El blog del Dr. Enrique Rubio

Categoría: General (Página 23 de 51)

LAS VACUNAS DE ARN

LAS VACUNAS DE ARN 

UN GRAN AVANCE EN INMUNOLOGIA

Vacunas de ARN mensajero, son aquellas que en las que se emplea ácido ribonucleico para lograr el desarrollo de una respuesta inmune. Se diferencian de las vacunas tradicionales en que no se administran agentes vivos atenuados ni fragmentos del mismo, por lo que no existe el peligro de provocar la enfermedad que se pretende prevenir. Para fabricarlas es preciso encontrar las secuencias de ADN que codifican antígenos esenciales del agente infeccioso y después transcribirlo para obtener el ARN correspondiente, el cual se usará como vacuna. Aunque existen diferentes tipos de ARN, en las vacunas se utiliza ARN mensajero. Una vez administrada, parte del ARN puede degradarse por acción de las ARNasas, pero la porción que entra en las células genera péptidos similares a los del agente patógeno, lo que provoca una respuesta inmune que protege de la infección. 1​ 2​ 3​ 4​ 5

Este proceder es revolucionario y puede ser aplicado y varias enfermedades autoinmunes.

Posiblemente no fue puesto en marcha, hasta que se conoció mejor, la producción desde el ARN, de anticuerpos específicos, sin peligrosidad de enfermedad, ni perdida de inmunidad

Liposoma cargado de ARN mensajero.

Microesferas de lípidos (liposomas) cargadas de ARNm penetran en la célula por un proceso de endocitosis.

Esquema general del proceso de traducción genética mediante el cual se sintetiza una proteína a partir del ARN mensajero (mRNA).

Las vacunas tradicionales contienen el agente infeccioso inactivado o fragmentos del mismo que al introducirse en el cuerpo provocan una respuesta inmune por parte del organismo, el cual de esta forma responde con gran rapidez y eficacia cuando sufre una infección verdadera por el microorganismo específico para el que está diseñada la vacuna. Sin embargo las vacunas de ARN consisten en una secuencia de ácido nucleico que introduce en la célula el código para que la maquinaria celular fabrique la proteína extraña del agente infeccioso, la cual posteriormente es presentada en la membrana celular y reconocida por el sistema inmune, que genera inmunidad contra el mismo; por lo tanto puede decirse que no introduce el antígeno, sino las instrucciones para fabricarlo. 6

El ARN mensajero o ARNm es el ácido ribonucleico que transfiere el código genético desde el ADN a los ribosomas en el citoplasma de una célula. Actúa por tanto como plantilla o patrón para la síntesis de una proteína. Se trata de un ácido nucleico de cadena única (monocatenario), a diferencia del ADN, que tiene dos cadenas enlazadas (bicatenario). Las vacunas de ARN mensajero están formadas por cadenas de esta molécula que codifican un antígeno específico de un patógeno. Cuando el ARNm entra en la célula, el ribosoma sintetiza la proteína codificada que corresponde a un antígeno del patógeno, el cual posteriormente se presenta en la superficie de la célula, donde es reconocido por las células del sistema inmune, generando inmunidad.

Para evitar la rápida degradación de la molécula antes de entrar a la célula, se utilizan varias estrategias, una de ellas emplea microesferas de lípidos (liposomas) en cuyo interior se encuentra el ARN, que de esta forma entra en la célula con facilidad por un proceso de endocitosis. La idea de encapsular ARNm en nanopartículas lipídicas ha resultado atractiva por varias razones. El recubrimiento de lípidos proporciona una capa de protección que evita la rápida degradación, lo que hace posible un proceso de traducción genética para formación de proteínas más eficiente. Además, la capa externa de lípidos puede modificarse, lo que permite que se una a las células deseadas a través de interacciones de ligandos. Las nanopartículas pueden administrarse al organismo a través de diferentes rutas, por ejemplo por vía intravenosa o por inyección intramuscular.

Determinadas vacunas utilizan ARN autoampliflicable (replicón)Nota 1​, es decir, el ARN introducido se multiplica por sí mismo en el interior de la célula, lo que hace que se genere una cantidad muy superior del antígeno contra el que se pretende crear inmunidad. Esta técnica no pueden producir agentes infecciosos activos porque se ha eliminado el gen de la proteína estructural del virus y este no puede formarse completo ni propagarse a las células adyacentes.789

Una de las particularidades de las vacunas de ARN es que desencadenan la respuesta inmune mediante varios mecanismos. Estimulan la formación de anticuerpos y reclutan linfocitos T citotóxicos mediante la unión de la proteína virica producida en los ribosomas al complejo mayor de histocompatibilidad tipo I (MHC). Este doble mecanismo no tiene lugar con otros tipos de vacunas.

Mecanismo de acción de las vacunas de ARN e interacción con el complejo mayor de histocompatibilidad (MHC)

Las vacunas de ARN son menos estables que otros tipos de vacunas y pueden ser degradadas fácilmente por el calor. Por ello deben conservarse congeladas o a temperaturas muy bajas, lo que representa un inconveniente para el proceso de distribución. 2

Las ventajes potenciales de las vacunas de ARN son:

  • Seguridad. No se inoculan microorganismos vivos ni atenuados, por lo que no existe la posibilidad de provocar una infección.3
  • El ARN no se integra en el genoma del hospedador, que está formado por ADN, por lo que no existe la posibilidad de alterar el genoma. 3
  • El ARN se degrada con relativa rapidez, lo que podría evitar la aparición de efectos secundarios a largo plazo. 3
  • El proceso de producción puede ser rápido y más estandarizado que en las vacunas tradicionales, lo que facilitaría una rápida respuesta ante la aparición de nuevos agentes infecciosos.3

Se han realizado ensayos clínicos con vacunas ARN desarrolladas para evitar la aparición de diferentes enfermedades infecciosas causadas por virus, entre otras las provocadas por el virus de la gripevirus de la rabiacitomegalovirusVIHvirus Zika y SARS-CoV-2.10

COVID-19]

Virus Zika

Virus de la gripe 22

Virus de la rabia] .23

Citomegalovirus.24

Cáncer Las vacunas de ARN contra el cáncer no son preventivas, están diseñadas para el tratamiento de personas que ya están diagnósticadas de esta enfermedad e intentan potenciar el sistema inmunológico para que destruya las células malignas del tumor. 25​ 26

Los primeros estudios sobre la eficacia de vacunas de ARNm fueron realizados por Woff en 1990. Posteriormente se desarrollaron dos formas: vacunas de ARNm convencional y vacunas de ARNm autorreplicativo. Los trabajos iniciales no alcanzaron resultados prácticos por la fragilidad de la molécula de ARN y su inactivación por endonucleasas, sin embargo con el tiempo se han desarrollado métodos que aumentan la estabilidad del ARNm y permiten su producción sintética en el laboratorio a partir de plásmidos de ADN, mediante una transcripción enzimática y ARN polimerasa, sin que sean precisos cultivos celulares.27

  • .

Referencias]

  1.  Vacunas de ARN: la más prometedora generación de vacunas. Autor: María Coronada García Hidalgo. MoleQla, revista de Ciencias de la Universidad Pablo de Olavide. Número 26, 2017. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b Vacunas de ADN o ARN contra el nuevo coronavirus. Schmidt C. Investigación y Ciencia, junio 2020. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b c d e f RNA vaccines: an introduction, phg foundation, 2018. Autor: Laura Blackburn. Consultado el 20 de noviembre de 2020.
    1.  Verbeke, Rein; Lentacker, Ine; De Smedt, Stefaan C.; Dewitte, Heleen (octubre de 2019). «Three decades of messenger RNA vaccine development». Nano Today 28: 100766. doi:10.1016/j.nantod.2019.100766.
    1. ↑ Saltar a:a b mRNA vaccines — a new era in vaccinology. Autores: Pardi, N., Hogan, M., Porter, F. et al. Nat Rev Drug Discov 17, 261–279 (2018).
    1.  Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol., publicado el 27 de marzo de 2019.
    1.  Luis Enjuanes: «Nuestra vacuna será más potente«. Libertad Digital, publicado el 21 de noviembre de 2020
    1.  Amplifying RNA Vaccine Development. N Engl J Med 2020; 382:2469-2471
    1.  Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Molecular Therapy. Volumen 26, ISSUE 2, P446-455, 7 de febrero de 2018.
    1.  Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances 07 agosto 2020: Vol. 6, no. 32. Consultado el 20 de noviembre de 2020.
    1.  Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017 Sep 23; 390(10101): 1511-1520.
    1.  An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. 2017 Mar 21;7(1):252. VV.AA. Consultado el 22 de noviembre de 2020.
    1.  «Safety, Tolerability, and Immunogenicity of mRNA-1325 in Healthy Adult Subjects – Full Text View – ClinicalTrials.gov» (en inglés).
    1. ↑ Saltar a:a b Fernandez, E; Diamond, MS (19 April 2017). «Vaccination strategies against Zika virus»Current Opinion in Virology 23: 59-67. PMC 5576498PMID 28432975doi:10.1016/j.coviro.2017.03.006.
    1.  Pfizer and BioNTech Achieve First Authorization in the World for a Vaccine to Combat COVID-19. Drugs.com, consultado el 3 de diciembre de 2020
    1.  Canadá aprueba la vacuna de Pfizer contra la Covid-19. Diario de Mallorca, publicado el 9 de diciembre de 2020.
    1.  La EMA autoriza la vacuna de Pfizer. La Vanguardia, publicado el 21 de diciembre de 2020.
    1.  «FDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine»U.S. Food and Drug Administration (FDA). Consultado el 18 December 2020.
    1.  Agencia SINC (7 de enero de 2021). «La Comisión Europea autoriza el uso de la vacuna de Moderna». Agencia SINC. Consultado el 7 de enero de 2021.
    1.  «Vaccine Development, Testing, and Regulation — History of Vaccines»www.historyofvaccines.org. Consultado el 28 de enero de 2016.
    1.  «Zika virus: US scientists say vaccine ’10 years away’ – BBC News»BBC News (en inglés británico). Consultado el 28 de enero de 201628 de enero de 2016.
    1.  Una vacuna contra la gripe elaborada a partir del ARN. CORDIS. Resultados de investigación en la UE. Consultado el 9 de diciembre de 2020
    1.  Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Autores: Nicole Armbruster, Edith Jasny, Benjamin Petsch. Vaccines (Basel). Diciembre 2019 ; 7(4): 132. Publicado el 27 de septiembre de 2019. PMID: 31569785
    1.  Laboratorio Moderna. Consultado el 13 de diciembre de 2020.
    1.  Cancer Treatment Vaccines. National Cancer Institute, consultado el 5 de diciembre de 2020.
    1.  Vaccine Strategy in Melanoma. Surg Oncol Clin N Am. Julio 2019; 28(3): 337–351.
    1.  Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. (1990) 247:1465–8.
    1.  Replicones: moléculas de ARN con capacidad para replicarse pero no para propagarse de una célula a otra.

EL LOBULO FRONTAL

ANATOMIA Y FISIOLOGIA DEL LOBULO FRONTAL

El lóbulo frontal es uno de los cuatro lóbulos de la corteza cerebral y constituye una región grande que está situada en la parte delantera del cerebro, justo detrás de la frente. Es el responsable de procesos cognitivos complejos, las llamadas funciones ejecutivas.

El lóbulo frontal se relaciona con el control de los impulsos, el juicio, la producción del lenguaje, la memoria funcional (de trabajo, de corto plazo), funciones motoras, comportamiento sexual, socialización y espontaneidad.

Su nombre, lóbulo frontal proviene del latín: lobus frontalis) es un área de la corteza cerebral de los vertebrados. Los lóbulos frontales son los más “modernos” filogenéticamente. Esto quiere decir que solamente los poseen de forma desarrollada los animales más complejos, Como los vertebrados y en especial los homínidos. En el lóbulo frontal se localizan funciones vitales para la supervivencia .

Las funciones del lóbulo frontal son múltiples y van desde lo puramente somático hasta espiritual solapando esta funciones entre sí

 Esta estandarizado en tres áreas funcionales que tienen una representación anatómica. Teniendo en cuenta que el cerebro la relación forma conjunción es más idea de que real, pero que la necesitamos para entendernos.

Área motora o corteza motora: Proyecta el movimiento que tienen que realizar las extremidades y los movimientos faciales..

Área premotora o corteza premotora: Esta área proporciona el mecanismo para ejecutar los movimiento y selecciona  los movimientos que van a ser ejecutados.

Area prefrontal o corteza prefrontal: Es la que controla los procesos cognitivos para que los movimientos, comportamientos y conductas que se vayan a realizar sean los apropiados al momento y lugar concreto.

Las alteraciones cognitivo-conductuales qué se producen por lesiones en esta área, se pueden estandarizar en:

Dificultad o incapacidad para formar estrategias y/o tomar decisiones correctas en la resolución de problemas.

Dificultad para anticipar, planificar, secuenciar y crear expectativas.

Disminución del pensamiento divergente, el cual está relacionado con la creatividad.

Disminución del habla. Pero no de pérdidas en la capacidad de comunicación, sino de aspectos relacionados con disminución del discurso y la espontaneidad oral, no variación en el tono de voz…

Disminución de la espontaneidad conductual general, como por ejemplo alegrarse tras una buena noticia, llorar por una mala…

Disminución de la flexibilidad conductual, lo cual altera la capacidad de buscar alternativas, cambios o estrategias en las situaciones del día a día. Y además genera rigidez mental produciendo perseverancia en pensamientos o ideas.

Dificultad para inhibir estímulos visuales externos, generando distracción y disminuyendo la capacidad de focalizar y controlar la mirada voluntaria.

Perdida de la memoria de trabajo, lo que dificulta mantener información en el tiempo y por lo tanto generar aprendizajes nuevos.

Disminución o pérdida de la conducta social, que es la que controla que tipo de comportamiento se debe realizar en cada contexto, y por lo tanto aparecerán conductas de desinhibición social como verborrea, irritabilidad, impulsividad, agresividad…

Modificación de la conducta sexual. Pueden aparecer conductas de desinhibición sexual o de indiferencia o disminución del interés sexual.

Disminución o pérdida de la capacidad de asociar acontecimientos personales a situaciones vividas.

