coche, ya que las pulsaciones del cerebro eran patentes, pero sólo pude detallar su aspecto después del examen. La parte superior de la cabeza parecía un embudo invertido; en los bordes de la lesión, había pedazos de hueso; la apertura a través del cráneo e integumentos tenía unos tres centímetros de diámetro, y la herida parecía producida por un objeto en forma de cuña, que hubiera perforado de abajo hacia arriba. Mientras le examinaba la cabeza, Gage contaba a los mirones cómo había sucedido el accidente; se expresaba con tanto juicio que le hice directamente las preguntas del caso, en lugar de plantearlas a los testigos que lo acompañaban. Me relató, como haría muchas veces en años posteriores, algunos detalles del percance. Estoy en condiciones de afirmar que, en ningún momento, entonces o después, advertí en él algún síntoma de irracionalidad, excepto en una ocasión, a dos semanas del accidente, en que insistía en decirme John Kirwin, a pesar de lo cual me contestaba correctamente todas las preguntas». 3

La supervivencia es más increíble todavía si se considera la forma y peso de la barra. Henry Bigelow, profesor de cirugía de Harvard, la describe así: «El fierro que atravesó el cráneo pesa seis kilogramos. Mide un metro con diez centímetros, y tres centímetros de diámetro. El extremo que penetró primero es aguzado, y la punta tiene un largo de veinte centímetros y un diámetro de cinco milímetros, lo que posiblemente salvó la vida del paciente

Todo el episodio es sorprendente: sobrevivir a una explosión como ésa, y poder, a pesar de una enorme herida en el cráneo, hablar, caminar y ser coherente de inmediato, resulta caso increíble. Más asombroso aún es que Gage haya resistido la inevitable infección que se presentó en la herida,. Aunque en esos tiempos no hay antibióticos, el médico, con los productos químicos a su alcance, limpiará vigorosa y regularmente la llaga, y mantendrá al paciente en una posición inclinada para drenarla mejor. Gage tendrá un absceso —que Harlow quitará prestamente con su escalpelo— y fiebre alta, pero su contextura robusta y juvenil superará todos los inconvenientes.

El paciente será dado de alta en menos de dos meses. Sin embargo, ese increíble desenlace pierde relieve si se lo compara con el vuelco extraordinario que se producirá en la personalidad de Gage. Sus sueños, ambiciones, apetencias y desapetencias, están por cambiar. El cuerpo de Gage está vivo y bien, pero un nuevo espíritu lo anima.

Este caso ha sido extensamente investigado por el matrimonio Hanna y António Damásio, De forma que aunque los médicos que lo trataron en vida dieron abundantes anotaciones de su cambio de conducta, no es suficiente para localizar la lesión cerebral ya que al traumatismo que sufrió por la penetración de la de hierro en su cráneo, se siguió unos dias mas tarde de la supuración de la herida y es mas que probable que esta infección dañara además tejidos neurales adyacentes a la lesión y ésta fuera mas extensas que el propio lóbulo frontal. .

Lo más sorprendente de esta desagradable historia es la discrepancia de personalidad de Gage antes y después del accidente. Su normalidad se vio interrumpida por rasgos funestos que no desaparecieron jamás. Había sabido todo lo necesario para optar adecuadamente y ascender en la vida; tenía un marcado sentido de responsabilidad personal y social que se reflejaba en la forma como había logrado avanzar en su carrera profesional; era puntilloso en el trabajo y despertaba admiración en colegas y empleadores. Perfectamente adaptado a la sociedad, al parecer actuaba de manera escrupulosa y ética. Después del accidente se convirtió en un individuo irrespetuoso y amoral, cuyas decisiones no cuidaban sus intereses más elementales; se dio a inventar cuentos que «sólo nacían de su fantasía», según dice Harlow. El futuro no le interesaba y era absolutamente incapaz de preverlo

Si es válido en mi opinión la  leucotomía prefrontal que practicó Almeida Lima en 1935, tras la insistencia de el neurólogo portugués Egas Moniz Y. La leucotomía prefrontal consistía en una ablación de los lóbulos prefrontales del cerebro y su objetivo era tratar trastornos mentales como la depresión. Egas Moniz afirmó tener buenos resultados popularizándose en todo el mundo y recibiendo éste el premio Nobel por ello en 1949. Sin embargo, la realidad era distinta y muchos de sus pacientes tuvieron fuertes cambios de personalidad que les incapacitaron para la vida en sociedad. Pese al atrevimiento de estos autores, es necesario recordar, la ausencia a lo del remedios para tratar a los enfermos psiquiatricos. No siempre la ciencias han sido virtuosas, ni la evolución tampoco lo ha sido, pero es lo que tenemos. Afortunadamente en nuestros días la investigación animal evita estos desastres. Y

Áreas del Lóbulo Frontal

Área precentral

Ubicada en la circunvolución precentral, por delante del Surco Central de Rolando y por detrás del Surco Precentral.

Se divide en:

Región posterior (área motora primaria o área 4 de Brodmann): Su función es llevar a cabo los movimientos individuales de diferentes partes del cuerpo. Recibe aferencias del tálamo, corteza sensitiva, área premotora, cerebelo y ganglios basales ya que esta área constituye la estación final para la conversión del diseño en la ejecución del movimiento.2

Región anterior (área motora secundaria, área premotora, o área 6 de Brodmann y partes de las áreas 8, 44 y 45): Almacena programas de actividad motora reunidos como resultado de la experiencia pasada. Participa en el control de movimientos posturales groseros mediante sus conexiones con los ganglios basales, además recibe aferencias de la corteza sensitiva y tálamo. Es la que programa la actividad del área motora primaria.

Esta área no produce perdida permanente del movimiento.3

Campo ocular frontal

Se encarga de los movimientos conjugados de los ojos, sobre todo los del lado opuesto. Controla los movimientos oculares voluntarios y es independiente de estímulos visuales.

Área motora del lenguaje o Área de Broca

Ubicada en la circunvolución frontal inferior, es importante en la formación de palabras, debido a sus conexiones con el área motora primaria. En la mayoría de las personas esta área es dominante en el hemisferio izquierdo, y la ablación del hemisferio no dominante no tiene efectos sobre el lenguaje, mientras que el daño del hemisferio dominante produce pérdida de la capacidad para producir la palabra, es decir una afasia de expresión, conocida como Afasia de Broca.

Corteza prefrontal

Se ubica por delante del área penetrante, región extensa que se conecta con un gran número de vías aferentes y eferentes. Se vincula con la personalidad del individuo y con la regulación de la profundidad de los sentimientos, así como en la determinación de la iniciativa y el juicio del individuo. También interviene en el proceso de atención.

Las lesiones de la corteza prefrontal se pueden presentar como un síndrome apático o pseudodepresivo, que se traduce en una reducción de la espontaneidad motora y verbal, pérdida de iniciativa, actividad motora y mental más lenta, indiferencia afectiva, escasa emotividad y menor interés sexual. (se relaciona con lesión de la región frontomedial).

Mientras otros presentan un síndrome desinhibido o pseudopsicopático, que se caracteriza por dificultad para reducir la velocidad de ciertas conductas, pérdida de autocrítica, conducta social inapropiada, indiferencia por los demás, y desinhibición o promiscuidad sexual (se relaciona con una lesión de la región frontobasal).

La corteza frontopolar es la parte de la corteza cerebral prefrontal, que ha evolucionado más recientemente y está relacionada con la planificación y el control de otras regiones cerebrales. Este corte realizado en la parte frontal del cerebro también revela otros elementos del cráneo, como los ojos, la cavidad nasal, los senos maxilares y la lengua.

Referencias

 Snell, Richard S. (5ta edición). Neuroanatomía Clínica..

 https://web.archive.org/web/20071012232050/http://www.oaid.uab.es/nnc/html/entidades/web/03cap/c03_02.html.


