El blog del Dr. Enrique Rubio

Autor: Enrique Rubio (Página 74 de 141)

ENRIQUE RUBIO GARCIA
Jefe del Servicio de Neurocirugía Valle de Hebron
Profesor Titular de Neurocirugía
Academico de España, Portugal, European Society of Neurosurgery, Word Federation of Neurosurgery.
Investigador del I Carlos III
Veintidós tesis doctorales dirigidas
250 trabajos publicados
Presidente de la academia de Neurocirugía de Barcelona
Academico de Cadiz y Jerez de la Frontera
Acadenico de Honor de Andalucia y Cataluña
log enriquerubio.net

EL CONTAGIO POR CORONAVIRUS EN SITIOS CERRADOS ES MAYOR

EL CONTAGIO POR COORONAVIRUS EN SITIOS CERRADOS ES MAYOR

La pasada semana, un grupo de más de 200 científicos procedentes de diversas disciplinas advertía a la Organización Mundial de la Salud (OMS) de que tenía que tomar más en cuenta la posibilidad de transmisión del coronavirus por el aire.

Dicha carta afirma que hay un potencial significativo de exposición a la inhalación del virus en microgotas a media distancia, de varios metros o dentro de una habitación, y que es una explicación muy plausible para eventos donde se han producido contagios masivos.

“Entiendo que la OMS mantiene que la vía de contagio mayoritaria es por microgotas”, apunta Jordi Sunyer, jefe del programa de Salud Infantil de Instituto de Salud Global (ISGlobal) de Barcelona y catedrático de Medicina Preventiva y Salud Pública de la Universidad Pompeu Fabra, y uno de los tres firmantes españoles de la carta (los otros dos son Xavier Querol, del Instituto de Diagnóstico Ambiental y Estudios del Agua, del CSIC, y Manuel Ruiz de Adana, del Departamento de Termodinámica Aplicada, de la Universidad de Córdoba).

“Y también [entiendo] que no descarta el contagio en espacios cerrados y poco ventilados por aerosoles transmitidos por el aire”, continúa, avisando de que tanto él como “los firmantes que conozco tenemos una actitud activa de total colaboración y servicio con la OMS”.

El investigador asume que “dar el peso debido al contagio por aerosoles es un reto”. Y afirma: “Sabemos que en espacios interiores la distancia no es suficiente”.

Propuestas para combatir la transmisión aérea del coronavirus

Los científicos autores de la misiva proponen una serie de medidas básicas y de bajo coste, como garantizar la suficiente ventilación en edificios públicos como las escuelas. A veces, esto se puede conseguir simplemente con abrir puertas y ventanas.

“La distancia, el uso de mascarilla y la poca densidad” son las precauciones principales en locales abiertos al público, señala Sunyer que evita pronunciarse sobre el aire acondicionado, cuyo uso ha venido revestido de cierta polémica pues, si ya se ha advertido de que el virus no puede reproducirse en los conductos de aire pues necesita huéspedes vivos, algunos estudios señalan que la circulación del aire puede expandir las microgotas más allá de la distancia de dos metros fijadas por las administraciones como de seguridad.

En la carta también se habla de la posibilidad de utilizar la luz ultravioleta y los germicidas para desinfectar locales, si bien el Ministerio de Sanidad avisó recientemente de que no hay evidencia en la actualidad que demuestre su efectividad frente al SARS-CoV-2.

Una petición circunscrita a la OMS

Hasta el momento, la petición de tener en cuenta se ha circunscrito a la OMS. En España, Sunyer indica que todavía no se ha hecho petición alguna para que las distintas administraciones (Gobierno central y consejerías de Sanidad) tengan en cuenta la posibilidad de transmisión aérea.

Eso sí, el investigador recuerda que “al virus le favorece el contacto físico, los espacios cerrados y poco ventilados y las multitudes para contagiar”.
Es uno de los tres firmantes españoles de la carta a la OMS que avisa sobre la transmisión del SARS-CoV-2 por el aire