A nivel cognitivo-conductual el lóbulo frontal esta encargado de controlar la mayoría de las capacidades relacionadas con la personalidad y las conductas de las persona

Relación de los lóbulos frontales, las funciones ejecutivas y las conductas

Los lóbulos prefrontales son el sustrato anatómico para las funciones ejecutivas, que son aquellas que nos permiten dirigir nuestra conducta hacia un fin y comprenden la atención, planificación, secuenciación y reorientación sobre nuestros actos.

Los lóbulos frontales tienen importantes conexiones con el resto del cerebro. Es el del director de orquesta; que dirige la información de todas las demás estructuras y las coordina para actuar sincrónicamente. Decía Goldberg, en El cerebro ejecutivo.

Los lóbulos frontales también están muy implicados en los componentes motivacionales (motivación) y conductuales (conducta) del sujeto;.​ por lo que si se produce un daño en esta estructura puede suceder que el sujeto mantenga una apariencia de normalidad al no existir déficits motrices, de habla, de memoria o incluso de razonamiento; existiendo sin embargo un importante déficit en las capacidades sociales y conductuales.

Este tipo de pacientes pueden ser por un lado apáticos, inhibidos… o por el contrario desinhibidos, impulsivos, poco considerados, socialmente incompetentes, egocéntricos, etcétera. Este tipo de déficits, al no ser tan evidentes como otros fueron los que llevaron durante mucho tiempo a los médicos a considerar a estos lóbulos como las estructuras «silentes»; es decir, sin función aparente. Solo recientemente se ha reconocido la importancia central del lóbulo frontal en nuestra actividad cognitiva.

El caso de Phineas Gage y Egas Moniz se consideran un prototipos de individuos que tras lesionarse ambos lóbulos frontales, cambiaron marcadamente su conducta.………………………………..

El primer caso en el que se describió un cambio de conducta debido a un daño frontal data de 1848, y fue el posteriormente famoso Phineas Gage, descrito por el doctor Harlow. Actualmente está considerado una de los casos clínicos clásicos dentro de la historia de la neurología y la neuropsicología cognitiva.

El reportaje clínico de Boston destaca la sorpresa del cuerpo médico por la supervivencia de Gage, que debería haber muerto instantáneamente; dice: «inmediatamente después del estallido Gage cayó de espaldas»; algo más tarde tuvo «movimientos convulsivos en las extremidades, pudiendo hablar a los pocos minutos»; los obreros (que le tenían mucho afecto) lo llevaron en brazos hasta la ruta, distante una veintena de metros, y lo subieron a una carreta que lo transportó un kilómetro, hasta el hotel de Joseph Adams; Gage estuvo sentado, muy erguido, todo el trayecto y después «se bajó de la carreta por sí mismo, ayudado por algunos de sus hombres».

John Harlow, uno de los médicos del pueblo. Mientras espera, supongo que dice, «pero señor Gage, ¿qué está pasando?» y una hora más tarde de la explosión, llega el doctor Edward Williams, colega más joven de Harlow. Años después describirá la escena como sigue: «Cuando llegué, Gage estaba sentado en una silla, en la galería del hotel de Adams, en Cavendish; me dijo ‘Doctor, aquí hay trabajo para usted’. Había visto la herida antes de bajar del coche, ya que las pulsaciones del cerebro eran patentes, pero sólo pude detallar su aspecto después del examen. La parte superior de la cabeza parecía un embudo invertido; en los bordes de la lesión, había pedazos de hueso; la apertura a través del cráneo e integumentos tenía unos tres centímetros de diámetro, y la herida parecía producida por un objeto en forma de cuña, que hubiera perforado de abajo hacia arriba. Mientras le examinaba la cabeza, Gage contaba a los mirones cómo había sucedido el accidente; se expresaba con tanto juicio que le hice directamente las preguntas del caso, en lugar de plantearlas a los testigos que lo acompañaban. Me relató, como haría muchas veces en años posteriores, algunos detalles del percance. Estoy en condiciones de afirmar que, en ningún momento, entonces o después, advertí en él algún síntoma de irracionalidad, excepto en una ocasión, a dos semanas del accidente, en que insistía en decirme John Kirwin, a pesar de lo cual me contestaba correctamente todas las preguntas». 3

La supervivencia es más increíble todavía si se considera la forma y peso de la barra. Henry Bigelow, profesor de cirugía de Harvard, la describe así: «El fierro que atravesó el cráneo pesa seis kilogramos. Mide un metro con diez centímetros, y tres centímetros de diámetro. El extremo que penetró primero es aguzado, y la punta tiene un largo de veinte centímetros y un diámetro de cinco milímetros, lo que posiblemente salvó la vida del paciente

Todo el episodio es sorprendente: sobrevivir a una explosión como ésa, y poder, a pesar de una enorme herida en el cráneo, hablar, caminar y ser coherente de inmediato, resulta caso increíble. Más asombroso aún es que Gage haya resistido la inevitable infección que se presentó en la herida,. Aunque en esos tiempos no hay antibióticos, el médico, con los productos químicos a su alcance, limpiará vigorosa y regularmente la llaga, y mantendrá al paciente en una posición inclinada para drenarla mejor. Gage tendrá un absceso —que Harlow quitará prestamente con su escalpelo— y fiebre alta, pero su contextura robusta y juvenil superará todos los inconvenientes.

El paciente será dado de alta en menos de dos meses. Sin embargo, ese increíble desenlace pierde relieve si se lo compara con el vuelco extraordinario que se producirá en la personalidad de Gage. Sus sueños, ambiciones, apetencias y desapetencias, están por cambiar. El cuerpo de Gage está vivo y bien, pero un nuevo espíritu lo anima.

Este caso ha sido extensamente investigado por el matrimonio Hanna y António Damásio, De forma que aunque los médicos que lo trataron en vida dieron abundantes anotaciones de su cambio de conducta, no es suficiente para localizar la lesión cerebral ya que al traumatismo que sufrió por la penetración de la de hierro en su cráneo, se siguió unos dias mas tarde de la supuración de la herida y es mas que probable que esta infección dañara además tejidos neurales adyacentes a la lesión y ésta fuera mas extensas que el propio lóbulo frontal. .

Lo más sorprendente de esta desagradable historia es la discrepancia de personalidad de Gage antes y después del accidente. Su normalidad se vio interrumpida por rasgos funestos que no desaparecieron jamás. Había sabido todo lo necesario para optar adecuadamente y ascender en la vida; tenía un marcado sentido de responsabilidad personal y social que se reflejaba en la forma como había logrado avanzar en su carrera profesional; era puntilloso en el trabajo y despertaba admiración en colegas y empleadores. Perfectamente adaptado a la sociedad, al parecer actuaba de manera escrupulosa y ética. Después del accidente se convirtió en un individuo irrespetuoso y amoral, cuyas decisiones no cuidaban sus intereses más elementales; se dio a inventar cuentos que «sólo nacían de su fantasía», según dice Harlow. El futuro no le interesaba y era absolutamente incapaz de preverlo

Si es válido en mi opinión la  leucotomía prefrontal que practicó Almeida Lima en 1935, tras la insistencia de el neurólogo portugués Egas Moniz Y. La leucotomía prefrontal consistía en una ablación de los lóbulos prefrontales del cerebro y su objetivo era tratar trastornos mentales como la depresión. Egas Moniz afirmó tener buenos resultados popularizándose en todo el mundo y recibiendo éste el premio Nobel por ello en 1949. Sin embargo, la realidad era distinta y muchos de sus pacientes tuvieron fuertes cambios de personalidad que les incapacitaron para la vida en sociedad. Pese al atrevimiento de estos autores, es necesario recordar, la ausencia a lo del remedios para tratar a los enfermos psiquiatricos. No siempre la ciencias han sido virtuosas, ni la evolución tampoco lo ha sido, pero es lo que tenemos. Afortunadamente en nuestros días la investigación animal evita estos desastres. Y

Áreas del Lóbulo Frontal

Área precentral

Ubicada en la circunvolución precentral, por delante del Surco Central de Rolando y por detrás del Surco Precentral.

Se divide en:

Región posterior (área motora primaria o área 4 de Brodmann): Su función es llevar a cabo los movimientos individuales de diferentes partes del cuerpo. Recibe aferencias del tálamo, corteza sensitiva, área premotora, cerebelo y ganglios basales ya que esta área constituye la estación final para la conversión del diseño en la ejecución del movimiento.2

Región anterior (área motora secundaria, área premotora, o área 6 de Brodmann y partes de las áreas 8, 44 y 45): Almacena programas de actividad motora reunidos como resultado de la experiencia pasada. Participa en el control de movimientos posturales groseros mediante sus conexiones con los ganglios basales, además recibe aferencias de la corteza sensitiva y tálamo. Es la que programa la actividad del área motora primaria.

Esta área no produce perdida permanente del movimiento.3

Campo ocular frontal

Se encarga de los movimientos conjugados de los ojos, sobre todo los del lado opuesto. Controla los movimientos oculares voluntarios y es independiente de estímulos visuales.

Área motora del lenguaje o Área de Broca

Ubicada en la circunvolución frontal inferior, es importante en la formación de palabras, debido a sus conexiones con el área motora primaria. En la mayoría de las personas esta área es dominante en el hemisferio izquierdo, y la ablación del hemisferio no dominante no tiene efectos sobre el lenguaje, mientras que el daño del hemisferio dominante produce pérdida de la capacidad para producir la palabra, es decir una afasia de expresión, conocida como Afasia de Broca.

Corteza prefrontal

Se ubica por delante del área penetrante, región extensa que se conecta con un gran número de vías aferentes y eferentes. Se vincula con la personalidad del individuo y con la regulación de la profundidad de los sentimientos, así como en la determinación de la iniciativa y el juicio del individuo. También interviene en el proceso de atención.

Las lesiones de la corteza prefrontal se pueden presentar como un síndrome apático o pseudodepresivo, que se traduce en una reducción de la espontaneidad motora y verbal, pérdida de iniciativa, actividad motora y mental más lenta, indiferencia afectiva, escasa emotividad y menor interés sexual. (se relaciona con lesión de la región frontomedial).

Mientras otros presentan un síndrome desinhibido o pseudopsicopático, que se caracteriza por dificultad para reducir la velocidad de ciertas conductas, pérdida de autocrítica, conducta social inapropiada, indiferencia por los demás, y desinhibición o promiscuidad sexual (se relaciona con una lesión de la región frontobasal).

La corteza frontopolar es la parte de la corteza cerebral prefrontal, que ha evolucionado más recientemente y está relacionada con la planificación y el control de otras regiones cerebrales. Este corte realizado en la parte frontal del cerebro también revela otros elementos del cráneo, como los ojos, la cavidad nasal, los senos maxilares y la lengua.

Referencias

 Snell, Richard S. (5ta edición). Neuroanatomía Clínica..

 https://web.archive.org/web/20071012232050/http://www.oaid.uab.es/nnc/html/entidades/web/03cap/c03_02.html.


 

TRATAMIENTO QUIRÚRGICO EN EL PARKINSON


TRATAMIENTO QUIRÚRGICO 1

El tratamiento quirúrgico de la Enfermedad de Parkinson se inició en los años 50 y se abandonó prácticamente con la introducción de la levodopa. Más tarde, en los años 80 se reinició debido a las complicaciones del tratamiento con levodopa a largo plazo. La cirugía de Parkinson se realiza mediante una lesión (talamotomía o palidotomía), o bien con técnicas de estimulación profunda (del tálamo, del subtálamo o del pálido). Actualmente, las más utilizadas son las técnicas de estimulación. No obstante, no todos los pacientes son buenos candidatos a cirugía de Parkinson. El tratamiento quirúrgico está indicado cuando los síntomas motores (temblor, discinesias, alteraciones de la marcha, rigidez, bradicinesia) no pueden ser mejorados suficientemente con el tratamiento farmacológico.

TALAMOTOMÍA:
Es la destrucción quirúrgica de las células de una parte del cerebro llamada Tálamo. Es una lesión irreversible con efectos secundarios permanentes que, en ocasiones, puede tener efectos adversos que alteren otras funciones como la capacidad de hablar o la de moverse. Se realiza únicamente en un lado del cerebro. Entre 1946 y 1967 se realizaron más de 210.000 talamotomías.

PALIDOTOMÍA:
Es la destrucción quirúrgica de células específicas de la parte del cerebro llamada Globo Pálido. Es también, una lesión irreversible utilizada en casos de Enfermedad de Parkinson grave, que no responde al tratamiento farmacológico. En ocasiones, requiere una segunda intervención para conseguir los resultados que persigue. Esta intervención se puede realizar de manera bilateral, es decir, en ambas partes del cerebro.
Entre 1985 y 1995 resurge la cirugía lesional funcional estereotática (palidotomía y talamotomía), aplicada a pacientes con Enfermedad de Parkinson grave.   

ESTIMULACIÓN CEREBRAL (DSB Therapy):
La terapia de estimulación cerebral profunda (DBS Therapy) es un tratamiento quirúrgico que puede reducir algunos de los síntomas asociados a la enfermedad de Parkinson (EP)1. Esta terapia ajustable y, si es necesario, reversible, usa un dispositivo implantado que estimula eléctricamente el cerebro bloqueando las señales que causan los síntomas motores incapacitantes.en el parkinson

¿Cómo funciona?

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para administrar estimulación eléctrica en áreas muy definidas del cerebro.

La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. La estimulación eléctrica puede ajustarse de forma no invasiva para aumentar al máximo los beneficios de la terapia. Como resultado, muchas personas logran tener un mayor control sobre los movimientos de su cuerpo. Un sistema DBS consta de tres componentes implantados:

–       Electrodo: un electrodo se compone de cuatro cables delgados aislados dispuestos en espiral con cuatro polos en la punta del electrodo. El electrodo se implanta en el cerebro.

–       Extensión: una extensión se conecta al electrodo y se conduce bajo la piel desde la cabeza al tórax superior pasando por el cuello.

–       Neuroestimulador: el neuroestimulador se conecta a la extensión. Este pequeño dispositivo estanco, similar a un marcapasos cardíaco, contiene una batería y componentes electrónicos. El neuroestimulador se implanta normalmente bajo la piel en el tórax, debajo de la clavícula (si el paciente lo requiere, el cirujano puede implantar el neuroestimulador en el abdomen). El denominado, a veces, “marcapasos del cerebro” genera los impulsos eléctricos necesarios para la estimulación. Estos impulsos eléctricos se envían a través de la extensión y el electrodo hasta las áreas deseadas del cerebro. Los impulsos se pueden ajustar de forma inalámbrica para comprobar o cambiar los parámetros del neuroestimulador.