 

TRATAMIENTO QUIRÚRGICO EN EL PARKINSON


TRATAMIENTO QUIRÚRGICO 1

El tratamiento quirúrgico de la Enfermedad de Parkinson se inició en los años 50 y se abandonó prácticamente con la introducción de la levodopa. Más tarde, en los años 80 se reinició debido a las complicaciones del tratamiento con levodopa a largo plazo. La cirugía de Parkinson se realiza mediante una lesión (talamotomía o palidotomía), o bien con técnicas de estimulación profunda (del tálamo, del subtálamo o del pálido). Actualmente, las más utilizadas son las técnicas de estimulación. No obstante, no todos los pacientes son buenos candidatos a cirugía de Parkinson. El tratamiento quirúrgico está indicado cuando los síntomas motores (temblor, discinesias, alteraciones de la marcha, rigidez, bradicinesia) no pueden ser mejorados suficientemente con el tratamiento farmacológico.

TALAMOTOMÍA:
Es la destrucción quirúrgica de las células de una parte del cerebro llamada Tálamo. Es una lesión irreversible con efectos secundarios permanentes que, en ocasiones, puede tener efectos adversos que alteren otras funciones como la capacidad de hablar o la de moverse. Se realiza únicamente en un lado del cerebro. Entre 1946 y 1967 se realizaron más de 210.000 talamotomías.

PALIDOTOMÍA:
Es la destrucción quirúrgica de células específicas de la parte del cerebro llamada Globo Pálido. Es también, una lesión irreversible utilizada en casos de Enfermedad de Parkinson grave, que no responde al tratamiento farmacológico. En ocasiones, requiere una segunda intervención para conseguir los resultados que persigue. Esta intervención se puede realizar de manera bilateral, es decir, en ambas partes del cerebro.
Entre 1985 y 1995 resurge la cirugía lesional funcional estereotática (palidotomía y talamotomía), aplicada a pacientes con Enfermedad de Parkinson grave.   

ESTIMULACIÓN CEREBRAL (DSB Therapy):
La terapia de estimulación cerebral profunda (DBS Therapy) es un tratamiento quirúrgico que puede reducir algunos de los síntomas asociados a la enfermedad de Parkinson (EP)1. Esta terapia ajustable y, si es necesario, reversible, usa un dispositivo implantado que estimula eléctricamente el cerebro bloqueando las señales que causan los síntomas motores incapacitantes.en el parkinson

¿Cómo funciona?

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para administrar estimulación eléctrica en áreas muy definidas del cerebro.

La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. La estimulación eléctrica puede ajustarse de forma no invasiva para aumentar al máximo los beneficios de la terapia. Como resultado, muchas personas logran tener un mayor control sobre los movimientos de su cuerpo. Un sistema DBS consta de tres componentes implantados:

–       Electrodo: un electrodo se compone de cuatro cables delgados aislados dispuestos en espiral con cuatro polos en la punta del electrodo. El electrodo se implanta en el cerebro.

–       Extensión: una extensión se conecta al electrodo y se conduce bajo la piel desde la cabeza al tórax superior pasando por el cuello.

–       Neuroestimulador: el neuroestimulador se conecta a la extensión. Este pequeño dispositivo estanco, similar a un marcapasos cardíaco, contiene una batería y componentes electrónicos. El neuroestimulador se implanta normalmente bajo la piel en el tórax, debajo de la clavícula (si el paciente lo requiere, el cirujano puede implantar el neuroestimulador en el abdomen). El denominado, a veces, “marcapasos del cerebro” genera los impulsos eléctricos necesarios para la estimulación. Estos impulsos eléctricos se envían a través de la extensión y el electrodo hasta las áreas deseadas del cerebro. Los impulsos se pueden ajustar de forma inalámbrica para comprobar o cambiar los parámetros del neuroestimulador.

Beneficios y riesgos: DBS Therapy

Aunque actualmente no hay ninguna cura para la enfermedad de Parkinson, la terapia de estimulación cerebral profunda (DBS Therapy) de Medtronic para la enfermedad de Parkinson (EP) puede tratar algunos de los síntomas de la enfermedad de Parkinson.1 DBS Therapy no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

Beneficios Se ha demostrado que la DBS reduce algunos de los síntomas asociados a la enfermedad de Parkinson.1 Medtronic DBS Therapy está aprobada actualmente para tratar la enfermedad de Parkinson, el temblor esencial y la distonía.* Desde 1993, más de 60.000 pacientes en todo el mundo se han beneficiado de Medtronic DBS Therapy.2 La terapia de estimulación cerebral profunda es:

– Eficaz: el sistema DBS de Medtronic administra la estimulación en áreas específicas del cerebro. En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.2

– Ajustable: los parámetros de la estimulación los puede establecer su médico para satisfacer sus necesidades específicas.

– Reversible: a diferencia de otros tratamientos quirúrgicos, DBS Therapy no implica la eliminación de ninguna parte del cerebro. El sistema DBS de Medtronic se puede desactivar o extraer.

– Riesgos Los riesgos de DBS Therapy pueden incluir riesgos de la cirugía, efectos secundarios o complicaciones del dispositivo. El implante del sistema de neuroestimulación conlleva los mismos riesgos que van asociados a cualquier otra cirugía cerebral. El médico puede proporcionar más información sobre estos y otros posibles riesgos y efectos secundarios. Muchos efectos secundarios relacionados con la estimulación se pueden solucionar ajustando los valores de estimulación. Puede que sean necesarias varias visitas de seguimiento para encontrar los valores de estimulación óptimos.

Acceder a DBS Therapy Factores que el médico puede valorar: DBS Therapy La terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson no es adecuada para todos los pacientes. Sólo un médico con experiencia en DBS puede determinar si usted cumple los requisitos para la terapia. Generalmente, la terapia no se recomienda para las personas con un diagnóstico reciente de enfermedad de Parkinson ni para aquellos pacientes que responden a la medicación. Puede ser candidato a DBS Therapy si:

– Experimenta períodos molestos en los que no responde al tratamiento (períodos en los que la medicación no ayuda lo suficiente y aparecen los síntomas)

– Experimenta discinesias (movimientos excesivos involuntarios) – No responde a las dosis de fármacos dopaminérgicos en un día típico

Preguntas frecuentes: DBS Therapy ¿Qué es la terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson? DBS Therapy ofrece un método ajustable y, si es necesario, reversible para el tratamiento de los síntomas de la enfermedad de Parkinson (EP).

¿Cómo funciona la terapia?en el parkinson

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para producir la estimulación eléctrica de las partes del cerebro que controlan el movimiento. La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. Como resultado, algunas personas logran tener un mayor control sobre los movimientos de su cuerpo.

¿Cuáles son los componentes implantados de un sistema DBS?

El sistema DBS consta de tres componentes implantados: – Dos electrodos implantados en el cerebro – Dos extensiones que se conducen bajo la piel desde la cabeza, por el cuello y hasta el tórax superior – Uno o dos neuroestimuladores implantados bajo la piel del pecho debajo de la clavícula y conectados a las extensiones

¿Es posible ajustar la configuración del dispositivo?

Un médico puede ajustar de forma no invasiva la configuración del dispositivo y los niveles de estimulación utilizando un dispositivo de programación.

¿Qué beneficios ofrece DBS Therapy?

Aunque no hay ninguna cura para el enfermedad de Parkinson, DBS puede reducir algunos de los síntomas asociados.1

¿Cuáles son los riesgos potenciales de DBS Therapy?

Los riesgos de DBS Therapy pueden incluir riesgos de cirugía, efectos secundarios o complicaciones del dispositivo. Consulte Beneficios y Riesgos para ver más detalles.

¿Cuál es la historia de DBS Therapy?

Los neurólogos y neurocirujanos utilizan la estimulación eléctrica desde los años sesenta como método de localización y distinción de lugares específicos del cerebro. La tecnología de estimulación cerebral se desarrolló en los años ochenta.

¿Cura DBS Therapy la enfermedad de Parkinson?

No hay ninguna cura para la enfermedad de Parkinson en este momento. DBS Therapy puede reducir algunos de los síntomas de la enfermedad de Parkinson1, pero no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

¿Cómo es de eficaz DBS para tratar la enfermedad de Parkinson?