Jordi Sunyer.
LUNES, 13 DE JULIO DE 2020, A LAS 09:00
MARCOS DOMINGUEZ

CORONAVIRUS: Y NEUMONIA PAUSINTOMATICA

CORONAVIRUS: Y NEUMONIA PAUSINTOMATICA
Cuando oímos que algún paciente con escasas molestias, pueden morir rápidamente en tiempo de epidemias por Coronavirus nos hace por lo menos ponernos en guardia. Porque esto no va como esperábamos. Por lo tanto ahora y en otras muchas ocasiones hayque emplear mas que la alta tecnología la eterna sospecha. “siempre una duda razonada” a la luz del un
La atención. William Osler (1849-1919) advertia, para atender al paciente en lugar de su enfermedad, un sentimiento tratado como un bromuro pintoresco por el practicante desprevenido.
Redescubrí la verdad de su consejo cuando dos pacientes en particular me enseñaron sobre la infección por COVID-19 y cuestionaron la experiencia que creía tener en el manejo de la neumonía.
La historia de dos pacientes con subito e inesperado desenlace fatal nos alarma o al menos me al horaarma.
El primer paciente con COVID-19 que se presentó en mi hospital
probablemente era típico de los pacientes iniciales en muchos otros hospitales en ese momento.
Era un hombre mayor con neumonía, aún no probado para el nuevo el bulbo Y lo la unión coronavirus, pero se presume que lo tiene. Un equipo de expertos lo evaluó cuidadosamente, le recetó oxígeno de alto flujo y lo monitoreó en una sala respiratoria. Murió inesperadamente esa noche.
El segundo paciente era una mujer de mediana edad remitida a la unidad de cuidados intensivos para ventilación mecánica. La muerte reciente me había puesto nervioso, así que fui a evaluarla. En mi camino a la sala, imaginé la imagen que me esperaba: una paciente que jadeaba, apenas podía hablar, con el pecho agitado por el esfuerzo de tratar de llevar oxígeno a su sangre.
Cuando llegué vestido con EPP completo y listo para sedarla para ventilación inmediata, pensé que había llegado a la cama equivocada. Se sentó cómodamente en su silla, hablando por teléfono con su hija, desconcertada por mi apariencia. Pensé que era demasiado cauteloso, pero midió su saturación de oxígeno en la sangre por si acaso, más por instinto que por preocupación. Por su apariencia, esperaba que fuera casi normal (100%). Fue del 75%, un nivel apenas compatible con ser consciente.
Daño pulmonar silencioso
Muchos pacientes con enfermedad COVID-19 avanzada no tenían ninguno de los rasgos distintivos de la enfermedad respiratoria grave hasta que colapsaron repentinamente y murieron.
En un estudio de Wuhan , China, se
describe los cambios patológicos pulmonares en las tomografías computarizadas de pacientes completamente asintomáticos. El transporte asintomático no es infrecuente en otras infecciones virulentas, como MRSA y C diff , pero lo que llama la atención con el SARS-CoV-2 (el virus que causa COVID-19) es que puede estar acompañado de daño orgánico subyacente.
Los investigadores encontraron lesiones consistentes con inflamación del tejido pulmonar subyacente (opacidades de vidrio esmerilado y consolidación, para usar la jerga médica), que no son específicas de la infección por SARS-CoV-2 y pueden verse en muchas otras formas de enfermedad pulmonar. Lo que sigue siendo un misterio es por qué, a pesar de estos cambios, los pacientes no muestran síntomas típicos de neumonía, como falta de aliento severa.
Y esta lo loterrible desenlace, se uede mitiga con mas sospechas que pruebas, o con las dos.
Pero mientras menosra etapa tanto, pensar “que esta pasando”. Sin inventar demasiado
Siempre me pregunto “y si hay mas gérmenes que aun no descubrimos”
25 junio 2020 15:49 CEST
Autor
John Kinnear
Jefe de la Facultad de Medicina, Universidad Anglia Ruskin
John Kinnear no recibe salario, ni ejerce labores de consultoría, ni posee acciones, ni recibe financiamiento de ninguna compañía u organización que pueda obtener beneficio de este artículo, y ha declarado carecer de vínculos relevantes más allá del cargo académico citado.

CONTRADICCIONES EN TIEMPO DE EPIDEMIA CARRAGENINA O CARRAGENANO

CONTRADICCIONES EN TIEMPO DE EPIDEMIA

Cada día muy tempranito, consulto las noticias medicas de Interned que me regala el Dr Google, que Dios bendiga . Y paso por dos estadios.
Primero esto es verdad?
Un rato mas tarde me encuentro otro articulo que diverge e incluso niega lo anterior.
Y despues inteno poner en claro las idea que surge de lo anterior

Esta vez la cosa es seria, porque son contradicciones que llegan sorprendentes.

LA CARRAGENINA O CARRAGENANO

Es una mezcla de polisacáridos naturales procedentes de algas de varias familias de Rhodophyceaes, algas marinas rojas, considerado por la FDA como un agregado inocuo. La carragenina se utiliza como aditivo alimentario también conocido como E-407.
Carragenina, que está presente en todos los productos lácteos. Algunos expertos han señalado que produce cáncer, otros no. Según la ministra de Salud, Patricia García, sostuvo que la Carragenina es un elemento para espesar la leche y conservar otros productos.19 jun. 2017

E
Autor/a: GABRIEL STEKOLSCHIK

Una barrera eléctrica contra el coronavirus
Fuente: nexciencia.exactas.uba.ar
Un equipo de investigación argentino iniciará los ensayos clínicos para evaluar un spray nasal que impediría que el virus ingrese al organismo a través de la nariz, que es la principal vía de infección.