Beneficios y riesgos: DBS Therapy

Aunque actualmente no hay ninguna cura para la enfermedad de Parkinson, la terapia de estimulación cerebral profunda (DBS Therapy) de Medtronic para la enfermedad de Parkinson (EP) puede tratar algunos de los síntomas de la enfermedad de Parkinson.1 DBS Therapy no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

Beneficios Se ha demostrado que la DBS reduce algunos de los síntomas asociados a la enfermedad de Parkinson.1 Medtronic DBS Therapy está aprobada actualmente para tratar la enfermedad de Parkinson, el temblor esencial y la distonía.* Desde 1993, más de 60.000 pacientes en todo el mundo se han beneficiado de Medtronic DBS Therapy.2 La terapia de estimulación cerebral profunda es:

– Eficaz: el sistema DBS de Medtronic administra la estimulación en áreas específicas del cerebro. En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.2

– Ajustable: los parámetros de la estimulación los puede establecer su médico para satisfacer sus necesidades específicas.

– Reversible: a diferencia de otros tratamientos quirúrgicos, DBS Therapy no implica la eliminación de ninguna parte del cerebro. El sistema DBS de Medtronic se puede desactivar o extraer.

– Riesgos Los riesgos de DBS Therapy pueden incluir riesgos de la cirugía, efectos secundarios o complicaciones del dispositivo. El implante del sistema de neuroestimulación conlleva los mismos riesgos que van asociados a cualquier otra cirugía cerebral. El médico puede proporcionar más información sobre estos y otros posibles riesgos y efectos secundarios. Muchos efectos secundarios relacionados con la estimulación se pueden solucionar ajustando los valores de estimulación. Puede que sean necesarias varias visitas de seguimiento para encontrar los valores de estimulación óptimos.

Acceder a DBS Therapy Factores que el médico puede valorar: DBS Therapy La terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson no es adecuada para todos los pacientes. Sólo un médico con experiencia en DBS puede determinar si usted cumple los requisitos para la terapia. Generalmente, la terapia no se recomienda para las personas con un diagnóstico reciente de enfermedad de Parkinson ni para aquellos pacientes que responden a la medicación. Puede ser candidato a DBS Therapy si:

– Experimenta períodos molestos en los que no responde al tratamiento (períodos en los que la medicación no ayuda lo suficiente y aparecen los síntomas)

– Experimenta discinesias (movimientos excesivos involuntarios) – No responde a las dosis de fármacos dopaminérgicos en un día típico

Preguntas frecuentes: DBS Therapy ¿Qué es la terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson? DBS Therapy ofrece un método ajustable y, si es necesario, reversible para el tratamiento de los síntomas de la enfermedad de Parkinson (EP).

¿Cómo funciona la terapia?en el parkinson

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para producir la estimulación eléctrica de las partes del cerebro que controlan el movimiento. La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. Como resultado, algunas personas logran tener un mayor control sobre los movimientos de su cuerpo.

¿Cuáles son los componentes implantados de un sistema DBS?

El sistema DBS consta de tres componentes implantados: – Dos electrodos implantados en el cerebro – Dos extensiones que se conducen bajo la piel desde la cabeza, por el cuello y hasta el tórax superior – Uno o dos neuroestimuladores implantados bajo la piel del pecho debajo de la clavícula y conectados a las extensiones

¿Es posible ajustar la configuración del dispositivo?

Un médico puede ajustar de forma no invasiva la configuración del dispositivo y los niveles de estimulación utilizando un dispositivo de programación.

¿Qué beneficios ofrece DBS Therapy?

Aunque no hay ninguna cura para el enfermedad de Parkinson, DBS puede reducir algunos de los síntomas asociados.1

¿Cuáles son los riesgos potenciales de DBS Therapy?

Los riesgos de DBS Therapy pueden incluir riesgos de cirugía, efectos secundarios o complicaciones del dispositivo. Consulte Beneficios y Riesgos para ver más detalles.

¿Cuál es la historia de DBS Therapy?

Los neurólogos y neurocirujanos utilizan la estimulación eléctrica desde los años sesenta como método de localización y distinción de lugares específicos del cerebro. La tecnología de estimulación cerebral se desarrolló en los años ochenta.

¿Cura DBS Therapy la enfermedad de Parkinson?

No hay ninguna cura para la enfermedad de Parkinson en este momento. DBS Therapy puede reducir algunos de los síntomas de la enfermedad de Parkinson1, pero no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

¿Cómo es de eficaz DBS para tratar la enfermedad de Parkinson?

En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.

IMPLANTE DE CÉLULAS:
Las técnicas de implante de células productoras de dopamina, como las células de cuerpo carotídeo o las células del mesencéfalo fetal, o de factores de crecimiento neuronal se deben considerar todavía en fase de experimentación. Hospitales públicos donde se aplica Cirugía de Parkinson:

En el servicio de neurocirugía de Sevilla sí acumuló una gran experiencia en las tablas moto mías del VIM, para el tratamiento de los movimientos anormales en la enfermedad de Parkinson sobre todo el temblor .

esta experiencia se vio truncada cuando apareció la levodopa .

la intervención estaba indicada preferentemente en temblor uni o bilateral y el objetivo era exclusivamente hacerlo desaparecer .

Se  utilizaba el sistema Estereotáctico de Lekssel que se colocaba con anestesia local en un enfermo despierto para el seguimientos del temblor.

Una vez colocado el marco del Lekssel, se hacía un trepano de 15 mm de diámetro en la región frontal derecha y se utilizaba una aguja de Dandy para practicar una ventrículografia con contraste y se dibujaban así las comisuras anterior y posterior del tercer  ventrículo.

El “Target” para la lesión, localizaba , en la unión del tercio posterior de la línea intercomisural, con los dos tercios anteriores,para el plano sagital. Y la distancia desde la paret externa  tercer ventrículo era siempre de 14 mm.

La lesión se hacia con el criocoagulador de Cooper y se enfriaba con nitrógeno liquido, de manera progresiva hasta 80* bajo cero , donde se formaba una bola de hielo que destruía este núcleo VIN, y de igual forma cuando se había practicado la lesión se calentaba de forma progresiva, hasta que desaparecía la bola de hielo, y no lesionara el de una manera progresiva cerebral al retirarla.

La sonda se introducia en el cerebro hasta el target de forma lenta, solo cuando quedan 5 mm fuera, se hacia una entrada brusca. Entonces, si se había localizado correctamente el núcleo, el enfermo que estaba con el brazo mantenido en alto, dejaba de temblar inmediatamente,

“Estábamos en el sitio”.

Al mismo tiempo, durante toda la intervención se le hacia  hablar, para ver si estábamos invadiendo la capsula interna.

Después de cinco minutos, si el temblor habia desaparecido, no tenia paresia ni alteración del lenguaje. Se retiraba la sonda lentamente.

Los resultados era magníficos, y el porcentaje de éxito muy elevado y la persistencia de los resultados muy prolongados.

La llegada de la DOPA, disminuyo el numero de intervenciones, que fueron hechas en 103 enfermos.

Pese a lo sencillo de la técnica, manejarla con seguridad, costaba y era yo en el servicio de Neurocirugía, el encargado de hacer esta técnica

Nunca lesionamos el n, Pálido ni el n subtalámico, la ventriculografía no permitía localizar esta ultimo núcleo y el estar muy vascularizado, había dado  varios accidentes hemorrágicos según la literatura.

Referencias

Enrique Rubio Garcia

Talamotomia con frio

LA ATENCION Y LOS GANGLIOS BASALES

LA ATENCION Y  LOS GANGLIOS BASALES

Atención

Es la aplicación voluntaria de la actividad mental o de los sentidos a un determinado estímulo u objeto mental o sensible.

También se  utiliza como acto que muestra que se está atento al bienestar o seguridad de una persona o muestra respeto, cortesía o afecto hacia alguien.

La atención como parte de estar consciente, necesita de una complicada actividad y de una compleja red neuronal, pero dispuesta preferentemente en los Ganglios basales Actualmente se acepta que la atención no es una función unitaria y que puede clasificarse en 2 grandes grupos: atención involuntaria y atención voluntaria. La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

Se acepta que la atención no es un proceso único, sino que puede ser caracterizado como diversas funciones:

a) Estado de alerta, que corresponde a la atención involuntaria y sirve para aumentar la disposición para recibir información del entorno;

b) Atención selectiva, que corresponde a un tipo de atención voluntaria y sirve para seleccionar un estímulo específico ignorando los demás;

c) Atención sostenida, otro tipo de atención voluntaria, que corresponde a la capacidad de mantener una misma conducta a través del tiempo y la fatiga;

 d) Atención alternante, un tipo de atención voluntaria, que se manifiesta como la capacidad de cambiar el foco de atención de un objeto a otro;

e) Atención dividida, otro tipo de atención voluntaria, que corresponde a la capacidad de focalizarse en dos o más estímulos al mismo tiempo (Maureira y Flores, 2016). El ejercicio físico puede mejorar los niveles de muchas funciones cognitivas, constituyéndose como una herramienta importante para potenciar la actividad cerebral

  Este articulo muestra preferencia por la intervención de los ganglios basales.

Los ganglios basales son grandes estructuras neuronales subcorticales que forman un circuito de núcleos interconectados entre sí cuya función es la iniciación e integración del movimiento. Reciben información de la corteza cerebral y del tronco del encéfalo, la procesan y proyectan de nuevo a la corteza, al tronco y a la médula espinal para contribuir así a la coordinación del movimiento. Este circuito está compuesto por varias estructuras que se pueden categorizar según su anatomía o su función.

   Anatómicamente los ganglios basales son masas de sustancia gris en el telencéfalo que incluyen:

1) núcleo caudado, 2)

2 ) nucleo lenticular (formado por el  n putamen y el globo pálido externo e interno,

3) y la amígdala.

 Funcionalmente se relacionan a través de múltiples conexiones con núcleos próximos que incluyen al núcleo subtalámico (en el diencéfalo), la sustancia negra pars compacta y reticulata (en el mesencéfalo) y el n pedúnculopontino (en el puente).

El estriado es la estructura funcional «receptora» de aferencias extrínsecas a los ganglios basales, a través de diferentes neurotransmisores, en su mayoría excitatorios. Recibe proyecciones: 1) de la corteza cerebral (glutamatérgicas), 2) del tálamo (glutamatérgicas), y 3) de estructuras del tronco del encéfalo: SNpc (dopaminérgicas), del Núcleo pedúnculo pontino (NPP) del puente (glutamatérgicas y colinérgicas), del n dorsal del rafe (serotoninérgicas) y del locus coeruleus (noradrenérgicas).

   La estructura eferente de los ganglios basales es el globo pálido interno, que envía proyecciones gabaérgicas para comunicarse con la corteza frontal a través los núcleos motores del tálamo (ventral anterior y ventrolateral). Las vías eferentes se dividen clásicamente en dos: la vía directa y la vía indirecta.

   La vía directa se activa mediante los receptores dopaminérgicos tipo 1 (D1). Las neuronas espinosas medianas del estriado, producen una inhibición gabaérgica del GPI y la SNr que a su vez inhibe el tálamo cuya función es excitatoria sobre la corteza frontal. Por tanto, cuando el estriado recibe las proyecciones dopaminérgicas de la SNpc, se activa la vía directa y se activa la corteza motora (ya que se inhibe la proyección inhibitoria del GPI sobre el tálamo). La función de la vía indirecta es la contraria y normalmente está inhibida por las proyecciones dopaminérgicas de la SNpr a través de receptores dopaminérgicos D2. Al encenderse, a través de proyecciones gabaérgicas levanta el freno sobre el NST, cuya función habitual es la activación del GPI, que como se ha mencionado previamente, actúa como inhibidor tálamico y de la corteza.

  En presencia de dopamina, neurotransmisor aferente fundamental de los ganglios basales, se activa la vía directa y por tanto la corteza está activada, mientras que se apaga la vía indirecta, y por tanto la corteza no esta inhibida.

   Los trastornos de los ganglios basales se producen como consecuencia de la neurodegeneración o agresión secundaria de cualquiera de sus estructuras, produciendo un desequilibrio en este complicado circuito y por tanto una alteración de la coordinación motora. Se dividen en patologías hipocinéticas que implican pobreza de movimiento y en patologías hipercinéticas caracterizadas por exceso de movimiento

Los circuitos de formación de memoria se originan a partir de información procesada en áreas de asociación polimodal como la corteza frontal, temporal y parietal, de ahí el circuito lleva la información a la corteza parahipocámpica y corteza perirrinal y de ahí a la corteza entorrinal. Esta se comunica a través de la vía perforante con la circunvolución dentada, esta proyecta sus axones a través de las fibras musgosas a la región CA3 del hipocampo, que a su vez se conecta, con la vía colateral de Schaffer, a la región CA1 del hipocampo. Esta región se une con el subículo, el cual proyecta de vuelta a la corteza entorrinal. De aquí la información viaja hacia la corteza parahipocámpica y entorrinal y de ambas vuelve a las cortezas de asociación polimodal

El  circuito consta de dos sub-circuitos: la vía directa y la vía indirecta. La sustancia negra compactada proyecta axones dopaminérgicos al putamen provocando la activación de este núcleo (cuando estimula los receptores D1), que aumenta su inhibición sobre el globo pálido interno y la sustancia gris reticulada mediante sus axones gabaérgicos. Esto produce una disminución de la actividad inhibitoria sobre el tálamo, el cual aumenta su activación sobre la corteza motora. De esta forma se comienza el movimiento. Este circuito es conocido como la vía directa Por otra parte, la sustancia negra compactada provoca la inhibición del putamen (cuando estimula los receptores D2), que disminuye su inhibición sobre el globo pálido externo, lo cual provoca un aumento de la actividad inhibitoria de este núcleo sobre el subtalámico, pero que al mismo tiempo este es excitado por las vías glutamatérgicas que vienen de la corteza, lo que permite que active al globo pálido externo y sustancia gris reticulada. Al ocurrir esto las vías inhibitorias de estos núcleos afectan al tálamo disminuyendo su activación, por lo cual ya no puede estimular la corteza motora y el movimiento se termina. Este circuito es conocido como la vía

Los procesos de memoria más estudiados son la habituación y la sensibilización. Un estímulo excitatorio que se repite produce una disminución del potencial sináptico de la neurona sensitiva sobre las interneuronas y sobre la neurona motora, lo que provoca que la respuesta disminuya. Esta disminución del potencial sináptico se produce por una disminución en la movilización de las vesículas que contienen el neurotransmisor glutamato, lo que provoca una menor liberación de la sustancia química y por ende disminuye la fuerza de la sinapsis, situación que puede durar varios minutos.