En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.

IMPLANTE DE CÉLULAS:
Las técnicas de implante de células productoras de dopamina, como las células de cuerpo carotídeo o las células del mesencéfalo fetal, o de factores de crecimiento neuronal se deben considerar todavía en fase de experimentación. Hospitales públicos donde se aplica Cirugía de Parkinson:

En el servicio de neurocirugía de Sevilla sí acumuló una gran experiencia en las tablas moto mías del VIM, para el tratamiento de los movimientos anormales en la enfermedad de Parkinson sobre todo el temblor .

esta experiencia se vio truncada cuando apareció la levodopa .

la intervención estaba indicada preferentemente en temblor uni o bilateral y el objetivo era exclusivamente hacerlo desaparecer .

Se  utilizaba el sistema Estereotáctico de Lekssel que se colocaba con anestesia local en un enfermo despierto para el seguimientos del temblor.

Una vez colocado el marco del Lekssel, se hacía un trepano de 15 mm de diámetro en la región frontal derecha y se utilizaba una aguja de Dandy para practicar una ventrículografia con contraste y se dibujaban así las comisuras anterior y posterior del tercer  ventrículo.

El “Target” para la lesión, localizaba , en la unión del tercio posterior de la línea intercomisural, con los dos tercios anteriores,para el plano sagital. Y la distancia desde la paret externa  tercer ventrículo era siempre de 14 mm.

La lesión se hacia con el criocoagulador de Cooper y se enfriaba con nitrógeno liquido, de manera progresiva hasta 80* bajo cero , donde se formaba una bola de hielo que destruía este núcleo VIN, y de igual forma cuando se había practicado la lesión se calentaba de forma progresiva, hasta que desaparecía la bola de hielo, y no lesionara el de una manera progresiva cerebral al retirarla.

La sonda se introducia en el cerebro hasta el target de forma lenta, solo cuando quedan 5 mm fuera, se hacia una entrada brusca. Entonces, si se había localizado correctamente el núcleo, el enfermo que estaba con el brazo mantenido en alto, dejaba de temblar inmediatamente,

“Estábamos en el sitio”.

Al mismo tiempo, durante toda la intervención se le hacia  hablar, para ver si estábamos invadiendo la capsula interna.

Después de cinco minutos, si el temblor habia desaparecido, no tenia paresia ni alteración del lenguaje. Se retiraba la sonda lentamente.

Los resultados era magníficos, y el porcentaje de éxito muy elevado y la persistencia de los resultados muy prolongados.

La llegada de la DOPA, disminuyo el numero de intervenciones, que fueron hechas en 103 enfermos.

Pese a lo sencillo de la técnica, manejarla con seguridad, costaba y era yo en el servicio de Neurocirugía, el encargado de hacer esta técnica

Nunca lesionamos el n, Pálido ni el n subtalámico, la ventriculografía no permitía localizar esta ultimo núcleo y el estar muy vascularizado, había dado  varios accidentes hemorrágicos según la literatura.

Referencias

Enrique Rubio Garcia

Talamotomia con frio

LA ATENCION Y LOS GANGLIOS BASALES

LA ATENCION Y  LOS GANGLIOS BASALES

Atención

Es la aplicación voluntaria de la actividad mental o de los sentidos a un determinado estímulo u objeto mental o sensible.

También se  utiliza como acto que muestra que se está atento al bienestar o seguridad de una persona o muestra respeto, cortesía o afecto hacia alguien.

La atención como parte de estar consciente, necesita de una complicada actividad y de una compleja red neuronal, pero dispuesta preferentemente en los Ganglios basales Actualmente se acepta que la atención no es una función unitaria y que puede clasificarse en 2 grandes grupos: atención involuntaria y atención voluntaria. La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

Se acepta que la atención no es un proceso único, sino que puede ser caracterizado como diversas funciones:

a) Estado de alerta, que corresponde a la atención involuntaria y sirve para aumentar la disposición para recibir información del entorno;

b) Atención selectiva, que corresponde a un tipo de atención voluntaria y sirve para seleccionar un estímulo específico ignorando los demás;

c) Atención sostenida, otro tipo de atención voluntaria, que corresponde a la capacidad de mantener una misma conducta a través del tiempo y la fatiga;

 d) Atención alternante, un tipo de atención voluntaria, que se manifiesta como la capacidad de cambiar el foco de atención de un objeto a otro;

e) Atención dividida, otro tipo de atención voluntaria, que corresponde a la capacidad de focalizarse en dos o más estímulos al mismo tiempo (Maureira y Flores, 2016). El ejercicio físico puede mejorar los niveles de muchas funciones cognitivas, constituyéndose como una herramienta importante para potenciar la actividad cerebral

  Este articulo muestra preferencia por la intervención de los ganglios basales.

Los ganglios basales son grandes estructuras neuronales subcorticales que forman un circuito de núcleos interconectados entre sí cuya función es la iniciación e integración del movimiento. Reciben información de la corteza cerebral y del tronco del encéfalo, la procesan y proyectan de nuevo a la corteza, al tronco y a la médula espinal para contribuir así a la coordinación del movimiento. Este circuito está compuesto por varias estructuras que se pueden categorizar según su anatomía o su función.

   Anatómicamente los ganglios basales son masas de sustancia gris en el telencéfalo que incluyen:

1) núcleo caudado, 2)

2 ) nucleo lenticular (formado por el  n putamen y el globo pálido externo e interno,

3) y la amígdala.

 Funcionalmente se relacionan a través de múltiples conexiones con núcleos próximos que incluyen al núcleo subtalámico (en el diencéfalo), la sustancia negra pars compacta y reticulata (en el mesencéfalo) y el n pedúnculopontino (en el puente).

El estriado es la estructura funcional «receptora» de aferencias extrínsecas a los ganglios basales, a través de diferentes neurotransmisores, en su mayoría excitatorios. Recibe proyecciones: 1) de la corteza cerebral (glutamatérgicas), 2) del tálamo (glutamatérgicas), y 3) de estructuras del tronco del encéfalo: SNpc (dopaminérgicas), del Núcleo pedúnculo pontino (NPP) del puente (glutamatérgicas y colinérgicas), del n dorsal del rafe (serotoninérgicas) y del locus coeruleus (noradrenérgicas).

   La estructura eferente de los ganglios basales es el globo pálido interno, que envía proyecciones gabaérgicas para comunicarse con la corteza frontal a través los núcleos motores del tálamo (ventral anterior y ventrolateral). Las vías eferentes se dividen clásicamente en dos: la vía directa y la vía indirecta.

   La vía directa se activa mediante los receptores dopaminérgicos tipo 1 (D1). Las neuronas espinosas medianas del estriado, producen una inhibición gabaérgica del GPI y la SNr que a su vez inhibe el tálamo cuya función es excitatoria sobre la corteza frontal. Por tanto, cuando el estriado recibe las proyecciones dopaminérgicas de la SNpc, se activa la vía directa y se activa la corteza motora (ya que se inhibe la proyección inhibitoria del GPI sobre el tálamo). La función de la vía indirecta es la contraria y normalmente está inhibida por las proyecciones dopaminérgicas de la SNpr a través de receptores dopaminérgicos D2. Al encenderse, a través de proyecciones gabaérgicas levanta el freno sobre el NST, cuya función habitual es la activación del GPI, que como se ha mencionado previamente, actúa como inhibidor tálamico y de la corteza.

  En presencia de dopamina, neurotransmisor aferente fundamental de los ganglios basales, se activa la vía directa y por tanto la corteza está activada, mientras que se apaga la vía indirecta, y por tanto la corteza no esta inhibida.