Un spray nasal aprobado por la Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT) “PODRÍA” brindar protección contra el SARS-CoV-2, el coronavirus causante de la actual pandemia.
Se trata de un medicamento cuyo principio activo es la CARRAGENINA, una molécula obtenida de ciertas algas rojas, que se usa en las industrias alimentaria, farmacéutica y cosmética.
Por tratarse de un compuesto con carga eléctrica negativa, se estima que la carragenina interactúa con las cargas positivas de la superficie de las partículas virales previniendo la penetración de los virus en las células del huésped.
“Numerosos estudios han descripto el potencial antiviral de la carragenina contra distintos tipos de virus respiratorios, como el del resfrío común, el de la influenza y algunos coronavirus. Pero, hasta donde sabemos, todavía nadie probó en seres humanos el efecto de la carragenina sobre el SARS-CoV-2”, revela Osvaldo Uchitel, investigador del CONICET y director científico del proyecto financiado por el Ministerio de Ciencia, Tecnología e Innovación. “En pocos días iniciaremos los ensayos clínicos con un spray que contiene carragenina para probar su efectividad contra el SARS-CoV-2”, anuncia.
El equipo comandado por Uchitel y por el médico Juan Manuel Figueroa, director clínico del proyecto, pondrá a prueba el potencial de la carragenina en dos centros de salud porteños: el Hospital Británico y el CEMIC. “Estamos en tratativas con centros de salud del conurbano bonaerense para extender el estudio”, anticipan.
El proyecto apunta a administrar el medicamento a tres poblaciones. Una de ellas es el personal de salud que está a cargo de pacientes con COVID-19: “Son personas que están expuestas a un alto riesgo de contagio y queremos ver si podemos protegerlos disminuyendo la tasa de infección que los afecta actualmente”, señala Uchitel, y avisa: “Con el personal sanitario comenzamos el estudio la semana que viene”.
Otra población que ingresará al estudio son los pacientes que se internan con un cuadro leve de la enfermedad: “Deben iniciar el tratamiento dentro de las 48 horas de efectuado el diagnóstico y aplicarse el spray durante unos 20 días. La expectativa es evitar que esos pacientes se agraven y tengan que pasar a terapia intensiva”.
Finalmente, el estudio también se llevaría a cabo en las zonas donde podría surgir algún foco de infección. En ese caso, se administraría el medicamento a los contactos cercanos para disminuir la probabilidad de contagios.
Uchitel destaca el hecho de que “es un tratamiento muy sencillo, es un spray que se aplica cada cuatro a seis horas en cada orificio nasal, por lo que puede hacerlo cualquier persona sin necesidad de asistencia profesional”.
El uso de la carragenina comenzó hace más de 600 años en un pueblo de Irlanda llamado Carrigeen, donde ciertas algas rojas (musgo irlandés o musgo carrageen) se hervían para formar gelatinas que se usaban para la elaboración de postres.
Siglos después, mientras el mundo explota su sofisticado potencial tecnológico para desarrollar antivirales o vacunas que permitan enfrentar la mayor pandemia de la historia, es posible que, paradójicamente, un producto de origen natural pueda ser útil para combatir los estragos que provoca a la humanidad otro producto de la naturaleza.
Hasta aquí estupendo esto si fuera verdad al menos parcialmente, podrían ser un buen sistema para defendernos del virus.
Pero revisando la literatura actual, encontramos severas discordancia y para ello copió algunas de ellas.

¿Es preferible evitar productos con carragenina?
PROHIBICIÓN de una marca de leche evaporada en Panamá, el debate a nivel alimentario en la región se ha prolongado: ahora un aditivo presente en una gran variedad de lácteos, la carragenina, está bajo la lupa.
Por estos días, los consumidores de la región viven una situación de incertidumbre, especialmente luego de la prohibición de una marca leche evaporada de la multinacional Gloria en Panamá: esta se promocionaba como “leche”, cuando en verdad solo es hecha a base ciertos productos lácteos, algo que la autoridad panameña rechazó. El alcance del problema se amplía teniendo en cuenta que, según su propio sitio web, el grupo empresarial “exporta leche evaporada a 40 países en el Caribe, América Latina, El Medio Oriente y el Oeste de Africa”. Para ello, N + 1 pudo hablar con un experto en seguridad alimentaria para entender la ciencia detrás de los procesos de fabricación de la leche evaporada.
Pero en el país andino ha resurgido un nuevo debate ya tocado por distintas instancias a nivel internacional y académico: ahora, la inseguridad la trae la carragenina. Un organismo local (la ASPEC, Asociación Peruana de Consumidores y Usuarios) alertó que este aditivo, presente en los productos de Gloria y otras marcas como la trasnacional Nestlé y la peruana Laive, podría causar daños intestinales y hasta cáncer. Aquí, te explicamos por qué hay que poner atención a este químico y de preferencia, ser cautos en su consumo.
¿Qué es la carragenina?
También presente en etiquetas de productos lácteos como carragenano o SIN 120, E-407, este químico de nombre raro es un tipo de polisacárido sulfatado obtenido de la celulosa algas comestibles rojas. Las empresas lo usan para darle viscosidad y propiedades estabilizantes a los productos. En otras palabras, para que se vea bien, y sus componentes se mantengan distribuidos en todo el cuerpo líquido.
¿En qué productos la puedo encontrar?
El tema va más allá de las bebidas lácteas (pasando por yogures, natillas, leche condensada): también está en productos farmacéuticos, cervezas, refrescos light, postres, aderezos, quesos, productos sin lactosa, conservas de pescados, embutidos, surimi, productos cárnicos, y la lista sigue. Hasta alimentos para mascotas y productos de higiene personal la contienen.
Lo que más interesa: ¿me hace mal?
La respuesta, por el momento no es concluyente. Hay sectores académicos y gubernamentales de peso que dicen que hace daño, y otros que no. Pero el tema está lejos de ser zanjado. La verdad es que la evidencia actual sobre los daños que esta ocasionaría en el ser humano no es comprobada contundentemente, al tiempo que no existe, hay que decirlo, evidencia de que sea un elemento beneficioso a nivel nutricional (más allá del beneficio comercial del producto con buena pinta, que jamás se asienta y no hay que sacudir).
Si es un alimento aparentemente inofensivo ¿por qué tanta controversia?
Precisamente porque no todo está dicho. Hay, por otro lado, razones para sospechar. ¿Qué nos obliga a consumir productos con aditivos que no suman (es decir no son nutritivas), si no es el bombardeo publicitario?
Desde los 60, experimentos en animales y células humanas en el laboratorio dan cuenta de daños en dos áreas: la carragenina puede ser inflamatoria y mostró un (alarmante) efecto cancerígeno en roedores de laboratorio. El principal rostro en contra el aditivo fue la Dra. Joanne Tobacman, veterana científica de la Universidad de Chicago, quien tras revisar 45 estudios sobre el tema, concluyó en el 2001 que “la carragenina degradada debía ser reconsiderada”. Tobacman formalizó un pedido a la FDA (Food and Drug Administration) en el 2008 para que se prohíba el aditivo, aunque la organización la desatendió al considerar que la solicitud carecía de evidencia científica. La Unión Europea permite su uso, aunque por precaución (atención a esta palabra), se prohíbe en lactantes.
Finalmente, para añadir (o restarle puntos a la carragenina), un reciente estudio publicado en marzo concluye que esta podría recrudecer los cuadros de colitis ulcerativa. No obstante, para los expertos, la muestra (12 individuos) es pequeña.
¿Cómo debo proceder?
Habría, en cualquier caso, que ser cautos. Una vez más, el debate no está cerrado y aún faltan estudios concluyentes sobre su presunto estatus de dañino, y por otra parte, sabemos que la carregenina, nutritiva no es. “Lo chocante aquí es que no posee valor nutricional”, afirma Charlotte Vallaeys, experta del Instituto Cornucopia, EEUU, organización defensora de los cultivos familiares. El uso de la carragenina es además innecesario: el rótulo “agítese antes de usar” en el empaque de los productos solucionaría uno de los problemas que justifican su presencia.
Finalmente, no está demás dudar de todo, hasta de lo oficial: no olvidemos que entre el 2011 y 2015, Coca-Cola y Pepsi gastaron millones de dólares en patrocinar a más de 96 organizaciones científicas y médicas de EEUU. El objetivo de ambas multinacionales no era precisamente promover la ciencia, sino silenciar estudios que ventilaran la relación entre el exceso de azúcar y enfermedades como la diabetes o la obesidad.
Si en tu país no está prohibida para tus pequeños, lo mejor sería, como hace Europa evitar ‘alimentarlos’ con estos productos por precaución. Si es que hablar de inflamación, úlceras y cáncer no te asusta lo suficiente como temer por tu salud y variar tus propios hábitos, al menos cuídalos a ellos