Este mecanismo es el que produce la memoria de corto plazo para la habituación. El sistema molecular de la memoria de corto plazo para la sensibilización es más complejo que el de la habituación.

Un estímulo nocivo aplicado en una vía produce un aumento de intensidad en otra vía a la cual se le aplica un estímulo no nocivo, esto mediante una interneurona facilitadora.

Existen dos vías de activación del botón terminal de la neurona sensitiva mediado por esta interneurona: a) en la primera vía la serotonina (5-HT) activa el receptor de la neurona sensitiva que a su vez activa una proteína G que aumenta la actividad de adenililciclasa que convierte el ATP en AMPciclico, el cual activa la proteincinasa dependiente de AMPc (PKA), esta fosforila los canales de potasio (k + ), esto prolonga el potencial de acción y permite más entrada de calcio (Ca ++ ) al botón terminal, lo que aumenta la liberación de glutamato (Glu) a la hendidura sináptica (Fig. 8.6); b) en la segunda vía la serotonina (5-HT) activa otro receptor de la neurona sensitiva que a su vez activa una proteína G que activa la fosfolipasa C (PLC) que a través del diacilglicerol, activa la proteincinasa C (PKC). Está en conjunto con PKA permiten la apertura de canales de Ca ++ con lo cual aumenta la liberación de Glu (Fig. 8.7). En ambos casos se produce una facilitación presináptica, ya que la interneurona facilitadora ayuda a la liberación del neurotransmisor de la neurona sensitiva

La intervención de la corteza cerebral, en las funciones psíquicas es dominante, no obstante la intervención de las estructuras límbicas tienen al mismo tiempo un papel fundamental

Referencias

 Saltar a:a b c Tortora-Derrickson. Principios de Anatomía y Fisiología. Consultado el 30 de noviembre de 2019

Lesiones talámicas: un desafío semiológico. Revista Uruguaya de Medicina Interna, mayo 2016

 The thalamus of secrets. Neurology Journal. Publicado el 6 de marzo de 2016. Consultado el 1 de diciembre de 2019.

 Manual de neurofisiología. Autor: Daniel P. Cardinali. Consultado el 1 de diciembre de 2019.

 El sistema nervioso central humano. Autores: Nieuwenhuys, Voogd, Van Huijzen. Consultado el 8 de diciembre de 2019

NÚCLEOS DEL TÁLAMO

NÚCLEOS DEL TÁLAMO

El tálamo es el componente más voluminoso del diencéfalo y el principal sitio de relevo para la mayoría de los estímulos que van en dirección de la corteza cerebral.

Los núcleos del tálamo se organizan alrededor de la lámina medular interna que tiene forma de “Y”, dividiendo el tálamo en tres partes: anterior, medial y lateral. En cuanto a la función que desempeña cada uno de los núcleos, podemos clasificarlos en núcleos talámicos de relevo y núcleos de proyección difusa.

Los principales grupos neuroanatámicos del tálamo cerebral se suelen dividir en territorios, que a su vez pueden también subdividirse en núcleos que incluyen:

Territorio anterior del tálamo-tiene solo un núcleo

Núcleo anterior (NA), demarcado por la lámina medular interna

Descripciones más detalladas lo dividen en un grupo de núcleos anterodorsal, otro anteromedial y un grupo anteroventral.1

Territorio medial del tálamo:

Núcleo mediano dorsal (MD)

Núcleos de la línea media

Núcleos de la lamina medular interna del tálamo: Núcleo centromedial (CM)

Territorio lateral del tálamo:

Grupos ventrales

Núcleo ventral anterior (VA)

Núcleo ventral lateral (VL)

Núcleo ventral posterior (VP)

ventral posteromedial (VPM)

ventral posterolateral (VPL)

ventral intermedio (VI)

Grupos dorsales:

núcleo lateral dorsal (LD)

núcleo lateral posterior (LP) último acceso 6 de febrero de 2012

Territorio posterior del tálamo, incluido muchas veces en el territorio lateral del tálamo

Pulvinar

Cuerpos geniculados, región llamada también metatálamo

medial, con un prominente núcleo medial

lateral, con un prominente núcleo dorsal

Otras zonas conocidas la estría medular, el núcleo submedial y parte de los núcleos reticulares

otros territorios:

núcleos intralaminares, situados en la lámina medular interna, que está compuesta principalmente de sustancia blanca con grupos de núcleos de los que se distinguen:2

grupo caudal

núcleos centromedianos

núcleos parafasciculares en la porción más lateral

núcleos ventrales

núcleo central dorsal

núcleo central medial

núcleo central lateral

núcleo paracentral

núcleos reticulares talámicos: Adyacente a la lamina medular externa del tálamo.

En la línea media del tálamo se distinguen regiones conocidas como núcleo paratenial, núcleo paraventricular, núcleo Reuniens, núcleo romboideo y núcleo subfascicular.

Referencias]

 Nomencaltura de Hassler: The Neuroscience Lexicon(Birnlex 954). Actualizado 25 de abril de 2010, consultado el 6 de Feb 2012.

Nieuwenhuys. El sistema nervioso central humano pág 255. Ed. Médica Panamericana, Jun 30, 2009. ISBN: 8498352495.

Rubio Garcia. Criotalamotomia de los núcleos intralaminares del tálamo, para el dolor

LA PLASTICIDAD NEURONAL DE PAT MARTINO

LA PLASTICIDAD NEURONAL DE PAT MARTINO

Pat Martino es uno de los grandes del jazz. Nació como Pat Azzara en el sur de Filadelfia el 25 de agosto de 1944 y la primera persona que le abrió las puertas de la música fue su padre, Carmen «Mickey» Azzara, que cantaba y tocaba la guitarra en clubs locales. Martino decía que quiso ser guitarrista de jazz porque amaba a su padre y quería que se sintiese orgulloso de él. Estudió brevemente con Eddie Lang, un famoso guitarrista de jazz de la época, y empezó a tocar a los doce años, momento en que abandonó la escuela para dedicarse a tiempo completo a la música. Se convirtió en una figura antes de cumplir los dieciocho años y firmó un contrato como solista con Prestige Records a la edad de veinte años. Sus primeros álbumes incluyen clásicos como «Strings!», «Desperado», «El hombre» y «Baiyina», una de las primeras intrusiones exitosas del jazz en la música psicodélica. Es conocido como compositor y como intérprete de guitarra y ha incursionado en el post-bop, la música de fusión, el mainstream y el jazz soul. Le ha dado fama su estudio de la matemática de la música (incluyendo la escritura de un libro de texto sobre Expresiones Lineales) y su conocimiento especializado de la teoría musical, algo llamativo en alguien que es prácticamente un autodidacta.

Pat Martino tuvo problemas de salud desde muy temprano. Desde los diez años sufría alucinaciones y ataques epilépticos y los primeros diagnósticos fueron de depresión maníaca, trastorno bipolar y esquizofrenia. Las señales de que algo iba mal empeoraron en 1976 con fuertes dolores de cabeza que fueron aumentando en frecuencia e intensidad. Los ataques epilépticos parciales involucraban al sistema nervioso autónomo y mostraba palidez, enrojecimiento de la piel, taquicardia, una sensación de incomodidad en el epigastrio y vómitos ocasionales. Durante esos años de la adolescencia también presentaba crisis mentales como delirios y alucinaciones olfatorias, alteraciones emocionales, distorsiones del tiempo y trastornos del comportamiento. Las crisis mentales fueron aumentando y los cambios de conducta le llevaban al caos con crisis maniacodepresivas y días de un estado absorto en los que presentaba una desconexión total con todo lo que le rodeaba. Los ataques epilépticos fueron en aumento y presentaban alteraciones motoras y oroalimentarias que duraban generalmente más de un minuto. Martino se recuperaba con una sensación de confusión y poco a poco volvía a un estado normal. Durante esta época viajaba entre Nueva York y Filadelfia, las dos ciudades donde tocaba habitualmente, y fue grabando quince álbumes de jazz. Aun así, su vida no era fácil y presentaba prolongadas épocas de manía y depresión, tuvo al menos un par de intentos de suicidio y fue ingresado repetidas veces en hospitales psiquiátricos, donde le trataban con una medicación intensa y prolongada y, en al menos tres ocasiones, terapia con electrochoque.

En 1980, cuando Martino tenía 35 años sufrió en Los Ángeles, donde enseñaba en el Guitar Institute of Technology, un ataque epiléptico generalizado que le llevó a urgencias. Solo recordaba haber sufrido un ataque similar mientras trabajaba en el festival de Jazz de la Riviera, en Marsella. Tocaba en la cima de una colina con una audiencia de doscientas mil personas y «justo en medio de una sección muy trabajosa y rápida, dejé de tocar y me quedé allí quieto durante treinta segundos. Durante esos momentos de ataque sientes como si cayeras a través de un agujero negro».

Una tomografía computarizada mostró que el lóbulo temporal izquierdo de su cerebro, la zona por debajo de la oreja, presentaba una maraña anómala de venas y arterias con una hemorragia asociada. Era un conjunto de vasos sanguíneos que, en opinión de Frederick Simeone, el cirujano que le operó, parecía un «puñado de lombrices», una descripción no muy científica pero bastante gráfica. Era probablemente una malformación de nacimiento y que quizá supuso a lo largo de su vida un obstáculo en el desarrollo de las funciones normales del lóbulo temporal, en particular de la capacidad para almacenar y expresar memorias.

En una primera operación le extirparon el hematoma, lo más urgente, y en una segunda cirugía, después de una angiografía cerebral, le quitaron la malformación arteriovenosa con una resección de aproximadamente el 70% del lóbulo temporal izquierdo. Este lóbulo está implicado directamente en la memoria auditiva verbal, en el habla y en la comprensión del lenguaje. Hay evidencias, además, de que el polo temporal izquierdo responde a estímulos auditivos complejos, algo que sería característico de la música.

En su autobiografía Martino cuenta que tras las operaciones se sentía como un zombi. No recordaba su nombre, era incapaz de reconocer a sus padres y había olvidado que era músico. Perdió por completo sus capacidades musicales, incluidas la teoría, la técnica y las habilidades asociadas. De hecho tenía una amnesia retrógrada grave, una incapacidad de recordar lo que había sucedido antes de la operación.

Inició la lenta recuperación en casa de sus padres. Allí le mostraban fotos, llegaban amigos de visita y aparecían otros músicos que tocaban para él con el objetivo de recordarle su pasado y hacer que se reencontrara con el jazz. Su padre no podía creer que su hijo hubiese olvidado su pasión por la música. Así que empezó a ponerle los discos que él mismo había grabado. Paul recordaba que «estaba tumbado en la cama arriba y oía esa música entrando por las paredes del suelo, un recuerdo de algo que no tenía ni idea de qué era, algo que no volvería a ser nunca o que ni siquiera había sido». Volvió poco a poco a tocar la guitarra, pero lentamente y con dificultad, más como si fuera un juguete «para escapar de la situación y para agradar a mi padre».

Con la preocupación de que su hijo pasaba cada día junto a la guitarra sin mostrar interés por ella, el padre llamó a John Mulhern para que viniera a tocar con él. Mulhern había dado clases de guitarra con Martino y cometía un error frecuente, cambiando una nota. Ahora, trabajando sobre un libro de los viejos ejercicios de guitarra, Mulhern cometió el mismo error. «Apártate», le dijo Martino, agarró su guitarra y empezó de nuevo a tocar. En los siguientes meses, el dolor y la angustia de la amnesia y la depresión postoperatoria empezaron a aliviarse. Según él «mientras seguía trabajando con el instrumento, me venían gradualmente flashes de recuerdos y la memoria muscular, formas en el teclado, diferentes escaleras a diferentes habitaciones de la casa. Hay corredores secretos que solo tú conoces en el edificio y vas allí porque es algo agradable. Y así es cómo recuerdas cómo tocar, porque recuerdas el placer que te daba».

Años más tarde, Galarza y su grupo de investigación estudiaron con una resonancia magnética el cerebro de Martino y el de cinco sujetos sanos que fueron usados como controles. El daño en el lóbulo temporal izquierdo era extenso y la zona extirpada había sido rellenada por líquido cefalorraquídeo. El daño en la corteza temporal inferior se extendía más caudalmente que el daño en la corteza temporal superior. El hipocampo derecho era algo mayor que el izquierdo, que era algo más pequeño que en los controles. Sin embargo, las zonas de proyección del hipocampo izquierdo (fórnix izquierdo, cuerpos mamilares y tálamo) tenían un aspecto normal lo que sugiere que el hipocampo izquierdo, a pesar de su aspecto atrófico, probablemente era funcional. Las amígdalas de ambos hemisferios eran del mismo tamaño y aspecto normal; sin embargo, el estudio volumétrico mostró que eran más pequeñas que las de los controles. Las cortezas perirrinal, entorrinal y parahipocampal eran de un tamaño normal en el lado derecho pero anormalmente pequeñas en el izquierdo. Finalmente había una cierta atrofia en las regiones parietal y frontal, alejadas de la zona de operación, una diferencia que era algo más pronunciada de lo que se podría esperar en una persona de la edad de Martino.

¿Es posible tocar mejor con menos cerebro? Un estudio de investigadores de la Universidad Johns Hopkins estudió la actividad cerebral de músicos de jazz en medio de un ejercicio de improvisación. Tocaban en un teclado especialmente diseñado dentro de un escáner, algo que les aseguro debe ser una proeza. El resultado más llamativo fue una reducción sorprendente de la actividad de la corteza prefrontal. Solamente al «desactivar» esta región cerebral, implicada en el control de impulsos, en el juicio crítico, ne la planificación, conseguían los músicos inventar, de forma espontánea, nuevas melodías. Los científicos comparaban este estado «libre» de la mente con los sueños que tenemos durante la noche, con las ensoñaciones durante la meditación, con otras tareas creativas, como escribir poesía y con el pensamiento difuso de los niños pequeños. Baudelaire estaba en lo cierto cuando dijo «el genio no es ni más ni menos que la infancia recuperada a voluntad».