   Los trastornos de los ganglios basales se producen como consecuencia de la neurodegeneración o agresión secundaria de cualquiera de sus estructuras, produciendo un desequilibrio en este complicado circuito y por tanto una alteración de la coordinación motora. Se dividen en patologías hipocinéticas que implican pobreza de movimiento y en patologías hipercinéticas caracterizadas por exceso de movimiento

Los circuitos de formación de memoria se originan a partir de información procesada en áreas de asociación polimodal como la corteza frontal, temporal y parietal, de ahí el circuito lleva la información a la corteza parahipocámpica y corteza perirrinal y de ahí a la corteza entorrinal. Esta se comunica a través de la vía perforante con la circunvolución dentada, esta proyecta sus axones a través de las fibras musgosas a la región CA3 del hipocampo, que a su vez se conecta, con la vía colateral de Schaffer, a la región CA1 del hipocampo. Esta región se une con el subículo, el cual proyecta de vuelta a la corteza entorrinal. De aquí la información viaja hacia la corteza parahipocámpica y entorrinal y de ambas vuelve a las cortezas de asociación polimodal

El  circuito consta de dos sub-circuitos: la vía directa y la vía indirecta. La sustancia negra compactada proyecta axones dopaminérgicos al putamen provocando la activación de este núcleo (cuando estimula los receptores D1), que aumenta su inhibición sobre el globo pálido interno y la sustancia gris reticulada mediante sus axones gabaérgicos. Esto produce una disminución de la actividad inhibitoria sobre el tálamo, el cual aumenta su activación sobre la corteza motora. De esta forma se comienza el movimiento. Este circuito es conocido como la vía directa Por otra parte, la sustancia negra compactada provoca la inhibición del putamen (cuando estimula los receptores D2), que disminuye su inhibición sobre el globo pálido externo, lo cual provoca un aumento de la actividad inhibitoria de este núcleo sobre el subtalámico, pero que al mismo tiempo este es excitado por las vías glutamatérgicas que vienen de la corteza, lo que permite que active al globo pálido externo y sustancia gris reticulada. Al ocurrir esto las vías inhibitorias de estos núcleos afectan al tálamo disminuyendo su activación, por lo cual ya no puede estimular la corteza motora y el movimiento se termina. Este circuito es conocido como la vía

Los procesos de memoria más estudiados son la habituación y la sensibilización. Un estímulo excitatorio que se repite produce una disminución del potencial sináptico de la neurona sensitiva sobre las interneuronas y sobre la neurona motora, lo que provoca que la respuesta disminuya. Esta disminución del potencial sináptico se produce por una disminución en la movilización de las vesículas que contienen el neurotransmisor glutamato, lo que provoca una menor liberación de la sustancia química y por ende disminuye la fuerza de la sinapsis, situación que puede durar varios minutos.

Este mecanismo es el que produce la memoria de corto plazo para la habituación. El sistema molecular de la memoria de corto plazo para la sensibilización es más complejo que el de la habituación.

Un estímulo nocivo aplicado en una vía produce un aumento de intensidad en otra vía a la cual se le aplica un estímulo no nocivo, esto mediante una interneurona facilitadora.

Existen dos vías de activación del botón terminal de la neurona sensitiva mediado por esta interneurona: a) en la primera vía la serotonina (5-HT) activa el receptor de la neurona sensitiva que a su vez activa una proteína G que aumenta la actividad de adenililciclasa que convierte el ATP en AMPciclico, el cual activa la proteincinasa dependiente de AMPc (PKA), esta fosforila los canales de potasio (k + ), esto prolonga el potencial de acción y permite más entrada de calcio (Ca ++ ) al botón terminal, lo que aumenta la liberación de glutamato (Glu) a la hendidura sináptica (Fig. 8.6); b) en la segunda vía la serotonina (5-HT) activa otro receptor de la neurona sensitiva que a su vez activa una proteína G que activa la fosfolipasa C (PLC) que a través del diacilglicerol, activa la proteincinasa C (PKC). Está en conjunto con PKA permiten la apertura de canales de Ca ++ con lo cual aumenta la liberación de Glu (Fig. 8.7). En ambos casos se produce una facilitación presináptica, ya que la interneurona facilitadora ayuda a la liberación del neurotransmisor de la neurona sensitiva

La intervención de la corteza cerebral, en las funciones psíquicas es dominante, no obstante la intervención de las estructuras límbicas tienen al mismo tiempo un papel fundamental

Referencias

 Saltar a:a b c Tortora-Derrickson. Principios de Anatomía y Fisiología. Consultado el 30 de noviembre de 2019

Lesiones talámicas: un desafío semiológico. Revista Uruguaya de Medicina Interna, mayo 2016

 The thalamus of secrets. Neurology Journal. Publicado el 6 de marzo de 2016. Consultado el 1 de diciembre de 2019.

 Manual de neurofisiología. Autor: Daniel P. Cardinali. Consultado el 1 de diciembre de 2019.

 El sistema nervioso central humano. Autores: Nieuwenhuys, Voogd, Van Huijzen. Consultado el 8 de diciembre de 2019

NÚCLEOS DEL TÁLAMO

NÚCLEOS DEL TÁLAMO

El tálamo es el componente más voluminoso del diencéfalo y el principal sitio de relevo para la mayoría de los estímulos que van en dirección de la corteza cerebral.

Los núcleos del tálamo se organizan alrededor de la lámina medular interna que tiene forma de “Y”, dividiendo el tálamo en tres partes: anterior, medial y lateral. En cuanto a la función que desempeña cada uno de los núcleos, podemos clasificarlos en núcleos talámicos de relevo y núcleos de proyección difusa.

Los principales grupos neuroanatámicos del tálamo cerebral se suelen dividir en territorios, que a su vez pueden también subdividirse en núcleos que incluyen:

Territorio anterior del tálamo-tiene solo un núcleo

Núcleo anterior (NA), demarcado por la lámina medular interna

Descripciones más detalladas lo dividen en un grupo de núcleos anterodorsal, otro anteromedial y un grupo anteroventral.1

Territorio medial del tálamo:

Núcleo mediano dorsal (MD)

Núcleos de la línea media

Núcleos de la lamina medular interna del tálamo: Núcleo centromedial (CM)

Territorio lateral del tálamo:

Grupos ventrales

Núcleo ventral anterior (VA)

Núcleo ventral lateral (VL)

Núcleo ventral posterior (VP)

ventral posteromedial (VPM)

ventral posterolateral (VPL)

ventral intermedio (VI)

Grupos dorsales:

núcleo lateral dorsal (LD)

núcleo lateral posterior (LP) último acceso 6 de febrero de 2012

Territorio posterior del tálamo, incluido muchas veces en el territorio lateral del tálamo

Pulvinar

Cuerpos geniculados, región llamada también metatálamo

medial, con un prominente núcleo medial

lateral, con un prominente núcleo dorsal

Otras zonas conocidas la estría medular, el núcleo submedial y parte de los núcleos reticulares

otros territorios:

núcleos intralaminares, situados en la lámina medular interna, que está compuesta principalmente de sustancia blanca con grupos de núcleos de los que se distinguen:2

grupo caudal

núcleos centromedianos

núcleos parafasciculares en la porción más lateral

núcleos ventrales

núcleo central dorsal

núcleo central medial

núcleo central lateral

núcleo paracentral

núcleos reticulares talámicos: Adyacente a la lamina medular externa del tálamo.

En la línea media del tálamo se distinguen regiones conocidas como núcleo paratenial, núcleo paraventricular, núcleo Reuniens, núcleo romboideo y núcleo subfascicular.

Referencias]

 Nomencaltura de Hassler: The Neuroscience Lexicon(Birnlex 954). Actualizado 25 de abril de 2010, consultado el 6 de Feb 2012.

Nieuwenhuys. El sistema nervioso central humano pág 255. Ed. Médica Panamericana, Jun 30, 2009. ISBN: 8498352495.