Carragenina, enemigo mortal
Recordemos que como mencionamos en nuestro anterior post, sobre los aditivos y conservantes, todo alimento procesado siempre contiene una serie de productos químicos cuya finalidad es lograr que éstos duren almacenados por mucho más tiempo, en perfecta condición, sabor, textura y color….es decir que se vea ¡taaaan delicioso que no puedo comer solo uno!
Seguramente has escuchado sobre la carragenina, pero ¿sabes qués es? Bueno es un extracto de alga roja que se utiliza en diversos alimentos procesados como: cremas, yoghurt, helado, embutidos, margarinas, productos lácteos, panes, productos farmacéuticos, cervezas, refrescos light, postres, natillas, leche condensada, aderezos, productos sin lactosa, conservas de pescados, entre otros con propósito de gelificante, estabilizador y texturizador.
La recolección de esta alga se realiza durante la marea baja, entre la primavera y el otoño en las costas de países como Chile, Perú, Argentina y Francia. El proceso de extracción de la carragenina para su producción industrial se basa en dos de las propiedades de dicha alga: su solubilidad en agua caliente y su insolubilidad en solventes orgánicos polares. Después de un proceso de lavado, triturado y filtrado, se obtiene un jarabe transparente que se somete a otro proceso que finaliza con una obtención de un fino polvo o granulado, insípido e inodoro, de color blanco a beige.
El investigador de dicho aditivo, Joanne Tobacman, explica que las células intestinales absorben muy fácilmente la carragenina, pero no la pueden metabolizar, es decir que en medida que se acumula en nuestro organismo puede causar inflamación, produciendo úlceras, hemorragias, toxicidad fetal, colitis e incluso el cáncer. Nuestro cuerpo reconoce la carragenina como un invasor peligroso y trata de protegernos de ello.
La FDA (organismo que regula los alimentos y medicamentos), ha propuesto desde 1972 limitar el uso de carragenina en los alimentos procesados. A pesar de esto, no se han hecho estudios o revisiones detalladas que alerten sobre sus efectos nocivos a la salud, ya que la información y evidencia existente no es estadísticamente significativa para erradicar su empleo en la industria alimenticia.
La recomendación sería que procures reducir lo más que se pueda el consumo de productos procesados en tu hogar, por tu bien y el de tu familia pero…si quieres de vez en cuando consumirlos aplica los tips que anteriormente les dimos sobre Lectura de etiquetas ; eso sí mucho ojo por que probablemente en su mayoría no venga identificada tal cual como «carragenina» si no con siglas como SIN 407, E407.
Estos artículos a mí me sorprenden por lo menos, y me huelen a comerciales y por lo menos pido tener PRECAUCIÓN

LA INMUNIDAD Y CORONAVIRUS

LA INMUNIDAD Y CORONAVIRUS
La inmunidad durante la epidemia de coronavirus real podría ser el doble de la que indican los tests serológicos