El análisis neuropsicológico de Pat Martino también mostró algunas deficiencias, un test sobre el significado de palabras abstractas y de poco uso mostró que su funcionamiento intelectual estaba afectado y también tenía dificultades para recordar nombres y lugares pero no formas y el recuerdo era anómalo para la información verbal pero no para la información visual. Es decir, el paciente mostraba anomalías específicas pero sutiles en algunos aspectos de lenguaje, tales como definir términos habituales o recordar palabras poco usadas. Aun así, teniendo en cuenta la amplitud de la lesión, sus déficits cognitivos parecían leves. Cuando le preguntaron cuándo fueron los Beatles a América dijo que en algún momento entre 1961 y 1963 (fue en 1964), pero cuando le pidieron que nombrase una canción de los Beatles, no pudo recordar el título de ninguna. Las diferencias estaban relacionadas con distintos tipos de memoria. La memoria semántica, que registra datos como nombres y fechas, se cree que está localizada en el lóbulo temporal y eso explica que Martino no recordara los títulos de las obras de los muchachos de Liverpool. La memoria episódica, que registra nuestras experiencias y biografía está asociada normalmente con el hipocampo y la corteza prefrontal y, por tanto, debería estar poco o nada afectada, pero él no podía recordar a sus familiares y amigos, ni sus experiencias conjuntas y es posible que la cirugía hubiera tenido efectos inespecíficos sobre otras regiones cerebrales. El último campo es la memoria procedural, la que le permite tocar la guitarra con una habilidad única. Un músico profesional toca a una velocidad con sus dedos de la que no es consciente. Es el resultado de años de práctica y repetición y se cree que la zona clave son los ganglios basales y por lo tanto no fueron afectadas por la lobectomía. El que sin embargo no mostrase su capacidad como músico profesional se supone que era un problema de reconexión, de poner en uso estas habilidades. Es decir, estas memorias estaban presentes, esperando ser reconectadas.

El dato más llamativo del caso Pat Martino es que sus capacidades musicales se recuperaron por completo incluso cuando gran parte del lóbulo temporal izquierdo se había eliminado. Él había dicho después de la operación «Me siento abandonado, vacío, neutral, limpio … desnudo» pero «poco a poco, pieza por pieza, las interrelaciones comenzaron a revivir». Martino recuperó su nivel de instrumentista tras un proceso que duró años. En 1987, siete años después, volvió a grabar un disco titulado precisamente «The Return», el retorno. Fue el inicio de la vuelta a su carrera profesional, una actividad que se ha mantenido constante hasta la actualidad, excepto por una interrupción de unos dos años por la muerte de sus padres y con un enorme éxito. De hecho, recuperó su estatus anterior como un virtuoso del jazz.

Nuestro cerebro mantiene una cierta capacidad de reorganización y flexibilidad toda la vida, pero la experiencia de Pat Martino muestra la posibilidad de un grado inusual de plasticidad cerebral y reorganización en los cerebros de los músicos profesionales. Se ha comentado que los músicos tienen una mayor capacidad plástica por tener unas conexiones entre ambos hemisferios cerebrales más ricas que el resto de la gente, usan mucho más el hemisferio derecho además del izquierdo y presentan una asimetría estructural de algunas áreas relevantes del cerebro. Si la malformación arteriovenosa estuvo presente toda la vida, es habitual que estuviera rodeada de un tejido no funcional que puede interrumpir el flujo sanguíneo a las regiones cercanas. Si es así, es posible que el cerebro pusiera en marcha desde muy pronto mecanismos compensatorios y que la función cerebral no estuviera tan lateralizada como en la mayoría de las gente. Además las lesiones de crecimiento lento, como las malformaciones arteriovenosas y la subsiguiente cirugía, permiten una amplia reorganización cerebral. Así pacientes con lesiones de crecimiento lento y que tuvieron una amplia resección han mostrado una vuelta a un funcionamiento normal después de la cirugía. El caso de Martino es un ejemplo único de un paciente que ha mostrado una recuperación completa después de una amnesia profunda y un regreso exitoso a un nivel cerebral tan especializado como implica ser un gran instrumentista.

Martino reconocía recientemente que su memoria era bastante mala; sin embargo, no parecía que ello tuviera un efecto en su vida cotidiana. Decía que no intentaba recuperar las memorias que de vez en cuando aparecían en su mente sino más bien trataba de apartarlas. Consideraba que su situación era ventajosa pues le permitía vivir el «aquí y ahora» —el título de su autobiografía— sin perder tiempo pensando en el pasado. Creía que era una cosa positiva que había agudizado sus capacidades musicales. También parece que su respuesta emocional a la música cambió tras la operación. Ahora tocaba porque tenía significado para él más que por agradar a otras personas o por ser competitivo. Lo explicaba así: «mis intenciones originales antes de la neurocirugía tenían mucho que ver con la maestría y trepar la escala de reconocimiento por otros. Tenía que ver con el deseo de lograr cinco estrellas en lugar de dos estrellas para la crítica de un álbum. Después de la neurocirugía, eso ya no tenía ningún sentido para mí. Me preocupa más la realidad del momento, el disfrute de ese instante. Me preocupan más los músicos que están conmigo, sus sentimientos, la emanación de la pasión compartida y otras virtudes que compartimos en el proceso. Son cosas que encuentro mucho más gratificantes que mis logros como músico famoso. Ahora es solo diversión, amistad, empatía y preocupación. Es un disfrute de todas las cosas en comparación con el disfrute de cosas específicas».

«La esencia más grande y verdadera de la productividad creativa es la alegría», dijo Martino. «Es una alegría presenciada por aquellos que te rodean. Ya no son testigos de un artista, están presenciando a un ser humano que está feliz de vivir, que proyecta ese aura». «El cerebro es algo divertido» —dijo— «es parte del vehículo, pero no es parte de hacia dónde vas. El vehículo te llevará allí, pero no eres tú».

Martino tiene ahora 76 años y hasta 2018 estuvo tocando por todo el mundo y según algunos críticos de jazz con más felicidad y creatividad que nunca. Ahora, al parecer, está recibiendo oxígeno las 24 horas del día en su casa en el sur de Filadelfia, y no puede apretar su mano izquierda, lo que significa que no puede tocar la guitarra. En noviembre de 2018 regresó de una gira por Italia y desarrolló una enfermedad que empeoró la situación de sus pulmones, ya debilitados por la EPOC.

A pesar de su situación actual, su caso es un ejemplo de neuroplasticidad, de esa capacidad asombrosa del cerebro que le permite una cierta reorganización y que optimiza el funcionamiento de los circuitos neuronales. Cuando miraba a la foto de su resonancia magnética, al hueco de su cerebro dejado por la cirugía y le preguntaron qué echaba en falta Martino comentó «diría que lo que falta es la decepción, la crítica, enjuiciar a otros, lo que falta son todos los dilemas que hacen la vida tan difícil. Eso es lo que falta. Y para ser honesto contigo, es algo beneficioso».

Biblografia 

Trabajo del Profesor Alonso

Galarza M, Isaac C, Pellicer O, Mayes A, Broks P, Montaldi D, Denby C, Simeone F (2014) Jazz, guitar, and neurosurgery: the Pat Martino case report. World Neurosurg 81(3-4): 651.e1-7.

Gallagher B (2015) Brain damage saved his music. Nautilus http://nautil.us/issue/20/creativity/brain-damage-saved-his-music

Gasenzer ER, Kanat A, Neugebauer E (2017) Neurosurgery and Music; Effect of Wolfgang Amadeus Mozart. World Neurosurg 102: 313-319.

NUEVA ZELANDA Y EL CORONAVIRUS

NUEVA ZELANDA LO HA HECHO TAN BIEN FRENTE AL CORONAVIRUS QUE HA LOGRADO ERRADICAR HASTA LA GRIPE

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

NUEVA ZELANDA LO HA HECHO TAN BIEN FRENTE AL CORONAVIRUS QUE HA LOGRADO ERRADICAR HASTA LA GRIPE

No hay nadie en este mundo que no esté deseando encontrar un sistema que detenga la pandemia del coronavirus Covid19 .

Y los procedimientos utilizados, son exactamente iguales en todo el mundo. “Aislarse” y sin embargo la incidencia de virus oscila, incluso en los países más desarrollados, sube cuando quiere y baja como le da la gana.

Sin embargo en Nueva Zelanda, esto no es así. Prácticamente no sufren epidemia.

Posiblemente son mas ordenados y disciplinados. Pero eso lo han hecho muchos otros paises sin éxito.

Inglaterra, Alemania, España y otros paises, donde las olas se suceden, pese a los consejos de las autoridades, y merced al incumplimiento de ellas.

Quiero decir con esto, que hay algo más , que se nos escapa, para explicar el devenir de la pandemia.

De entre todos los países que han servido de ejemplo y modelo al resto de la humanidad por su gestión del coronavirus, sólo un grupo muy reducido han sostenido su éxito a lo largo del tiempo. De entre todos ellos, Nueva Zelanda brilla con luz propia. El archipiélago ha sostenido los contagios por debajo de los 2.100 (población: 4.800.000) y los muertos por debajo de los 25. Entre mayo y diciembre sólo ha registrado tres fallecidos atribuibles al coronavirus.

Ha exterminado a la epidemia. Y de paso a la gripe.

El efecto secundario. Lo ilustra un estudio preliminar, no revisado, publicado en The Lancet esta semana. Frente a los abultados excesos de mortalidad identificados en otros países, muy en especial en Europa, Nueva Zelanda ha contado menos muertos este año que en los precedentes. Desde la instauración del confinamiento y hasta nuestros días el número de fallecidos absoluto registrado por las autoridades neozelandesas ha caído un 11% respecto a la media de los cinco años anteriores.

123 muertes por cada millón de habitantes vs. 138. Similares conclusiones se pueden extraer tomando como referencia un periodo de tiempo más amplio (2011-2019).

¿Por qué? Debemos atribuirlo a las medidas destinadas a contener la epidemia. Hasta la 13ª semana del año, es decir, marzo, justo antes de que el gobierno cerrara el país, el volumen de fallecidos apenas se desviaba de la media histórica. El confinamiento y las restricciones hundieron los accidentes de tráfico, la contaminación, los suicidios, los accidentes laborales y un amplio número de muertes relacionadas con el día a día de cualquier sociedad. Nada que no sucediera en otros países.

EN MAGNET

Una «burbuja social» de diez personas: la idea para recuperar los contactos tras el confinamiento

Lo peculiar. Sucede que Nueva Zelanda fue tan efectiva en la supresión del virus que también acabó con otros problemas de salud pública. Entre ellos la gripe. La reducción de la mortalidad se mantuvo por debajo de la media histórica, explican los autores, incluso «durante un periodo habitualmente marcado por el aumento de los fallecimientos debido a la gripe estacional y a la neumonía». Tan prolongada reducción, concluyen, «se debe a la ausencia de la gripe en Nueva Zelanda en 2020».

Las medidas. ¿A qué podemos atribuir el éxito? Primero cerró sus fronteras de forma inmediata e impuso cuarentenas obligatorias, aún vigentes, para todos aquellos viajeros que aterrizaran en las islas. Segundo, a su estrategia de testeo. Si bien no ha hecho más pruebas por millón de habitantes que otros países, sí ha hecho más pruebas por número de casos positivos. Dicho de otro modo: su positividad ha sido siempre muy baja.

Esto, como sabemos, es crucial, dado que permite a los gobiernos dibujar un mapa muy preciso de la epidemia y atajar los casos allí donde se encuentren. Nueva Zelanda elaboró un estricto protocolo de trazabilidad y aislamiento desde muy temprano, y también diseño un sistema de «burbujas sociales» que limitó los contactos de personas contagiadas. A esto debemos sumar factores exógenos: un archipiélago remoto y una distribución habitacional muy dispersa, muy poco densa.

Drástico. Partiendo de una epidemia más controlada que sus pares europeos, Nueva Zelanda siguió la estrategia de los países asiáticos, más exitosos en la gestión del coronavirus: la «eliminación» del virus. Cuando el pasado mes de noviembre un sólo caso fue identificado en Auckland, la principal ciudad del país, el gobierno recomendó a todos los trabajadores quedarse en sus casas. También identificó y siguió los movimientos de la persona contagiada. Una respuesta drástica y rapidísima.

Es decir, Nueva Zelanda se ha beneficiado a largo plazo de su éxito inicial. La epidemia está controlada, lo que hace más sencillo identificar y atajar los pocos casos que surgen. Pese a todo, sí ha habido un celo que otros países no se han permitido. Auckland salió del último nivel de alerta y restricciones (reuniones limitadas, aforos reducidos, confinamientos parciales, etcétera) a mediados de agosto, cuando el país contaba… 37 casos activos. Una cifra que Europa ni ha rozado desde la primavera.

El resultado de todo este proceso ha sido no sólo un volumen de fallecimientos atribuibles a la epidemia muy bajo, sino una caída de la mortandad a todos los niveles. Las comparaciones son dolorosas: España cuenta 70.000 más fallecidos que en años precedentes (29% al alza); Reino Unido, en torno a las 60.000 (20% al alza). Incluso Alemania, el estado europeo que mejor había sorteado la pandemia, ya registra un exceso del 5%. Nueva Zelanda mira desde la absoluta lejanía.

Posiblemente olvidamos que mucha gente tiene otro tipo de inmunidad, que es la que manda y permite o no que el germen anide.

Hace falta un receptor, para que el germen penetre desde las mucosas y basta que este receptor, este bloqueado o no exista, para que no anide el germen, o que exista una inmunidad cruzada. O otros tipos de inmunidad.

Lo que a mi me perece que existe algo mas que el aislamiento para que no nos infecte el virus.

En todo el país africano, existe una menor invasión de esta pandemia, y las medidas sanitarias, son claramente menores, aunque si estan muy invadidos por otros gérmenes.

Lo que quiero decir es que las ventanas materiales externas para el virus, no son suficientes.

Imaginemos, que bloqueamos los receptores virales ACE2, con la pulverización en las mucosas, de algún preparado, que no haga daño al resto de las mucosas, y que destruya al virus, o que se produzca mas cantidad inmediata de IgA, la gamma globulina que primero ataca al virus y que se produce de preferencia en la mucosa nasal.