Rubio Garcia. Criotalamotomia de los núcleos intralaminares del tálamo, para el dolor

LA PLASTICIDAD NEURONAL DE PAT MARTINO

LA PLASTICIDAD NEURONAL DE PAT MARTINO

Pat Martino es uno de los grandes del jazz. Nació como Pat Azzara en el sur de Filadelfia el 25 de agosto de 1944 y la primera persona que le abrió las puertas de la música fue su padre, Carmen «Mickey» Azzara, que cantaba y tocaba la guitarra en clubs locales. Martino decía que quiso ser guitarrista de jazz porque amaba a su padre y quería que se sintiese orgulloso de él. Estudió brevemente con Eddie Lang, un famoso guitarrista de jazz de la época, y empezó a tocar a los doce años, momento en que abandonó la escuela para dedicarse a tiempo completo a la música. Se convirtió en una figura antes de cumplir los dieciocho años y firmó un contrato como solista con Prestige Records a la edad de veinte años. Sus primeros álbumes incluyen clásicos como «Strings!», «Desperado», «El hombre» y «Baiyina», una de las primeras intrusiones exitosas del jazz en la música psicodélica. Es conocido como compositor y como intérprete de guitarra y ha incursionado en el post-bop, la música de fusión, el mainstream y el jazz soul. Le ha dado fama su estudio de la matemática de la música (incluyendo la escritura de un libro de texto sobre Expresiones Lineales) y su conocimiento especializado de la teoría musical, algo llamativo en alguien que es prácticamente un autodidacta.

Pat Martino tuvo problemas de salud desde muy temprano. Desde los diez años sufría alucinaciones y ataques epilépticos y los primeros diagnósticos fueron de depresión maníaca, trastorno bipolar y esquizofrenia. Las señales de que algo iba mal empeoraron en 1976 con fuertes dolores de cabeza que fueron aumentando en frecuencia e intensidad. Los ataques epilépticos parciales involucraban al sistema nervioso autónomo y mostraba palidez, enrojecimiento de la piel, taquicardia, una sensación de incomodidad en el epigastrio y vómitos ocasionales. Durante esos años de la adolescencia también presentaba crisis mentales como delirios y alucinaciones olfatorias, alteraciones emocionales, distorsiones del tiempo y trastornos del comportamiento. Las crisis mentales fueron aumentando y los cambios de conducta le llevaban al caos con crisis maniacodepresivas y días de un estado absorto en los que presentaba una desconexión total con todo lo que le rodeaba. Los ataques epilépticos fueron en aumento y presentaban alteraciones motoras y oroalimentarias que duraban generalmente más de un minuto. Martino se recuperaba con una sensación de confusión y poco a poco volvía a un estado normal. Durante esta época viajaba entre Nueva York y Filadelfia, las dos ciudades donde tocaba habitualmente, y fue grabando quince álbumes de jazz. Aun así, su vida no era fácil y presentaba prolongadas épocas de manía y depresión, tuvo al menos un par de intentos de suicidio y fue ingresado repetidas veces en hospitales psiquiátricos, donde le trataban con una medicación intensa y prolongada y, en al menos tres ocasiones, terapia con electrochoque.

En 1980, cuando Martino tenía 35 años sufrió en Los Ángeles, donde enseñaba en el Guitar Institute of Technology, un ataque epiléptico generalizado que le llevó a urgencias. Solo recordaba haber sufrido un ataque similar mientras trabajaba en el festival de Jazz de la Riviera, en Marsella. Tocaba en la cima de una colina con una audiencia de doscientas mil personas y «justo en medio de una sección muy trabajosa y rápida, dejé de tocar y me quedé allí quieto durante treinta segundos. Durante esos momentos de ataque sientes como si cayeras a través de un agujero negro».

Una tomografía computarizada mostró que el lóbulo temporal izquierdo de su cerebro, la zona por debajo de la oreja, presentaba una maraña anómala de venas y arterias con una hemorragia asociada. Era un conjunto de vasos sanguíneos que, en opinión de Frederick Simeone, el cirujano que le operó, parecía un «puñado de lombrices», una descripción no muy científica pero bastante gráfica. Era probablemente una malformación de nacimiento y que quizá supuso a lo largo de su vida un obstáculo en el desarrollo de las funciones normales del lóbulo temporal, en particular de la capacidad para almacenar y expresar memorias.

En una primera operación le extirparon el hematoma, lo más urgente, y en una segunda cirugía, después de una angiografía cerebral, le quitaron la malformación arteriovenosa con una resección de aproximadamente el 70% del lóbulo temporal izquierdo. Este lóbulo está implicado directamente en la memoria auditiva verbal, en el habla y en la comprensión del lenguaje. Hay evidencias, además, de que el polo temporal izquierdo responde a estímulos auditivos complejos, algo que sería característico de la música.

En su autobiografía Martino cuenta que tras las operaciones se sentía como un zombi. No recordaba su nombre, era incapaz de reconocer a sus padres y había olvidado que era músico. Perdió por completo sus capacidades musicales, incluidas la teoría, la técnica y las habilidades asociadas. De hecho tenía una amnesia retrógrada grave, una incapacidad de recordar lo que había sucedido antes de la operación.

Inició la lenta recuperación en casa de sus padres. Allí le mostraban fotos, llegaban amigos de visita y aparecían otros músicos que tocaban para él con el objetivo de recordarle su pasado y hacer que se reencontrara con el jazz. Su padre no podía creer que su hijo hubiese olvidado su pasión por la música. Así que empezó a ponerle los discos que él mismo había grabado. Paul recordaba que «estaba tumbado en la cama arriba y oía esa música entrando por las paredes del suelo, un recuerdo de algo que no tenía ni idea de qué era, algo que no volvería a ser nunca o que ni siquiera había sido». Volvió poco a poco a tocar la guitarra, pero lentamente y con dificultad, más como si fuera un juguete «para escapar de la situación y para agradar a mi padre».

Con la preocupación de que su hijo pasaba cada día junto a la guitarra sin mostrar interés por ella, el padre llamó a John Mulhern para que viniera a tocar con él. Mulhern había dado clases de guitarra con Martino y cometía un error frecuente, cambiando una nota. Ahora, trabajando sobre un libro de los viejos ejercicios de guitarra, Mulhern cometió el mismo error. «Apártate», le dijo Martino, agarró su guitarra y empezó de nuevo a tocar. En los siguientes meses, el dolor y la angustia de la amnesia y la depresión postoperatoria empezaron a aliviarse. Según él «mientras seguía trabajando con el instrumento, me venían gradualmente flashes de recuerdos y la memoria muscular, formas en el teclado, diferentes escaleras a diferentes habitaciones de la casa. Hay corredores secretos que solo tú conoces en el edificio y vas allí porque es algo agradable. Y así es cómo recuerdas cómo tocar, porque recuerdas el placer que te daba».

Años más tarde, Galarza y su grupo de investigación estudiaron con una resonancia magnética el cerebro de Martino y el de cinco sujetos sanos que fueron usados como controles. El daño en el lóbulo temporal izquierdo era extenso y la zona extirpada había sido rellenada por líquido cefalorraquídeo. El daño en la corteza temporal inferior se extendía más caudalmente que el daño en la corteza temporal superior. El hipocampo derecho era algo mayor que el izquierdo, que era algo más pequeño que en los controles. Sin embargo, las zonas de proyección del hipocampo izquierdo (fórnix izquierdo, cuerpos mamilares y tálamo) tenían un aspecto normal lo que sugiere que el hipocampo izquierdo, a pesar de su aspecto atrófico, probablemente era funcional. Las amígdalas de ambos hemisferios eran del mismo tamaño y aspecto normal; sin embargo, el estudio volumétrico mostró que eran más pequeñas que las de los controles. Las cortezas perirrinal, entorrinal y parahipocampal eran de un tamaño normal en el lado derecho pero anormalmente pequeñas en el izquierdo. Finalmente había una cierta atrofia en las regiones parietal y frontal, alejadas de la zona de operación, una diferencia que era algo más pronunciada de lo que se podría esperar en una persona de la edad de Martino.