La inmunidad que estamos sufriendo durante esta epidemia podría ser el doble de la que indican los tests serológicos
El 40% de positivos sin síntomas no tiene anticuerpos, pero sí células T específicas
Es imprescindible conocer los mecanismos por los que el coronavirus del Covid-19 nos está atacando y para ello es imprescindible conocer su fisiopatología para poder ponerle barreras imprescindibles para su detección y detensión, porque hasta ahora es imparable . Recientemente sabemos que, el 20% de los hospitalizados por Covid-19, con su PCR positivo, no tienen anticuerpos que neutralicen el virus. Han generado inmunidad a través de los linfocitos
La principal diferencia entre la inmunidad celular y la inmunidad humoral son los efectores que en ella intervienen. En la inmunidad celular los mediadores son células, principalmente linfocitos T, en cambio, en la inmunidad humoral son los anticuerpos.
Existen varios tipos de anticuerpos o inmunoglobulinas que utiliza el sistema inmune para identificar y eliminar sustancias extrañas, como bacterias o virus.
Existen muy diversas modalidades de anticuerpos y cada una de ellas tiene varios tipos. Esta gran diversidad de anticuerpos humano permite al sistema inmunitario reconocer una gran cantidad de antígenos.
En los humanos existen 5 grandes tipos de anticuerpos (isotipos). Cada uno de ellos se nombra con las “Ig” de inmunoglobulina, junto a una letra según el tipo de cadena pesada que tienen.:
IgA: cadenas pesadas tipo alfa (α). Contiene cuatro sitios de unión a antígenos. Tienen dos subtipos estructurales, el IgA1 y el IgA2. Es característico de las mucosas, donde cumple una función inmune contra las infecciones, como el tracto respiratorio y digestivo, así como en secreciones (leche materna, lágrimas, saliva).
IgD: cadenas pesadas tipo delta (δ). Se produce en forma de monómeros de 185 kDa aproximadamente y representa el 1% de los anticuerpos séricos, mientras que en el suero, en forma libre, representa el 0.25%. Si bien se desconoce su función específica, se cree que podría estar relacionada con la activación y diferenciación de los linfocitos B en los plasmocitos, así como en la activación de mastoncitos y basófilos.
IgE: cadenas pesadas tipo delta epsilon (ε). Se produce en forma de monómeros de 200 kDa aproximadamente. Es un anticuerpo poco frecuente que representa solamente el 0.02% de las inmunoglobulinas séricas y se encuentra generalmente en las mucosas del sistema intestinal y respiratorio, ofreciendo una protección inmunitaria, especialmente frente a gusanos parásitos.
IgG: cadenas pesadas tipo delta gamma (γ). Se produce en forma de monómeros con un peso molecular de 150 kDa aproximadamente. Es el anticuerpo más abundante en la sangre y en el fluido extracelular. Existen varios tipos de IgG: IgG1, IgG2, IgG3 e IgG4, siendo el más común el IgG1. Estos anticuerpos protegen a casi todos los órganos y tejidos de los agentes patógenos.
IgM: cadenas pesadas tipo mu (μ). En el cuerpo humano, es el anticuerpo más grande, pues su forma libre mayor es un pentámero que puede superar los 900 kDa de peso molecular.
El IgM es el tipo de anticuerpo que produce una respuesta más rápida ante un agente patógeno, por ello es considerado el anticuerpo primordial en la respuesta primaria humoral. Según el tipo de estímulo del que se trate, los linfocitos B que se encuentran activos cambiarán hacia los isotipos IgG, IgE o IgA en la respuesta secundaria humoral.
El 40% de positivos sin síntomas no tiene anticuerpos, pero sí células T específicas
La inmunidad frente al coronavirus de la Covid-19 es un importante galimatías que se intenta desenredar a toda velocidad en cientos de lugares del mundo simultáneamente, para saber por dónde ponerle coto. Y uno de los hallazgos recientes es que, aunque el 20% de los hospitalizados por Covid-19, con su PCR positivo, no tiene anticuerpos que neutralicen el virus, sí han generado inmunidad. Pero de otro tipo, a través de los linfocitos.
Es lo que están investigando en uno de los proyectos que lleva a cabo el consorcio de IrsiCaixa (Can Ruti), el CReSA, Grifols y el supercomputador MareNostrum (BSC). El Instituto Karolinska ya ha dado a conocer un avance de sus resultados provisionales en esta misma línea de investigación y ven que la respuesta inmunitaria a través de células T es el doble que la que dan los test de anticuerpos entre las personas positivas asintomáticas o con pocos síntomas. Así que la protección de la población, a pesar de que los test de serológicos hayan dado unos resultados muy bajos, podría ser muy superior. Quizás el doble de lo que se pensaba.
“En los pacientes, hospitalizados por Covid-19 han desarrollado anticuerpos eficaces, Sólo el 20% y el 40% tiene muy poco
Los anticuerpos pertenecen a una faceta de la inmunidad, la llamada inmunidad humoral. Es la que fabrica inmunoglobulinas (como las IgG y las IgM). De estas inmunoglobulinas, no todas son capaces de neutralizar al virus y su aparición varía mucho según lo expuesto que hayan estado los infectados. “Por ejemplo, en el 40% de nuestros asintomáticos, o con síntomas muy leves, no hay anticuerpos neutralizantes. Ni siquiera inmunoglobulinas que sean detectables en los test rápidos”, explica Clotet. “Pero eso no quiere decir que no haya respuesta inmune: sí pueden tener inmunidad celular, de la que se ocupan los linfocitos, sobre todo los CD4 y CD8. El trabajo que desarrollan aquí Christian Brander y Julia García pretende identificar dianas de esa inmunidad celular para conseguir una vacuna potente y duradera”. En esa investigación participan los fondos recogidos en la iniciativa YoMeCorono.
Y aún hay más. Muchos ciudadanos del planeta, sin haber estado nunca en contacto con este coronavirus nuevo, se cree que han de¬sarrollado una sensibilización previa eficaz contra el coronavirus, gracias a antígenos comunes de este SARS-CoV-2 con otros virus del resfriado común. Así que puede haber inmunes, capaces de una reacción baja “pero que, de forma rápida incrementan su respuesta al virus y es suficiente para protegerles. Y sin desarrollar inmunoglobulinas”, indica Clotet.
Los test serológicos por lo tanto resultan insuficientes para medir la inmunidad de la población. “Estamos trabajando en una cohorte muy amplia de población para conocer personas expuestas que no tienen anticuerpos neutralizantes. Unos con PCR positiva, otros con PCR negativa pero que son contactos estrechos de positivos y que tienen muchas posibilidades de haber hecho una inmunidad celular, la de los linfocitos”, explica Clotet.
Se puede Complicar un poco más. “Hay personas con inmunidad innata que la desarrollan inmediatamente, a base de interferón. Sin CD4, ni anticuerpos”.
Clotet insiste que nunca se había sabido y estudiado tanto y tan rápidamente un virus, lo que no quita que haya mucho que no se sabe. “Casi todo lo que tenemos es a partir de los pacientes hospitalizados, con cargas virales muy altas. Tenemos que mirar qué pasa en el positivo que no fabrica anticuerpos, en el negativo en contacto estrecho con el virus, en los que no enferman”.
La posibilidad que en la pandemia que estamos sufriendo intervenga más de un germen podría aclarar el problema en cuanto a la producción de inmunidad