O antivirales, que lleguen a tener el éxito de los antibióticos

Es posible que esto no sea posible por el momento, pero permítanme soñar

Mohorte

16 diciembre 2020, 13:14 – Actualizado 17 diciembre 2020, 17:52

CEREBRO Y ORDENADOR, SU ANALOGIA Y DIFERENCIA


CEREBRO Y ORDENADOR, SU ANALOGIA Y DIFERENCIA

Para hablar del funcionamiento del cerebro infinitamente más complejo que un ordenador necesito el fundamento de algo que se le parezca y el ordenador de sobremesa que utilizamos podría ser un modelo de como una señal se admite,  se procesa y proporciona una realidad .

Ell problema viene como siempre en biología cerebral que el hardware puede entenderse construirse pero el software viene de fuera alguien lo tiene que elaborar y esto en el ordenador es entendible pero en el cerebro estamos muy lejos de entenderlo


Empecemos por describir cómo funciona el ordenador y después nos apañaremos para ver cómo funciona el cerebro

Cuando encendemos el ordenador, la corriente eléctrica (1) llega al transformador de fuerza o potencia (2). A través del conector (3) el transformador distribuye las diferentes tensiones o voltajes de trabajo a la placa base, incluyendo el microprocesador o CPU (4). Inmediatamente que el microprocesador recibe corriente, envía una orden al chip de la memoria ROM del BIOS (5) (Basic Input/Output System – Sistema básico de entrada/salida), donde se encuentran grabadas las rutinas del POST ( Power-On Self-Test – Autocomprobación diagnóstica de encendido) o programa de arranque. Si no existiera el BIOS conteniendo ese conjunto de instrucciones grabadas en su memoria, el sistema informático del ordenador no podría cargar en la memoria RAM la parte de los ficheros del Sistema Operativo que se requieren para iniciar el arranque y permitir que se puedan utilizar el resto de los programas instalados.

Una vez que el BIOS recibe la orden del microprocesador, el POST comienza a ejecutar una secuencia de pruebas diagnósticas para comprobar sí la tarjeta de vídeo (6), la memoria RAM (7), las unidades de discos [disquetera si la tiene, disco duro (8), reproductor y/o grabador de CD o DVD], el teclado, el ratón y otros dispositivos de hardware conectados al ordenador, se encuentran en condiciones de funcionar correctamente.

Cuando el BIOS no puede detectar un determinado dispositivo instalado o detecta fallos en alguno de ellos, se oirán una serie sonidos en forma de “beeps” o pitidos y aparecerán en la pantalla del monitor mensajes de error, indicando que hay problemas. En caso que el BIOS no detecte nada anormal durante la revisión, se dirigirá al boot sector (sector de arranque del disco duro) para proseguir con el arranque del ordenador.

Durante el chequeo previo, el BIOS  va mostrando en la pantalla del monitor diferentes informaciones con textos en letras blancas y fondo negro. A partir del momento que comienza el chequeo de la memoria RAM,  un contador numérico muestra la cantidad de bytes que va comprobando y, si no hay ningún fallo, la cifra que aparece al final de la operación coincidirá con la cantidad total de megabytes instalada y disponible en memoria RAM que tiene el ordenador para ser utilizada.

Durante el resto del proceso de revisión, el POST muestra también en el monitor un listado con la relación de los dispositivos de almacenamiento masivo de datos que tiene el ordenador instalados y que han sido comprobados como, por ejemplo, el disco o discos duros y el lector/grabador de CD o DVD si lo hubiera.

Cualquier error que encuentre el BIOS durante el proceso de chequeo se clasifica como “no grave” o como “grave”. Si el error no es grave el BIOS sólo muestra algún mensaje de texto o sonidos de “beep” sin que el proceso de arranque y carga del Sistema Operativo se vea afectado. Pero si el error fuera grave, el proceso se detiene y el ordenador se quedará bloqueado o colgado. En ese caso lo más probable es que exista algún dispositivo de hardware que no funcione bien, por lo que será necesario revisarlo, repararlo o sustituirlo.

Cuando aparecieron los primeros ordenadores personales no existían todavía los discos duros, por lo que tanto el sistema operativo como los programas de usuarios había que cargarlos en la memoria RAM a partir de un disquete que se colocaba en la disquetera. Cuando surgió el disco duro y no existían todavía los CDs, los programas se continuaron introduciendo en el ordenador a través de la disquetera para grabarlos de forma permanente en el disco duro, para lo que era necesario utilizar, en la mayoría de los casos, más de un disquete para instalar un solo programa completo. Por ese motivo, hasta la aparición de los lectores de CDs, el programa POST de la BIOS continuaba dirigiéndose primero a buscar el sistema operativo en la disquetera y si como no lo encontraba allí, pasaba entonces a buscarlo en el disco duro.

Si por olvido al apagar esos antiguos ordenadores se nos había quedado por olvido algún disquete de datos introducido en la disquetera, al encender de nuevo el equipo el proceso de inicialización se detenía a los pocos segundos, porque el BIOS al leer el contenido de ese disquete encontraba otro tipo de datos  y no el sistema operativo. Cuando eso ocurría solamente había que extraer el disquete de la disquetera y oprimir cualquier tecla en el teclado. De inmediato el BIOS continuaba la búsqueda, dirigiéndose al disco duro, lugar donde se encontraba y encontramos grabado todavía el sistema operativo, incluso en los ordenadores más actuales.

Durante mucho tiempo el estudio de los procesos cognitivos ha sido abordado desde una perspectiva localizacionista, donde cada función cognitiva se relaciona con zonas específicas del cerebro. Sin embargo, en los últimos años, se ha producido un cambio de paradigma poniendo énfasis en la red de conexiones neurales existente entre las distintas zonas de cerebro”.

El “Proyecto Conectoma Humano”, enmarcado en una serie de proyectos multi escala de gran alcance como es el “Human Brain Project”. Su objetivo es describir y explicar el conectoma humano, con el objetivo último de relacionar la estructura cerebral con la función y el comportamiento humano.

CEREBRO humano de un hombre llamado Leborgne que sufría de incapacidad para la dicción debido a una lesión cerebral (ver en el centro superior), fue tratado en el hospital de Bicetre por Paul Broca (1824-1880). Comienzo de la frenología como ciencia. cerebro en formalina mantenido en el museo Dupuytren en París *** Subtítulo local *** cerebro humano de un hombre llamado Leborgne que sufría de incapacidad para la dicción debido a una lesión cerebral (ver en el centro superior), fue tratado en el hospital Bicetre por Paul Broca (1824-1880). Comienzo de la frenología como ciencia. cerebro en formalina mantenido en el museo Dupuytren en París

El Cerebro e Broca

Paul Broca fue cirujano, neurólogo y antropólogo, una de las figuras más prominentes de la medicina y la antropología del siglo pasado.

Su trabajo más celebrado fue el de encontrar una pequeña región ubicada en la tercera circunvolución del lóbulo frontal izquierdo de la corteza cerebral, la que en honor de su descubridor nominamos hoy área de Broca. Tomando como punto de partida un escaso número de pruebas experimentales, Broca puso al descubierto que dicha zona del cerebro controla la emisión articulada del lenguaje y se erige como la sede fundamental de tan característica actividad humana. El área de Broca fue uno de los primeros descubrimientos que puso de manifiesto la separación de funciones existentes entre ambos hemisferios cerebrales. Y algo aun más importante, fue una de las primeras pruebas sólidas de la existencia de funciones cerebrales específicas localizadas en zonas muy precisas del cerebro, de que existe una conexión entre la anatomía cerebral y sus diferentes actividades concretas, actividades que a veces suelen calificarse como «mentales».

 Ralph Holloway es un investigador de la Universidad de Columbia dedicado al estudio de la antropología física cuyo laboratorio imagino que puede guardar ciertas similitudes con el de Broca. Holloway ha construido con goma de látex unos moldes de cavidades craneales de seres humanos y otros afines, pasados y presentes, con objeto de intentar reconstruir, a partir de las huellas superficiales dejadas por la superficie interna del cráneo, la evolución histórica del cerebro. Holloway sostiene que para poder hablar de criatura humana es imprescindible la presencia en su cerebro de un área de Broca, ofreciéndonos pruebas de la aparición de un primer esbozo de la misma en el cerebro del Homo habilis unos dos millones de años atrás, – la palabra articulada, de manera que el área de Broca puede considerarse como una de las sedes fundamentales de nuestra humanidad en la medida en que, sin la menor duda, nos permite delinear la relación que nos vincula con nuestros antepasados en su progresión hasta alcanzarla. Y ahí estaba, flotando ante mis ojos, nadando a trozos en un mar de formalina, el cerebro de Broca. Podía observar la región límbica que Broca había estudiado en otros, las circunvoluciones del neocortex, incluso el lóbulo frontal izquierdo de color gris blancuzco donde tiene su asiento el área que toma su nombre del de su descubridor, pudriéndose inadvertidamente en un triste rincón de la colección que iniciara el propio Broca. Era difícil sostener el cerebro de Broca sin tener la sensación de que, en alguna medida, todavía estaban allí, presentes, su ingenio, su talante escéptico, sus abruptas gesticulaciones al hablar, sus momentos de quietud y sentimentalismo. ¿Acaso se hallaba preservada ante mí, en la configuración neuronal, una recolección de los triunfales momentos en que defendía ante una asamblea conjunta de facultades de medicina (y ante su padre, henchido de orgullo) su teoría sobre los orígenes de la afasia? ¿0 tal vez una comida en compañía de su amigo Víctor Hugo? ¿Quizás un paseo a la luz de la luna en un atardecer otoñal a lo largo del Quai Voltaire y el Font Royal en compañía de su esposa? ¿Adónde vamos a parar después de morir? ¿Acaso Paul Broca estaba todavía ahí, en un frasco lleno de formalina? Tal vez hubiese desaparecido todo rastro de memoria, aunque las investigaciones contemporáneas sobre la actividad cerebral proporcionan pruebas convincentes de que un cierto tipo de memoria queda redundantemente almacenada en numerosos y diferentes lugares de nuestro cerebro.

La primera persona que localizó desde perspectivas neuroanatómicas la inteligencia humana en la cabeza fue Herófilo de Calcedonia, medico griego cuya actividad alcanza su cenit alrededor del 300 a. de C. Herófilo fue también el primero en distinguir entre nervios motores y sensoriales y efectuó el estudio más completo de la anatomía cerebral in- tentado hasta el Renacimiento.

¿Cómo se relacionan las funciones cognitivas superiores y las enfermedades neuropsiquiátricas con la actividad cerebral? 

Febrero, 2020

Nuestro cerebro está conectado entre diferentes áreas cerebrales que son fundamentales en los diferentes procesos cognitivos. Estas conexiones se van desarrollando progresivamente en la vida, es más, hay estudios que reflejan que a los quince días de haber nacido ya existe un mapa de conexiones que se va formando con la estimulación cognitiva y el ejercicio físico. El modelo del conectoma nos acerca a una nueva visión del funcionamiento del cerebro.

La mayoría de los estudios utilizan técnicas de imagen cerebral, como la magnetoencefalografía (MEG), la electroencefalografía (EEG) o la Imagen de Tensor de Difusión por Resonancia Magnética (DTI-MRI). “Nuestros científicos también llevan a cabo investigación básica sobre los procesos de control de la memoria, las emociones y el lenguaje, investigación aplicada en epilepsia, adicciones y otras enfermedades neurodegenerativas, asimismo desarrollan nuevos enfoques para el análisis de datos de imagen cerebral funcional”, explica Fernando Maestú, Director del Laboratorio de Neurociencia Cognitiva y Computacional (LNCyC) y Catedrático de Psicología Básica de la UCM.

¿Qué es el conectoma?

El científico Santiago Ramón y Cajal fue el primero en descubrir que la conectividad entre células era la base de lo que era la cognición. Por eso, de manera progresiva vamos esculpiendo estos patrones de conexiones a través de nuestras experiencias personales. El término “conectoma” se refiere a la matriz de conexiones altamente organizadas del cerebro humano. En número, tenemos 86.000 millones de neuronas y 500 billones de sinapsis.

Líneas de investigación

En el Centro de Tecnología Biomédica y específicamente en el Laboratorio de Neurociencia Cognitiva y Computacional (UCM-UPM), profundizan en estudios e investigaciones que intentan demostrar que, con pruebas neurofisiológicas, como el Electroencefalograma (EEG) o la Magnetoencefalografía (MEG), se pueden obtener perfiles de actividad cerebral “que nos permitan tener un biomarcador de riesgo de desarrollo de la enfermedad. Son técnicas completamente no-invasivas, es decir, registran lo que de forma natural se genera en nuestro cerebro (la actividad eléctrica y su campo magnético), son muy sencillas en su aplicación y no requieren más que la colocación de un gorro de EEG sobre el pelo del participante o, en el caso del MEG, sólo introducir la cabeza en un casco con sensores de campo magnético”, señala el investigador.

El equipo de trabajo en el que participa Maestú lleva 20 años desarrollando modelos de análisis de la señal derivada del EEG y del MEG para poder obtener estos signos biológicos que permitan ayudar a determinar qué personas están en riesgo de padecer una demencia. “Con ellas hemos conseguido demostrar que las personas en diferentes fases del proceso de la enfermedad de Alzheimer muestran una serie de patrones indicadores de un deterioro neurofisiológico”, desvela desde su laboratorio.

“El objetivo del ‘Proyecto Conectoma Humano’ es describir y explicar el conectoma humano, con el fin de relacionar la estructura cerebral con la función y el comportamiento humano”

Entre los hitos más importantes de su carrera investigadora cabe señalar que su grupo de profesionales se ha convertido en referencia internacional en la investigación de la Enfermedad de Alzheimer con MEG, describiendo las alteraciones de las redes funcionales en reposo y durante la realización de tareas de memoria en diversos estadios de la enfermedad.

Este equipo de investigadores ha explorado cómo factores genéticos, de daño en la sustancia blanca (conectividad anatómica) o la acumulación de proteína Tau y amilode afectan a dicha organización funcional y, por tanto, al sistema cognitivo. Adicionalmente, han desarrollado líneas de trabajo para explorar la plasticidad cerebral y cómo las intervenciones neuropsicológicas son capaces de modificar la organización funcional de la red y mejorar la cognición de pacientes con patologías neurológicas.