¿Es posible tocar mejor con menos cerebro? Un estudio de investigadores de la Universidad Johns Hopkins estudió la actividad cerebral de músicos de jazz en medio de un ejercicio de improvisación. Tocaban en un teclado especialmente diseñado dentro de un escáner, algo que les aseguro debe ser una proeza. El resultado más llamativo fue una reducción sorprendente de la actividad de la corteza prefrontal. Solamente al «desactivar» esta región cerebral, implicada en el control de impulsos, en el juicio crítico, ne la planificación, conseguían los músicos inventar, de forma espontánea, nuevas melodías. Los científicos comparaban este estado «libre» de la mente con los sueños que tenemos durante la noche, con las ensoñaciones durante la meditación, con otras tareas creativas, como escribir poesía y con el pensamiento difuso de los niños pequeños. Baudelaire estaba en lo cierto cuando dijo «el genio no es ni más ni menos que la infancia recuperada a voluntad».

El análisis neuropsicológico de Pat Martino también mostró algunas deficiencias, un test sobre el significado de palabras abstractas y de poco uso mostró que su funcionamiento intelectual estaba afectado y también tenía dificultades para recordar nombres y lugares pero no formas y el recuerdo era anómalo para la información verbal pero no para la información visual. Es decir, el paciente mostraba anomalías específicas pero sutiles en algunos aspectos de lenguaje, tales como definir términos habituales o recordar palabras poco usadas. Aun así, teniendo en cuenta la amplitud de la lesión, sus déficits cognitivos parecían leves. Cuando le preguntaron cuándo fueron los Beatles a América dijo que en algún momento entre 1961 y 1963 (fue en 1964), pero cuando le pidieron que nombrase una canción de los Beatles, no pudo recordar el título de ninguna. Las diferencias estaban relacionadas con distintos tipos de memoria. La memoria semántica, que registra datos como nombres y fechas, se cree que está localizada en el lóbulo temporal y eso explica que Martino no recordara los títulos de las obras de los muchachos de Liverpool. La memoria episódica, que registra nuestras experiencias y biografía está asociada normalmente con el hipocampo y la corteza prefrontal y, por tanto, debería estar poco o nada afectada, pero él no podía recordar a sus familiares y amigos, ni sus experiencias conjuntas y es posible que la cirugía hubiera tenido efectos inespecíficos sobre otras regiones cerebrales. El último campo es la memoria procedural, la que le permite tocar la guitarra con una habilidad única. Un músico profesional toca a una velocidad con sus dedos de la que no es consciente. Es el resultado de años de práctica y repetición y se cree que la zona clave son los ganglios basales y por lo tanto no fueron afectadas por la lobectomía. El que sin embargo no mostrase su capacidad como músico profesional se supone que era un problema de reconexión, de poner en uso estas habilidades. Es decir, estas memorias estaban presentes, esperando ser reconectadas.

El dato más llamativo del caso Pat Martino es que sus capacidades musicales se recuperaron por completo incluso cuando gran parte del lóbulo temporal izquierdo se había eliminado. Él había dicho después de la operación «Me siento abandonado, vacío, neutral, limpio … desnudo» pero «poco a poco, pieza por pieza, las interrelaciones comenzaron a revivir». Martino recuperó su nivel de instrumentista tras un proceso que duró años. En 1987, siete años después, volvió a grabar un disco titulado precisamente «The Return», el retorno. Fue el inicio de la vuelta a su carrera profesional, una actividad que se ha mantenido constante hasta la actualidad, excepto por una interrupción de unos dos años por la muerte de sus padres y con un enorme éxito. De hecho, recuperó su estatus anterior como un virtuoso del jazz.

Nuestro cerebro mantiene una cierta capacidad de reorganización y flexibilidad toda la vida, pero la experiencia de Pat Martino muestra la posibilidad de un grado inusual de plasticidad cerebral y reorganización en los cerebros de los músicos profesionales. Se ha comentado que los músicos tienen una mayor capacidad plástica por tener unas conexiones entre ambos hemisferios cerebrales más ricas que el resto de la gente, usan mucho más el hemisferio derecho además del izquierdo y presentan una asimetría estructural de algunas áreas relevantes del cerebro. Si la malformación arteriovenosa estuvo presente toda la vida, es habitual que estuviera rodeada de un tejido no funcional que puede interrumpir el flujo sanguíneo a las regiones cercanas. Si es así, es posible que el cerebro pusiera en marcha desde muy pronto mecanismos compensatorios y que la función cerebral no estuviera tan lateralizada como en la mayoría de las gente. Además las lesiones de crecimiento lento, como las malformaciones arteriovenosas y la subsiguiente cirugía, permiten una amplia reorganización cerebral. Así pacientes con lesiones de crecimiento lento y que tuvieron una amplia resección han mostrado una vuelta a un funcionamiento normal después de la cirugía. El caso de Martino es un ejemplo único de un paciente que ha mostrado una recuperación completa después de una amnesia profunda y un regreso exitoso a un nivel cerebral tan especializado como implica ser un gran instrumentista.

Martino reconocía recientemente que su memoria era bastante mala; sin embargo, no parecía que ello tuviera un efecto en su vida cotidiana. Decía que no intentaba recuperar las memorias que de vez en cuando aparecían en su mente sino más bien trataba de apartarlas. Consideraba que su situación era ventajosa pues le permitía vivir el «aquí y ahora» —el título de su autobiografía— sin perder tiempo pensando en el pasado. Creía que era una cosa positiva que había agudizado sus capacidades musicales. También parece que su respuesta emocional a la música cambió tras la operación. Ahora tocaba porque tenía significado para él más que por agradar a otras personas o por ser competitivo. Lo explicaba así: «mis intenciones originales antes de la neurocirugía tenían mucho que ver con la maestría y trepar la escala de reconocimiento por otros. Tenía que ver con el deseo de lograr cinco estrellas en lugar de dos estrellas para la crítica de un álbum. Después de la neurocirugía, eso ya no tenía ningún sentido para mí. Me preocupa más la realidad del momento, el disfrute de ese instante. Me preocupan más los músicos que están conmigo, sus sentimientos, la emanación de la pasión compartida y otras virtudes que compartimos en el proceso. Son cosas que encuentro mucho más gratificantes que mis logros como músico famoso. Ahora es solo diversión, amistad, empatía y preocupación. Es un disfrute de todas las cosas en comparación con el disfrute de cosas específicas».

«La esencia más grande y verdadera de la productividad creativa es la alegría», dijo Martino. «Es una alegría presenciada por aquellos que te rodean. Ya no son testigos de un artista, están presenciando a un ser humano que está feliz de vivir, que proyecta ese aura». «El cerebro es algo divertido» —dijo— «es parte del vehículo, pero no es parte de hacia dónde vas. El vehículo te llevará allí, pero no eres tú».

Martino tiene ahora 76 años y hasta 2018 estuvo tocando por todo el mundo y según algunos críticos de jazz con más felicidad y creatividad que nunca. Ahora, al parecer, está recibiendo oxígeno las 24 horas del día en su casa en el sur de Filadelfia, y no puede apretar su mano izquierda, lo que significa que no puede tocar la guitarra. En noviembre de 2018 regresó de una gira por Italia y desarrolló una enfermedad que empeoró la situación de sus pulmones, ya debilitados por la EPOC.

A pesar de su situación actual, su caso es un ejemplo de neuroplasticidad, de esa capacidad asombrosa del cerebro que le permite una cierta reorganización y que optimiza el funcionamiento de los circuitos neuronales. Cuando miraba a la foto de su resonancia magnética, al hueco de su cerebro dejado por la cirugía y le preguntaron qué echaba en falta Martino comentó «diría que lo que falta es la decepción, la crítica, enjuiciar a otros, lo que falta son todos los dilemas que hacen la vida tan difícil. Eso es lo que falta. Y para ser honesto contigo, es algo beneficioso».

Biblografia 

Trabajo del Profesor Alonso

Galarza M, Isaac C, Pellicer O, Mayes A, Broks P, Montaldi D, Denby C, Simeone F (2014) Jazz, guitar, and neurosurgery: the Pat Martino case report. World Neurosurg 81(3-4): 651.e1-7.

Gallagher B (2015) Brain damage saved his music. Nautilus http://nautil.us/issue/20/creativity/brain-damage-saved-his-music

Gasenzer ER, Kanat A, Neugebauer E (2017) Neurosurgery and Music; Effect of Wolfgang Amadeus Mozart. World Neurosurg 102: 313-319.