EVALUAR LA RESPUESTA EMOCIONAL

EVALUAR LA RESPUESTA EMOCIONAL EVALUAR LA RESPUESTA EMOCIONAL
La evaluación de la conducta ante la pena o si quieren ante circunstancias adversas, es tan variable, que pierde absolutamente toda veracidad. La interpretación del dolor moral, es tan subjetivo y tan difícil de definir, que se llega a la conclusión que toda puede ser absolutamente mentira. Y esto referente a una sola entrevista, porque si se repiten, seguro que serán mas diferentes aun.
Y por supuesto la respuesta, va a ser diferente, de la hora del día, de como viste tu entrevistador, de cómo te gusta o no la persona que te entrevista.
Cuando rememoro un acontecimiento físico, por ejemplo como me impresiona un musico en un momento de su actuación , no tiene nada que ver, cuando lo hago en un día que estoy malhumorado y especialmente si lo estoy francamente , o si lo hago en un momento placido. Las respuestas ni tienen que ver entre si, ni siquiera tienen algo de verdad.
Rememorar un acontecimiento mecánico, tiene ya un grado de mentira, pero si lo vuelvo a contar unos días mas tarde, ya tienen algo mas de mentira. Lo he rememorado, lo he guardado otra vez y de nuevo una rememoración, hace que se vaya desvirtuando la idea fundamental. Pero si rememora circunstancias, psíquicas impregnadas de emoción, seguro que el valor obtenido es muy dudoso
Esto podría a conducirnos al axioma, de que vivimos en un estado de mentira, y sobre todo si se aplica al dolor o daño moral.
Pondré un ejemplo a nivel personal.
Cuando recuerdo a algún familiar o amigo, fallecido. Mi pesar oscila,dependiiiendo de múltiples valores. Yo diría de las ganas o no que tengo de ponerme triste. Pero no influye en ello mi voluntad, y me pregunto, si es así como hay que sentir, o no lo se hacer bien, o no se hacer bien en aquel momento
Si pidiéramos esto a un poeta a mi amigo Angel, que todo su decir lo convierte en bello, seguramente me gustaría su respuesta. Pero si se lo digo a otro amigo encantador, magnifico y buen Neurocirujano, pero mas bruto que una mula y sobre todo con ganas de ser toxico. Seguro como pasa siempre su respuesta me enfadaría y parecería disonante
Les pongo como ejemplo la acertada descripción, que hace JUAN MANUEL GARCÍA en la reacción que han tenido niños de un margen de edad estrecho ante la confinación durante la epidemia de Corona Virus
Una investigación presentada la semana pasada por dos psicólogas especializadas en desarrollo infantil revela que el estrés disminuyó durante el confinamiento en niños de 8 a 10 años.
“El objetivo inicial de nuestra investigación era la prevención del ‘bullying’”, explica Giménez-Dasí, una de las autoras. “Durante el mes de febrero hicimos una evaluación muy completa de los alumnos de 3, 6, 8 y 10 años, además de a sus padres y profesores. Respondieron muchas cuestiones que nos tenían que servir para evaluar su bienestar psicológico”, añade. En pleno desarrollo del trabajo, llegó la pandemia del coronavirus, los colegios cerraron sus puertas abruptamente el 11 de marzo y el proyecto se paralizó. Pero lo que parecía un contratiempo se convirtió en una oportunidad para analizar la respuesta emocional de los niños al confinamiento.
Los investigadores percibieron que, al contrario de lo esperado, los niños se mostraban felices y relajados en casa, así que repitieron las preguntas en plena cuarentena. Los resultados fueron reveladores. En lo que respecta a los niveles de ansiedad, los niños y niñas de 6 años no mostraron cambios significativos, pero en el tramo de edad entre los 8 y 10 años se aprecia una disminución “significativa” de los niveles de estrés.
Curiosamente, las respuestas de los padres y sus hijos a esta segunda ola fueron muy distintas. Por un lado, el 38% de los padres observaban en sus hijos dificultades relacionadas con la regulación emocional (cambios de estados de ánimo, apatía, más quejas) y el 20% apreciaban modificaciones en las pautas de sueño o de alimentación; por el contrario, la respuesta más frecuente de los niños fue que “estaban genial en casa” (31%) o que “estaban genial en casa, pero a veces se aburrían” (25%). Las emociones negativas fueron mencionadas con menos frecuencia: solo el 14% decía echar de menos a sus amigos, el 9% echaba de menos ir al colegio y el 5% admitía “estar nervioso”.
En el resto de medidas evaluadas en el estudio no se aprecian diferencias significativas entre los resultados del pre test y el realizado durante las seis semanas de confinamiento –que incluye el mes de abril, que en Madrid resultó particularmente duro–. Ni las conductas desafiantes ni la depresión experimentaron cambios relevantes. Con una sola excepción: la disposición al estudio en los niños de primaria es el índice que más disminuye de todos los evaluados (de 3,02 antes de la pandemia a 2,38 durante la cuarentena).
Esto es una muestra de laboratorio casi virtual, y seguro que si se repite la encuesta nos pueden dar resultados absolutamente distintos .