Cerebro y redes neurales funcionales

El cerebro es un órgano en constante cambio, a pesar de tener una determinada fisiología, las experiencias vitales moldean la forma en la que se conecta. Por lo tanto, la función es algo totalmente dependiente de las redes que conectan las diferentes partes de la corteza. En el desarrollo del cerebro y la materia gris –expone Maestú – las diferentes neuronas que lo conforman se organizan con determinados patrones en función de nuestra genética, pero sobre todo por las experiencias vitales. De este patrón de conexión se derivan todas las funciones que desarrolla el cerebro, desde recuerdos, formas de comportamiento social o patrones atencionales, hasta las distintas programaciones del movimiento que cada persona realiza para llevar a cabo la misma tarea.

El desarrollo del estudio de las redes neuronales supone un gran avance para ramas clínicas como la neuropsicología o la neuropsiquiatría, ya que el entendimiento de los patrones de conexión cerebrales ayuda enormemente a la comprensión de muchas enfermedades que no sólo tienen su origen en el daño de ciertas estructuras cerebrales, sino que se extiende a las conexiones subyacentes. Entendiendo así la relevancia de las conexiones cerebrales, es fácil comprender que cualquier patología neurológica implica una perturbación en las redes cerebrales y que su estudio resulta determinante.

Síndrome de savant:

Síndrome de savant:

He tenido ocasión de vivir muchos, años con un medico intimo amigo mío que era una especie, de listo y despistado.

Fue siempre un autista social, moderado a buen estudiante y un buen profesional. Era un buen medico y mas de una vez nos salvo a un enfermo. Pero sus despistes eran tan evidentes, que era tratado indistintamente como sabio y tonto.  Se caso con una mujer guapísima, con la que tuvo 9 hijos. Y ella giro en torno a él.  Su capacidad de introducir innovaciones en medicina, eran manifiesta así como la de hacer buenos negocios con las artes y al mismo tiempo de un desprendimiento y bondad con todo el mundo. Nunca cuido el intelecto y sus amigos preferentes eran gente no recomendable. Como amigo, era magnifico.

Siendo ya muy mayores  y en una cena, se rompió todo.

Ya venia fallando en  su conducta y sus compañeros, empezaban a alarmarse y atribuirlo estupidamente al alcohol.

Tenia trastornos de la marcha, incontinencia de orina , un discreto despiste.

Una TAC mostro que tenia una enorme hidrocefalia por estenosis congénita del acueducto de Silvio. Una serie de derivaciones del liquido cefalo raquideo, no consiguieron mejorarlo.

Tuvieron que pasar 50 años de conocerlo, hasta que una noche me diera cuenta que su marcha y deterioros sociales no eran normales y si evolutivos. Mi querido amigo se fue y nunca me perdone, no haberme dado cuenta de la organicidad de sus cosas.

Yo no se si esto me motivo a entusiasmarme por los SAVAN, pero ahora los sigo al menos en la literatura, con mucha atención.

El término «idiot savant» («idiota erudito» en francés) fue utilizado por primera vez para describir la condición en 1887 por el médico británico John Langdon Down, conocido por su descripción del síndrome de Down. El término «sabio idiota» se consideró posteriormente erróneo, puesto que no todos los casos reportados se ajustaban a la definición de idiota, originalmente utilizada para una persona con una discapacidad intelectual muy severa. El término «sabio autista» también se utilizó como descripción del trastorno. Pero al igual que «sabio idiota», el término llegó a ser considerado inapropiado porque solo la mitad de los diagnosticados con el síndrome del sabio eran autistas. La necesidad de precisión en el diagnóstico y de no afectar a la dignidad de los afectados,

Sufren desórdenes mentales y discapacidades físicas, mentales o motrices, pero “a cambio” poseen habilidades mentales increíbles. .

Benjamín Rush describió el síndrome de savant por primera vez en 1789. Vio un paciente que era capaz de calcular la edad de las personas tan solo observándolas durante unos segundos.

No siempre estos sabios tienen desordenes de conducta o intelectuales y por ello me preocupo de tres casos que me ha impresionada.

El mas significativo.

Kim Peek: que inspiro la película Rain Man

Nació con macrocefalia, una malformación permanente en el cerebelo, y agenesia en el cuerpo calloso.

Esto le convirtió en una persona muy dependiente, incapaz de realizar tareas básicas, como abrocharse una camisa. Sin embargo, sorprendió al mundo entero con sus portentosas capacidades intelectuales. Tenía una de las memorias más extraordinarias que la ciencia ha podido datar.

Fue capaz de aprenderse cerca de los 8.000 libros que había leído y podía leer dos páginas al mismo tiempo, una con cada ojo. Además, reproducía cosas habiéndolas escuchado o leído tan solo una vez. Llegó a saberse de memoria todos los mapas de Estados Unidos, de manera que aunque no hubiera hecho nunca un determinado recorrido, podía realizarlo sin necesidad de indicaciones o señales.

Su nivel de procesamiento mental era impresionante. Pero, por otro lado, sus limitaciones motrices y cognitivas también eran manifiestas. Por ejemplo, era incapaz de interpretar un poema o inferir conclusiones de una obra. No tenía aptitudes musicales, sin embargo, si escuchaba una canción, podía reproducirla tocando en un piano sin mayor dificultad.

Otro caso es también de una dificultad prodigiosa. Tras un traumatismo se convierte en un superdotado

Jason Padgett: síndrome de savant adquirido

No nació con sus habilidades, sino que estas llegaron cuando tenía 30 años.

Jason era un joven superficial, pero con una conducta normal. Una noche, saliendo con ellos, fue agredido violentamente. Sufrió una conmoción cerebral y, tras pasar por el hospital y volver a casa, se dio cuenta de que todo había cambiado.

Por un lado, empezó a sufrir distintos trastornos como TOC, agorafobia o depresión. Y, por otro lado, llego a ser genial en matemáticas,. Realizaba cálculos mentales y visualizaba la realidad mediante patrones geométricos.

estudiaron al chico y vieron que, tras sufrir la conmoción cerebral, algunas áreas del cerebro que en su día a día permanecían inactivas, con el golpe se activaron para sustituir las funciones dañadas.

Esto es una mentira romántica. Pero si no es verdad, está bien contado.

No tenia estudios, previos, como compararon con registros postraumáticos. Esto es como tantas veces ocurre una mentira para terminar bien.

Pero el caso mas esplendido y delicioso, lo escribe Don Jose Luis Borges,  del que dijo “es una larga metáfora del insomnio”.

Después de un día bochornoso, una enorme tormenta color pizarra había escondido el cielo. La alentaba el viento del Sur, ya se enloquecían los árboles; yo tenía el temor (la esperanza) de que nos sorprendiera en un descampado el agua elemental. Corrimos una especie de carrera con la tormenta. Entramos en un callejón que se ahondaba entre dos veredas altísimas de ladrillo. Había oscurecido de golpe; oí rápidos y casi secretos pasos en lo alto; alcé los ojos y vi un muchacho que corría por la estrecha y rota vereda como por una estrecha y rota pared. Recuerdo la bombacha, las alpargatas, era  “Funes el memorioso”, Bernardo le gritó imprevisiblemente: ¿Qué hora son Ireneo? Sin consultar el cielo, sin detenerse, el otro respondió: Faltan cuatro minutos para las ocho, joven Bernardo Juan Francisco. La voz era aguda, burlona. Yo soy tan distraído que el diálogo que acabo de referir no me hubiera llamado la atención si no lo hubiera recalcado mi primo, a quien estimulaban (creo) cierto orgullo local, y el deseo de mostrarse indiferente a la réplica tripartita del otro. Me dijo que el muchacho del callejón era un tal Ireneo Funes, mentado por algunas rarezas como la de no darse con nadie y la de saber siempre la hora, como un reloj. Agregó que era hijo de una planchadora del pueblo, María Clementina Funes, y que algunos decían que su padre era un médico del saladero, un inglés O’Connor, y otros un domador o rastreador del departamento del Santo. Vivía con su madre, a la vuelta de la quinta de los Laureles. Los ochenta y cinco y ochenta y seis veraneamos en la ciudad de Montevideo. El ochenta y siete volví a Fray Bentos. Pregunté, como es natural, por todos los conocidos y, finalmente, por el “cronométrico Funes”. Me contestaron que lo había volteado un redomón en la estancia de San Francisco, y que había quedado tullido, sin esperanza.  Me dijeron que no se movía del catre, puestos los ojos en la higuera del fondo o en una telaraña. En los atardeceres, permitía que lo sacaran a la ventana. Llevaba la soberbia hasta el punto de simular que era benéfico el golpe que lo había fulminado…

Ireneo, en su rancho de las orillas, no tardó en enterarse del arribo de esos libros anómalos. Me dirigió una carta florida y ceremoniosa, en la que recordaba nuestro encuentro, desdichadamente fugaz, “del siete de febrero del ochenta y cuatro”, ponderaba los gloriosos servicios que don Gregorio Haedo, mi tío, finado ese mismo año, “había prestado a las dos patrias en la valerosa jornada de Ituzaingó”, y me solicitaba el préstamo de cualquiera de los volúmenes, acompañado de un diccionario “para la buena inteligencia del texto original, porque todavía ignoro el latín”.

Arribo, ahora, al más difícil punto de mi relato. Éste (bueno es que ya lo sepa el lector) no tiene otro argumento que ese diálogo de hace ya medio siglo. No trataré de reproducir sus palabras, irrecuperables ahora. Prefiero resumir con veracidad las muchas cosas que me dijo Ireneo. El estilo indirecto es remoto y débil; yo sé que sacrifico la eficacia de mi relato; que mis lectores se imaginen los entrecortados períodos que me abrumaron esa noche. Ireneo empezó por enumerar, en latín y español, los casos de memoria prodigiosa registrados por la Naturalis historia; Ciro, rey de los persas, que sabía llamar por su nombre a todos los soldados de sus ejércitos; Mitríades Eupator, que administraba la justicia en los 22 idiomas de su imperio; Simónides, inventor de la mnemotecnia; Metrodoro, que profesaba el arte de repetir con fidelidad lo escuchado una sola vez. Con evidente buena fe se maravilló de que tales casos maravillaran. Me dijo que antes de esa tarde lluviosa en que lo volteó el azulejo, él había sido lo que son todos los cristianos: un ciego, un sordo, un abombado, un desmemoriado. (Traté de recordarle su percepción exacta del tiempo, su memoria de nombres propios; no me hizo caso.) Diez y nueve años había vivido como quien sueña: miraba sin ver, oía sin oír, se olvidaba de todo, de casi todo. Al caer, perdió el conocimiento; cuando lo recobró, el presente era casi intolerable de tan rico y tan nítido, y también las memorias más antiguas y más triviales. El hecho apenas le interesó. Razonó (sintió) que la inmovilidad era un precio mínimo. Ahora su percepción y su memoria eran infalibles.

Nosotros, de un vistazo, percibimos tres copas en una mesa; Funes, todos los vástagos y racimos y frutos que comprende una parra. Sabía las formas de las nubes australes del amanecer del treinta de abril de mil ochocientos ochenta y dos y podía compararlas en el recuerdo con las vetas de un libro en pasta española que sólo había mirado una vez y con las líneas de la espuma que un remo levantó en el Río Negro la víspera de la acción del Quebracho. Esos recuerdos no eran simples; cada imagen visual estaba ligada a sensaciones musculares, térmicas, etc. Podía reconstruir todos los sueños, todos los entresueños. Dos o tres veces había reconstruido un día entero; no había dudado nunca, pero cada reconstrucción había requerido un día entero. Me dijo: Más recuerdos tengo yo solo que los que habrán tenido todos los hombres desde que el mundo es mundo. Y también: Mis sueños son como la vigilia de ustedes. Y también, hacia el alba: Mi memoria, señor, es como vaciadero de basuras. Una circunferencia en un pizarrón, un triángulo rectángulo, un rombo, son formas que podemos intuir plenamente; lo mismo le pasaba a Ireneo con las aborrascadas crines de un potro, con una punta de ganado en una cuchilla, con el fuego cambiante y con la innumerable ceniza, con las muchas caras de un muerto en un largo velorio. No sé cuántas estrellas veía en el cielo.

La voz de Funes, desde la oscuridad, seguía hablando. Me dijo que hacia 1886 había discurrido un sistema original de numeración y que en muy pocos días había rebasado el veinticuatro mil. No lo había escrito, porque lo pensado una sola vez ya no podía borrársele. Su primer estímulo, creo, fue el desagrado de que los treinta y tres orientales requirieran dos signos y tres palabras, en lugar de una sola palabra y un solo signo. Aplicó luego ese disparatado principio a los otros números. En lugar de siete mil trece, decía (por ejemplo) Máximo Pérez; en lugar de siete mil catorce, El Ferrocarril; otros números eran Luis Melián Lafinur, Olimar, azufre, los bastos, la ballena, el gas, la caldera, Napoleón, Agustín de Vedia. En lugar de quinientos, decía nueve. Cada palabra tenía un signo particular, una especie de marca; las últimas eran muy complicadas…Yo traté de explicarle que esa rapsodia de voces inconexas era precisamente lo contrario de un sistema de numeración. Le dije que decir 365 era decir tres centenas, seis decenas, cinco unidades; análisis que no existe en los “números” El Negro Timoteo o manta de carne.

Había aprendido sin esfuerzo el inglés, el francés, el portugués, el latín. Sospecho, sin embargo, que no era muy capaz de pensar. Pensar es olvidar diferencias, es generalizar, abstraer. En el abarrotado mundo de Funes no había detalles, casi inmediatos. La recelosa claridad de la madrugada entró por el patio de tierra. Entonces vi la cara de la voz que toda la noche había hablado. Ireneo tenía diecinueve años; había nacido en 1868; me pareció monumental como el bronce, más antiguo que Egipto, anterior a las profecías y a las pirámides. Pensé que cada una de mis palabras (que cada uno de mis gestos) perduraría en su implacable memoria; me entorpeció el temor de multiplicar ademanes inútiles. Ireneo Funes murió en 1889, de una congestión pulmonar. 1942 .