NUEVA ZELANDA Y EL CORONAVIRUS

NUEVA ZELANDA LO HA HECHO TAN BIEN FRENTE AL CORONAVIRUS QUE HA LOGRADO ERRADICAR HASTA LA GRIPE

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

NUEVA ZELANDA LO HA HECHO TAN BIEN FRENTE AL CORONAVIRUS QUE HA LOGRADO ERRADICAR HASTA LA GRIPE

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

CEREBRO Y ORDENADOR, SU ANALOGIA Y DIFERENCIA


CEREBRO Y ORDENADOR, SU ANALOGIA Y DIFERENCIA

Para hablar del funcionamiento del cerebro infinitamente más complejo que un ordenador necesito el fundamento de algo que se le parezca y el ordenador de sobremesa que utilizamos podría ser un modelo de como una señal se admite,  se procesa y proporciona una realidad .

Ell problema viene como siempre en biología cerebral que el hardware puede entenderse construirse pero el software viene de fuera alguien lo tiene que elaborar y esto en el ordenador es entendible pero en el cerebro estamos muy lejos de entenderlo


Empecemos por describir cómo funciona el ordenador y después nos apañaremos para ver cómo funciona el cerebro

Cuando encendemos el ordenador, la corriente eléctrica (1) llega al transformador de fuerza o potencia (2). A través del conector (3) el transformador distribuye las diferentes tensiones o voltajes de trabajo a la placa base, incluyendo el microprocesador o CPU (4). Inmediatamente que el microprocesador recibe corriente, envía una orden al chip de la memoria ROM del BIOS (5) (Basic Input/Output System – Sistema básico de entrada/salida), donde se encuentran grabadas las rutinas del POST ( Power-On Self-Test – Autocomprobación diagnóstica de encendido) o programa de arranque. Si no existiera el BIOS conteniendo ese conjunto de instrucciones grabadas en su memoria, el sistema informático del ordenador no podría cargar en la memoria RAM la parte de los ficheros del Sistema Operativo que se requieren para iniciar el arranque y permitir que se puedan utilizar el resto de los programas instalados.

Una vez que el BIOS recibe la orden del microprocesador, el POST comienza a ejecutar una secuencia de pruebas diagnósticas para comprobar sí la tarjeta de vídeo (6), la memoria RAM (7), las unidades de discos [disquetera si la tiene, disco duro (8), reproductor y/o grabador de CD o DVD], el teclado, el ratón y otros dispositivos de hardware conectados al ordenador, se encuentran en condiciones de funcionar correctamente.

Cuando el BIOS no puede detectar un determinado dispositivo instalado o detecta fallos en alguno de ellos, se oirán una serie sonidos en forma de “beeps” o pitidos y aparecerán en la pantalla del monitor mensajes de error, indicando que hay problemas. En caso que el BIOS no detecte nada anormal durante la revisión, se dirigirá al boot sector (sector de arranque del disco duro) para proseguir con el arranque del ordenador.

Durante el chequeo previo, el BIOS  va mostrando en la pantalla del monitor diferentes informaciones con textos en letras blancas y fondo negro. A partir del momento que comienza el chequeo de la memoria RAM,  un contador numérico muestra la cantidad de bytes que va comprobando y, si no hay ningún fallo, la cifra que aparece al final de la operación coincidirá con la cantidad total de megabytes instalada y disponible en memoria RAM que tiene el ordenador para ser utilizada.

Durante el resto del proceso de revisión, el POST muestra también en el monitor un listado con la relación de los dispositivos de almacenamiento masivo de datos que tiene el ordenador instalados y que han sido comprobados como, por ejemplo, el disco o discos duros y el lector/grabador de CD o DVD si lo hubiera.

Cualquier error que encuentre el BIOS durante el proceso de chequeo se clasifica como “no grave” o como “grave”. Si el error no es grave el BIOS sólo muestra algún mensaje de texto o sonidos de “beep” sin que el proceso de arranque y carga del Sistema Operativo se vea afectado. Pero si el error fuera grave, el proceso se detiene y el ordenador se quedará bloqueado o colgado. En ese caso lo más probable es que exista algún dispositivo de hardware que no funcione bien, por lo que será necesario revisarlo, repararlo o sustituirlo.

Cuando aparecieron los primeros ordenadores personales no existían todavía los discos duros, por lo que tanto el sistema operativo como los programas de usuarios había que cargarlos en la memoria RAM a partir de un disquete que se colocaba en la disquetera. Cuando surgió el disco duro y no existían todavía los CDs, los programas se continuaron introduciendo en el ordenador a través de la disquetera para grabarlos de forma permanente en el disco duro, para lo que era necesario utilizar, en la mayoría de los casos, más de un disquete para instalar un solo programa completo. Por ese motivo, hasta la aparición de los lectores de CDs, el programa POST de la BIOS continuaba dirigiéndose primero a buscar el sistema operativo en la disquetera y si como no lo encontraba allí, pasaba entonces a buscarlo en el disco duro.

Si por olvido al apagar esos antiguos ordenadores se nos había quedado por olvido algún disquete de datos introducido en la disquetera, al encender de nuevo el equipo el proceso de inicialización se detenía a los pocos segundos, porque el BIOS al leer el contenido de ese disquete encontraba otro tipo de datos  y no el sistema operativo. Cuando eso ocurría solamente había que extraer el disquete de la disquetera y oprimir cualquier tecla en el teclado. De inmediato el BIOS continuaba la búsqueda, dirigiéndose al disco duro, lugar donde se encontraba y encontramos grabado todavía el sistema operativo, incluso en los ordenadores más actuales.

Durante mucho tiempo el estudio de los procesos cognitivos ha sido abordado desde una perspectiva localizacionista, donde cada función cognitiva se relaciona con zonas específicas del cerebro. Sin embargo, en los últimos años, se ha producido un cambio de paradigma poniendo énfasis en la red de conexiones neurales existente entre las distintas zonas de cerebro”.

El “Proyecto Conectoma Humano”, enmarcado en una serie de proyectos multi escala de gran alcance como es el “Human Brain Project”. Su objetivo es describir y explicar el conectoma humano, con el objetivo último de relacionar la estructura cerebral con la función y el comportamiento humano.

CEREBRO humano de un hombre llamado Leborgne que sufría de incapacidad para la dicción debido a una lesión cerebral (ver en el centro superior), fue tratado en el hospital de Bicetre por Paul Broca (1824-1880). Comienzo de la frenología como ciencia. cerebro en formalina mantenido en el museo Dupuytren en París *** Subtítulo local *** cerebro humano de un hombre llamado Leborgne que sufría de incapacidad para la dicción debido a una lesión cerebral (ver en el centro superior), fue tratado en el hospital Bicetre por Paul Broca (1824-1880). Comienzo de la frenología como ciencia. cerebro en formalina mantenido en el museo Dupuytren en París

El Cerebro e Broca

Paul Broca fue cirujano, neurólogo y antropólogo, una de las figuras más prominentes de la medicina y la antropología del siglo pasado.

Su trabajo más celebrado fue el de encontrar una pequeña región ubicada en la tercera circunvolución del lóbulo frontal izquierdo de la corteza cerebral, la que en honor de su descubridor nominamos hoy área de Broca. Tomando como punto de partida un escaso número de pruebas experimentales, Broca puso al descubierto que dicha zona del cerebro controla la emisión articulada del lenguaje y se erige como la sede fundamental de tan característica actividad humana. El área de Broca fue uno de los primeros descubrimientos que puso de manifiesto la separación de funciones existentes entre ambos hemisferios cerebrales. Y algo aun más importante, fue una de las primeras pruebas sólidas de la existencia de funciones cerebrales específicas localizadas en zonas muy precisas del cerebro, de que existe una conexión entre la anatomía cerebral y sus diferentes actividades concretas, actividades que a veces suelen calificarse como «mentales».