Es decir las circunstancias emocionales cambian la respuesta sentimental y cada vez que cambia el tipo de emoción, también lo hace el sentimiento y cuando rememoro sentimentalmente los hechos adultero la emoción causal.
De forma que el cambio no solo altera al sentimiento , sino producen errores de la rememoración incompatibles con la verdad.
El ambiente, sobre todo si se cambia a un ambiente emocional, los resultados son impredecibles, sobre todo si se rememoran.
Y para complicar mas la cosa, hablar de los neurotransmisores que se liberan en la emoción, los que se producen en el sentimiento de la emoción y los que se producen al rememorar los hechos, complican hasta el infinito los resultados.
La evalucion comunitaria de la conducta, tiene grandes dificultades, sobre todo si estas condiciones son estresantes

Cómo funciona un virus?

¿Cómo funciona un virus?
Esquema del coronavirus SARS-CoV-2.
Un virus es un agente infeccioso 100 veces más pequeño que una célula, por eso solo solo visible a través del microscopio electrónico. La palabra procede del latín virus, que significa “toxina” o “veneno”.
Los virus están al límite de lo que podría considerarse un ser vivo, porque necesitan la célula de otro ser vivo para vivir: puede ser la célula de un animal, una planta o una bacteria (las bacterias son organismos unicelulares).
Una vez dentro del organismo que sirve de “huésped”, el virus infecta sus células y se multiplica para sobrevivir.
Existen millones de tipos de virus, que tienen distintas formas y afectan diferentes tipos de células, por lo que pueden producir diferentes enfermedades. Por ejemplo, el virus de la polio afecta el sistema nervioso y la movilidad, mientras que el coronavirus afecta a los pulmones y el sistema respiratorio.
La estructura de un virus es bastante sencilla: tiene un núcleo de genoma, que define las características del virus y la forma como se multiplica, y un envoltorio de proteínas llamado “cápside”.
Los virus no tienen citoplasma ni ribosomas (elementos necesarios para formar una célula), por eso no pueden multiplicarse por sí solos y necesitan infectar la célula de otro organismo para hacerlo.
Cuando el virus infecta una célula, se multiplica y libera más agentes virales para que infecten otras células y así extenderse por el cuerpo del organismo huésped.
Los virus se contagian por contacto directo, a través de fluidos corporales (sangre, saliva, semen) o secreciones (orina, heces). También pueden infectarse las personas que toquen objetos o animales infectados. Por eso, en caso de epidemia, es importante mantener un alto grado de higiene. El coronavirus es un ser vivo?
La discusión sobre si un virus es un ser vivo o no persiste. Como si eso fuera importante
Preguntarse si está vivo un virus que ha infectado a más de un millón de personas en todo el mundo y matado a decenas de miles parece un poco absurdo, pero los científicos no se ponen de acuerdo.
Parece acertado considerara al virus “un robot” de ARN y proteínas no es un ser vivo, porque solo puede prosperar gracias a células como las nuestras, pero otros piensan que sí. Y aunque el debate sigue abierto. Esta bichejo hace un daño terrible. Puede terminar con lo humano por lo menos

Enrique Sacristán

Partículas del virus SARS-COV-2 (en amarillo) infectando células (azuladas) aisladas de un paciente y vistas a través del microscopio electrónico de barrido con corrección de color. / NIAID
Los coronavirus SARS-CoV-2 son diminutos, solo tienen entre 60 y 140 nanómetros de diámetro. Están formados de una cadena de ARN donde van sus genes y una cubierta lipídica con las proteínas que les permiten adherirse y entrar en las células del cuerpo que invaden. Sin ellas, no podrían sobrevivir ni reproducirse.