Qué duda cabe qué Funes tenía el patrón de SAVANT, pero Borges,  sin ser científico , lo describe como hacen los poetas con más belleza .

y qué decir de la biología de este síndrome, sería correcto decir “no lo sé”. Todo lo que se ha dicho hasta ahora, no encaja claro, que no hace falta que el cerebro esté integro morfológicamente, para que algunas cualidades sean excepcionales.

Pero es posible los condicionamientos sociales,  no se puedan adquirir en cerebros rotos.

SINAPSIS SU FISIOLOGIA

Sinapsis

.Proteinas de las vesiculas sinapticas

Cajal mejoró el método de Golgi y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

.

Cajal mejoró el método de Golgi para el estudio histologico del sistema nerviosos y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

]

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

Sinapsis

.

Cajal mejoró el método de Golgi y comenzó a estudiar embriones de pollos y otros animales del jardín. formuló la teoría de la neurona que se basa en tres pilares:

Las neuronas son células individuales y no un continuo.

Las neuronas se comunican entre si en sitios concretos (llamados sinapsis por Sherrington).

Principio de la polarización dinámica. El flujo de corriente va desde las dendritas (entrada) hasta el axón (salida).

Hasta aquí la revolución de CaJal, el sistema nerviosos no es un retidulo continuo, esta compuesto por células.  Fundandose en esto. Charles Scott Sherrington y colaboradores, describen la Sinapsis, que vienen de sinapteína, que se forman con las palabras griegas sin-, que significa «juntos», y hapteina, «con firmeza».

La sinapsis (del griego ύναψις [sýnapsis] [«neurotrasmisores»], ‘unión’, ‘enlace’1​) es una aproximación (funcional) intercelular especializada entre neuronas,2​ ya sean entre dos neuronas de asociación, una neurona y una célula receptora o entre una neurona y una célula efectora (casi siempre glandular o muscular). En estos contactos se lleva a cabo la transmisión del impulso nervioso.

Desde el punto de vista histológico y funcional, una neurona tiene tres zonas principales: el cuerpo o soma, las dendritas y el axón

Las conexiones pueden establecerse a muy corto alcance, a unos cientos de micrómetros a la redonda, o a distancias mucho mayores.).

Una sinapsis prototípica, como las que aparecen en los botones dendríticos, consiste en unas proyecciones citoplasmáticas con forma de hongo desde cada célula que, al juntarse, los extremos de ambas se aplastan uno contra otro. En esta zona, las membranas celulares de ambas células se juntan en una unión estrecha que permite a las moléculas de señal llamadas neurotransmisores pasar rápidamente de una a otra célula por difusión. El canal de unión de la neurona postsináptica es de aproximadamente 20 nm de ancho, y se conoce como hendidura sináptica.

Estas sinapsis son asimétricas tanto en su estructura como en su funcionamiento. Sólo la neurona presináptica segrega los neurotransmisores, que se unen a los receptores transmembrana que la célula postsináptica tiene en la hendidura. El terminal nervioso presináptico (también llamado botón sináptico o botón) normalmente emerge del extremo de un axón, mientras que la zona postsináptica normalmente corresponde a una dendrita, al cuerpo celular o a otras zonas celulares. La zona de la sinapsis donde se libera el neurotransmisor se denomina zona activa. En las zonas activas, las membranas de las dos células adyacentes están unidas estrechamente mediante proteínas de adhesión celular. Justo tras la membrana de la célula postsináptica aparece un complejo de proteínas entrelazadas denominado densidad postsináptica. Las proteínas de la densidad postsináptica cumplen numerosas funciones, que van desde el anclaje y movimiento de receptores de neurotransmisores de la membrana plasmática, hasta el anclaje de varias proteínas reguladoras de la actividad de estos receptores.

Tipos de sinapsis]

Sinapsis eléctrica 

Es aquella en la que la transmisión entre la primera neurona y la segunda no se produce por la secreción de un neurotransmisor, como en las sinapsis químicas (véase más abajo), sino por el paso de iones de una célula a otra a través de uniones gap, pequeños canales formados por el acoplamiento de complejos proteicos, basados en conexiones, en células estrechamente adheridas.

La sinapsis eléctrica es la más común en los vertebrados menos complejos y en algunos lugares del cerebro de los mamíferos.  Son más rápidas que las sinapsis químicas pero menos plásticas; por lo demás, son menos propensas a alteraciones o modulación porque facilitan el intercambio entre los citoplasmas de iones y otras sustancias químicas. En los vertebrados son comunes en el corazón y el hígado.

Las sinapsis eléctricas tienen tres ventajas muy importantes:

La sinapsis eléctrica posee una transmisión bidireccional de los potenciales de acción, en cambio la sinapsis química solo posee la comunicación correccional.

En la sinapsis eléctrica hay una sincronización en la actividad neuronal, lo cual hace posible una acción coordinada entre ellas.

La comunicación es más rápida en la sinapsis eléctrica que en la química, debido a que los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores.

Sinapsis química

La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20-30 nanómetros (nm), la llamada hendidura sináptica.

La liberación de neurotransmisores es iniciada por la llegada de un impulso nervioso (o potencial de acción), y se produce mediante un proceso muy rápido de secreción celular: en el terminal nervioso presináptico, las vesículas que contienen los neurotransmisores permanecen ancladas y preparadas junto a la membrana sináptica. Cuando llega un potencial de acción se produce una entrada de iones calcio a través de los canales de calcio dependientes de voltaje. Los iones de calcio inician una cascada de reacciones que terminan haciendo que las membranas vesiculares se fusionen con la membrana presináptica y liberando su contenido a la hendidura sináptica. Los receptores del lado opuesto de la hendidura se unen a los neurotransmisores y fuerzan la apertura de los canales iónicos cercanos de la membrana postsináptica, haciendo que los iones fluyan hacia o desde el interior, cambiando el potencial de membrana local. El resultado es excitatorio en caso de flujos de despolarización, o inhibitorio en caso de flujos de hiperpolarización. El que una sinapsis sea excitatoria o inhibitoria depende del tipo o tipos de iones que se canalizan en los flujos postsinápticos, que a su vez es función del tipo de receptores y neurotransmisores que intervienen en la sinapsis.

La suma de los impulsos excitatorios e inhibitorios que llegan por todas las sinapsis que se relacionan con cada neurona (1000 a 200 000) determina si se produce o no la descarga del potencial de acción por el axón de esa neurona.

]

Se distinguen tres tipos principales de transmisión sináptica; los dos primeros mecanismos constituyen las fuerzas principales que rigen en los circuitos neuronales:

transmisión excitadora: aquella que incrementa la posibilidad de producir un potencial de acción;

transmisión inhibidora: aquella que reduce la posibilidad de producir un potencial de acción;

transmisión moduladora: aquella que cambia el patrón y/o la frecuencia de la actividad producida por las células involucradas.

.

Generalmente, si una sinapsis excitatoria es fuerte, un potencial de acción en la neurona presináptica iniciará otro potencial en la célula postsináptica. En una sinapsis débil, el potencial excitatorio postsináptico («PEPS») no alcanzará el umbral para la iniciación del potencial de acción. En el cerebro, cada neurona mantiene conexiones o sinapsis con muchas otras, pudiendo recibir cada una de ellas múltiples señales. Cuando se disparan potenciales de acción simultáneamente en varias neuronas que se unen en sinapsis débiles a otra neurona, pueden forzar el inicio de un impulso en esa célula a pesar de que las sinapsis son débiles.

Una neurona presináptica que libera neurotransmisores inhibitorios, como el GABA, puede generar un potencial inhibitorio postsináptico («PIPS») en la neurona postsináptica, bajando su sensibilidad y la probabilidad de que se genere un potencial de acción en ella. Así la respuesta de una neurona depende de las señales que recibe de otras, con las que puede tener distintos grados de influencia, dependiendo de la fuerza de la sinapsis con esa neurona. John Carew Eccles realizó algunos experimentos importantes en los inicios de la investigación sináptica, por los que recibió el Premio Nobel de Fisiología o Medicina en 1963.

Tras la fusión de las vesículas sinápticas y la liberación de las moléculas transmisoras en la hendidura sináptica, el neurotransmisor es rápidamente eliminado del espacio por proteínas especializadas en su reciclaje, situadas en las membranas tanto presináptica como postsináptica. Esta recaptación evita la desensibilización de los receptores postsinápticos y asegura que los potenciales de acción subsiguientes generen un PEP de la misma intensidad. La necesidad de una recaptación y el fenómeno de la desensibilización en los receptores y canales iónicos significa que la fuerza de la sinapsis puede disminuir si un tren de potenciales de acción llega en una sucesión rápida, un fenómeno que hace que exista una dependencia de la frecuencia en las sinapsis. El sistema nervioso se aprovecha de esta propiedad para computaciones, y puede ajustar las sinapsis mediante la fosforilación de las proteínas implicadas. El tamaño, número y tasa de reposición de las vesículas también está sujeto a regulación, así como otros muchos aspectos de la transmisión sináptica. Por ejemplo, un tipo de fármaco conocido como inhibidores selectivos de la recaptación de serotonina o SSRI afectan a ciertas sinapsis inhibiendo la recaptación del neurotransmisor serotonina. Por el contrario, un neurotransmisor excitatorio muy importante, la acetilcolina, no es recaptada, pero es eliminada por acción de la enzima acetilcolinesterasa.

La modificación de los parámetros sinápticos pueden modificar el comportamiento de los circuitos neurales y la interacción entre los diferentes módulos que componen el sistema nervioso (modal). Dichos cambios están englobados en un fenómeno conocido como neuroplasticidad o plasticidad neuronal.

El lenguaje químico del cerebro

Foto: Paweł Czerwiński en Unsplash.

A su vez, en el proceso actúan proteínas que hacen posible la sinapsis, conformando el proteoma sináptico.

Un nuevo estudio realizado por investigadores del Instituto de Ciencia y Tecnología de Okinawa, en Japón, descifra el lenguaje químico ligado al proteoma sináptico y revela su importancia en las redes cerebrales que favorecen la memoria, el aprendizaje, la atención o la ubicación espacial.

Según un artículo publicado en Medical Xpress, comprender este fascinante lenguaje molecular es de vital importancia por muchas razones, pero principalmente porque las fallas en el proceso sináptico forman parte de la raíz de una gran cantidad de enfermedades cerebrales, como el autismo, el Alzheimer, la epilepsia, el Parkinson o la esquizofrenia, entre otras.

La investigación de los especialistas japoneses, publicada en la revista Proceedings of the National Academy of Sciences (PNAS), podría favorecen nuevos abordajes y tratamientos al facilitar la comprensión del rol que juegan las proteínas en el circuito comunicacional del cerebro, como así también en su conexión con el resto del cuerpo.

Según el Dr. Zacharie Taoufiq, autor principal del estudio, “esta investigación ha dado como resultado un catálogo de todas las diferentes proteínas que participan en las sinapsis. Gracias a esta información contaremos con una gran base para estudiar la diversidad regional y evolutiva del cerebro a nivel sináptico. También será clave para encontrar la causa molecular de la enfermedad de cada paciente, una difícil tarea que nos espera en el futuro”, indicó.

Uno de los aspectos centrales de la investigación, en la que también participaron científicos del Instituto Max Planck de Química Biofísica en Göttingen, Alemania, y de la Universidad de Doshisha en Kioto, Japón, es el reconocimiento y caracterización de las llamadas vesículas sinápticas (SV). Se trata de complejos centros de procesamiento molecular y químico, que funcionan en el marco de una delicada interacción armónica para garantizar una correcta neurotransmisión.

Hasta el momento no se disponía de los datos relativos a la base molecular completa de las sinapsis, pero con la nueva investigación se contará ahora con el relevamiento más extenso y rico de las proteínas presentes en dichos procesos. Para llegar a estos resultados, los investigadores trabajaron en base a un método que les permitió descubrir muchas secuencias ocultas: el objetivo era identificar proteínas que pudieran parecerse en gran medida a otras, pero que presentaran funciones diferentes.

Los resultados superaron las expectativas de los científicos, ya que se hallaron 4.439 proteínas sinápticas, de las cuales 1.466 forman parte de vesículas sinápticas (SV), triplicando el catálogo existente en la actualidad. Al mismo tiempo, descubrieron una gran diversidad en las proteínas SV, que forman subpoblaciones con funciones muy concretas y específicas.

Todo indica que las proteínas implicadas en las sinapsis han desarrollado su propia estructura comunicacional. “Parece que los proteomas sinápticos están estructurados como verdaderos lenguajes, con unas pocas palabras (o proteínas) de uso frecuente y muchos términos menos habituales pero más específicos y significativos «, concluyó el Dr. Taoufiq.

La extensión del catálogo disponible de proteínas sinápticas tiene un valor que excede a su importancia científica, porque permitirá contar con una nueva herramienta para comprender el surgimiento de una gran cantidad de enfermedades cerebrales. Este conocimiento podrá desembocar en alternativas terapéuticas más eficaces, cuando por ejemplo en la actualidad los ensayos clínicos para el tratamiento del Alzheimer alcanzan una tasa de fracaso del 99,6%.

Bibliografía

Bear MF, Connors BW, Paradiso M.A: Neurociencia: explorando el cerebro. Barcelona: Masson, 2002. ISBN 84-458-1259-9.

Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: «Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks». Biochim Biophys Acta. 2004 mar 23;1662(1-2):113-37. PMID 15033583.

Kandel ER, Schwartz JH, Jessell TM: Principios de neurociencia. Madrid: McGraw-Hill, 2001, 4.ª ed. ISBN 84-486-0311-7.

Karp, Gerald: Biología celular. México: McGraw-Hill, 1998, 1.ª ed. ISBN 970-10-1644-0.

Nicholls JG, Martin AR, Wallace BG y Fuchs PA: From Neuron to Brain. 4.ª ed. Sunderland, Massachusetts: Sinauer Associates, 2001. ISBN 0-87893-439-1.

Perea, Gertrudis y Alfonso Araque, «Sinapsis tripartita», Mente y cerebro, 27, 2007, págs. 50-55.

Purves D, et al: «Ion Channels Underlying Action Potentia

Hidden proteome of synaptic vesicles in the mammalian brain. Zacharie Taoufiq el Pablo Javier Piacente

PNAS (2020).DOI:https://doi.org/10.1073/pnas.2011870117

Foto: Paweł Czerwiński en Unsplash.

« Entradas anteriores Entradas siguientes »