 Ralph Holloway es un investigador de la Universidad de Columbia dedicado al estudio de la antropología física cuyo laboratorio imagino que puede guardar ciertas similitudes con el de Broca. Holloway ha construido con goma de látex unos moldes de cavidades craneales de seres humanos y otros afines, pasados y presentes, con objeto de intentar reconstruir, a partir de las huellas superficiales dejadas por la superficie interna del cráneo, la evolución histórica del cerebro. Holloway sostiene que para poder hablar de criatura humana es imprescindible la presencia en su cerebro de un área de Broca, ofreciéndonos pruebas de la aparición de un primer esbozo de la misma en el cerebro del Homo habilis unos dos millones de años atrás, – la palabra articulada, de manera que el área de Broca puede considerarse como una de las sedes fundamentales de nuestra humanidad en la medida en que, sin la menor duda, nos permite delinear la relación que nos vincula con nuestros antepasados en su progresión hasta alcanzarla. Y ahí estaba, flotando ante mis ojos, nadando a trozos en un mar de formalina, el cerebro de Broca. Podía observar la región límbica que Broca había estudiado en otros, las circunvoluciones del neocortex, incluso el lóbulo frontal izquierdo de color gris blancuzco donde tiene su asiento el área que toma su nombre del de su descubridor, pudriéndose inadvertidamente en un triste rincón de la colección que iniciara el propio Broca. Era difícil sostener el cerebro de Broca sin tener la sensación de que, en alguna medida, todavía estaban allí, presentes, su ingenio, su talante escéptico, sus abruptas gesticulaciones al hablar, sus momentos de quietud y sentimentalismo. ¿Acaso se hallaba preservada ante mí, en la configuración neuronal, una recolección de los triunfales momentos en que defendía ante una asamblea conjunta de facultades de medicina (y ante su padre, henchido de orgullo) su teoría sobre los orígenes de la afasia? ¿0 tal vez una comida en compañía de su amigo Víctor Hugo? ¿Quizás un paseo a la luz de la luna en un atardecer otoñal a lo largo del Quai Voltaire y el Font Royal en compañía de su esposa? ¿Adónde vamos a parar después de morir? ¿Acaso Paul Broca estaba todavía ahí, en un frasco lleno de formalina? Tal vez hubiese desaparecido todo rastro de memoria, aunque las investigaciones contemporáneas sobre la actividad cerebral proporcionan pruebas convincentes de que un cierto tipo de memoria queda redundantemente almacenada en numerosos y diferentes lugares de nuestro cerebro.

La primera persona que localizó desde perspectivas neuroanatómicas la inteligencia humana en la cabeza fue Herófilo de Calcedonia, medico griego cuya actividad alcanza su cenit alrededor del 300 a. de C. Herófilo fue también el primero en distinguir entre nervios motores y sensoriales y efectuó el estudio más completo de la anatomía cerebral in- tentado hasta el Renacimiento.

¿Cómo se relacionan las funciones cognitivas superiores y las enfermedades neuropsiquiátricas con la actividad cerebral? 

Febrero, 2020

Nuestro cerebro está conectado entre diferentes áreas cerebrales que son fundamentales en los diferentes procesos cognitivos. Estas conexiones se van desarrollando progresivamente en la vida, es más, hay estudios que reflejan que a los quince días de haber nacido ya existe un mapa de conexiones que se va formando con la estimulación cognitiva y el ejercicio físico. El modelo del conectoma nos acerca a una nueva visión del funcionamiento del cerebro.

La mayoría de los estudios utilizan técnicas de imagen cerebral, como la magnetoencefalografía (MEG), la electroencefalografía (EEG) o la Imagen de Tensor de Difusión por Resonancia Magnética (DTI-MRI). “Nuestros científicos también llevan a cabo investigación básica sobre los procesos de control de la memoria, las emociones y el lenguaje, investigación aplicada en epilepsia, adicciones y otras enfermedades neurodegenerativas, asimismo desarrollan nuevos enfoques para el análisis de datos de imagen cerebral funcional”, explica Fernando Maestú, Director del Laboratorio de Neurociencia Cognitiva y Computacional (LNCyC) y Catedrático de Psicología Básica de la UCM.

¿Qué es el conectoma?

El científico Santiago Ramón y Cajal fue el primero en descubrir que la conectividad entre células era la base de lo que era la cognición. Por eso, de manera progresiva vamos esculpiendo estos patrones de conexiones a través de nuestras experiencias personales. El término “conectoma” se refiere a la matriz de conexiones altamente organizadas del cerebro humano. En número, tenemos 86.000 millones de neuronas y 500 billones de sinapsis.

Líneas de investigación

En el Centro de Tecnología Biomédica y específicamente en el Laboratorio de Neurociencia Cognitiva y Computacional (UCM-UPM), profundizan en estudios e investigaciones que intentan demostrar que, con pruebas neurofisiológicas, como el Electroencefalograma (EEG) o la Magnetoencefalografía (MEG), se pueden obtener perfiles de actividad cerebral “que nos permitan tener un biomarcador de riesgo de desarrollo de la enfermedad. Son técnicas completamente no-invasivas, es decir, registran lo que de forma natural se genera en nuestro cerebro (la actividad eléctrica y su campo magnético), son muy sencillas en su aplicación y no requieren más que la colocación de un gorro de EEG sobre el pelo del participante o, en el caso del MEG, sólo introducir la cabeza en un casco con sensores de campo magnético”, señala el investigador.

El equipo de trabajo en el que participa Maestú lleva 20 años desarrollando modelos de análisis de la señal derivada del EEG y del MEG para poder obtener estos signos biológicos que permitan ayudar a determinar qué personas están en riesgo de padecer una demencia. “Con ellas hemos conseguido demostrar que las personas en diferentes fases del proceso de la enfermedad de Alzheimer muestran una serie de patrones indicadores de un deterioro neurofisiológico”, desvela desde su laboratorio.

“El objetivo del ‘Proyecto Conectoma Humano’ es describir y explicar el conectoma humano, con el fin de relacionar la estructura cerebral con la función y el comportamiento humano”

Entre los hitos más importantes de su carrera investigadora cabe señalar que su grupo de profesionales se ha convertido en referencia internacional en la investigación de la Enfermedad de Alzheimer con MEG, describiendo las alteraciones de las redes funcionales en reposo y durante la realización de tareas de memoria en diversos estadios de la enfermedad.

Este equipo de investigadores ha explorado cómo factores genéticos, de daño en la sustancia blanca (conectividad anatómica) o la acumulación de proteína Tau y amilode afectan a dicha organización funcional y, por tanto, al sistema cognitivo. Adicionalmente, han desarrollado líneas de trabajo para explorar la plasticidad cerebral y cómo las intervenciones neuropsicológicas son capaces de modificar la organización funcional de la red y mejorar la cognición de pacientes con patologías neurológicas.

Cerebro y redes neurales funcionales

El cerebro es un órgano en constante cambio, a pesar de tener una determinada fisiología, las experiencias vitales moldean la forma en la que se conecta. Por lo tanto, la función es algo totalmente dependiente de las redes que conectan las diferentes partes de la corteza. En el desarrollo del cerebro y la materia gris –expone Maestú – las diferentes neuronas que lo conforman se organizan con determinados patrones en función de nuestra genética, pero sobre todo por las experiencias vitales. De este patrón de conexión se derivan todas las funciones que desarrolla el cerebro, desde recuerdos, formas de comportamiento social o patrones atencionales, hasta las distintas programaciones del movimiento que cada persona realiza para llevar a cabo la misma tarea.

El desarrollo del estudio de las redes neuronales supone un gran avance para ramas clínicas como la neuropsicología o la neuropsiquiatría, ya que el entendimiento de los patrones de conexión cerebrales ayuda enormemente a la comprensión de muchas enfermedades que no sólo tienen su origen en el daño de ciertas estructuras cerebrales, sino que se extiende a las conexiones subyacentes. Entendiendo así la relevancia de las conexiones cerebrales, es fácil comprender que cualquier patología neurológica implica una perturbación en las redes cerebrales y que su estudio resulta determinante.

« Entradas anteriores Entradas siguientes »