Margarita del Val, investigadora del Centro de Biología Molecular Severo Ochoa (CBMSO, centro mixto CSIC-UAM), “ cuenta que los virus son parásitos obligados y de estos , hay muchos más ejemplos en el árbol de la vida. Nosotros mismos somos organismos simbiontes obligados (aunque no parásitos), ya que sin la que tenemos en nuestros órganos probablemente no seríamos viables como especie”.
Del Val también explica que estos ‘bichos’ se multiplican haciendo copias de sí mismos, mutan moderadamente sin comprometer su viabilidad, y como consecuencia de ello responden a las fuertes condiciones selectivas de su entorno, donde sobreviven los más aptos.
«Los virus no envejecen ni mueren como individuos: si se inactivan es lo que llamaríamos un accidente, pero eso no es una característica inherente a la vida –aclara–. Otros seres unicelulares que se dividen por gemación tampoco mueren, e incluso algunas especies marinas (como ciertas medusas) son inmortales y solo se les acorta la vida por sus predadores».

Esquema del coronavirus SARS-CoV-2. / Scientific Animations
Muchos virus se adaptan a su hospedador a lo largo de millones de años, encontrando un punto de equilibrio. “Este privilegio lo tienen de preferencia los virus del herpes y no ocurre lo mismo con virus que surgen de repente como SARS-CoV-2.
Sobre el origen de este nuevo coronavirus, los estudios indican que lo más probable es que se transmitiera a las personas desde los murciélagos, quizá pasando por especies intermedias como el pangolín. No se sabe si se convirtió en patógeno cuando llegó hasta nosotros, donde tiene la capacidad de esconderse en individuos asintomáticos, o si ya lo era antes; pero el caso es que en pocos meses ya ha infectado a más de un millón de personas en todo el mundo y ha acabado con la vida de cerca de 70.000, casi un 20 % en España .
Actua como algo vivo, aunque también podría actuar como un robot replicante: llega a una célula humana a través de las mucosas, se adhiere a un componente específico de su membrana, abre un hueco y entra dentro, introduce su cadena de genes en el mecanismo celular y lo ‘engaña’ para que produzca los componentes de nuevos virus, que acaban saliendo a buscar más víctimas.
“Los virus no son metabólicamente activos, evolucionan y se reproducen ”.
. Siempre necesitan una célula para mantenerse y prosperar, así que quedan fuera de los grandes reinos de la biología.
«Los virus carecen de metabolismo, nunca han podido obtener energía del medio externo, lo cual los excluye definitivamente de la definición de vida», subraya la bióloga Ester Lázaro

“A fin de cuentas están hechos de las mismas moléculas que la vida, incluyendo un genoma en el que se almacena la información sobre sus propiedades y funcionamiento. Con esas instrucciones, se pueden multiplicar de forma muy rápida y adaptarse en tiempos récord a los cambios del ambiente”.
Que todo eso no lo pudiera hacer el patógeno de forma independiente, a Lázaro no solo le parecía un detalle menor, sino que le reafirmaba en su idea de que eran organismos vivos muy simples que se aprovechaban de otras formas más complejas: “Las bacterias parásitas también han reducido sus genomas y ahora no pueden vivir de forma independiente, así que pensaba que a los virus les pasaba lo mismo”.
Una receta con los ingredientes de la vida
Sin embargo, su trabajo en el CAB le hizo cambiar de idea según fue reflexionando sobre qué es realmente la vida y sus propiedades esenciales. Según la viróloga, el consenso científico actual más extendido es que la materia viva debe cumplir estos requisitos: poseer información genética, tener la capacidad para transformar la materia y la energía procedentes del exterior en materia y energía aprovechables para su mantenimiento, incluir un compartimento que defina sus límites respecto al entorno y ser capaz de evolución darwiniana.
“De todas esas funciones, hay una que los virus no poseen ni han poseído nunca en toda su historia, que es la de poder obtener energía del medio externo”, subraya Lázaro, “es decir, los virus carecen de metabolismo, lo cual los excluye definitivamente de la definición de vida. Se multiplican y evolucionan, pero son las células las que hacen posible que esa multiplicación y esa evolución viral tengan lugar, aunque en ese proceso acaben destruidas”.
Carlos Briones, también investigador en el CAB y coautor del libro Orígenes, coincide con ese punto de vista en su obra: “Nuestro conocimiento actual apoya la idea de que los virus y viroides (agentes infecciosos todavía más sencillos) no deberían ser considerados como seres vivos, aunque resulten fundamentales en la evolución de la vida y en la configuración de nuestra biosfera. En el fondo, la cuestión biológicamente relevante no es lo que son, sino lo que hacen”.
«En realidad no importa si el coronavirus está vivo o no, lo relevante es conocer su biología, cómo interactúa con nosotros y como lo podemos vencer”, concluye el astrobiólogo Charles Cockell
De hecho, los virus (palabra que en latín significaba veneno, ponzoña) en realidad llevan toda la vida con nosotros, coevolucionado con las primeras células desde sus comienzos en la Tierra y dejando su huella genética en ellas.
“Para bien o para mal, somos lo que somos gracias a nuestros parásitos, especialmente gracias a aquellos que nos manipulan de una forma más íntima”, dice Lázaro.
Quizás deberíamos renunciar a categorizar y poner límites, aceptando que entre la vida y la no vida hay entidades que no sabemos muy bien cómo clasificar pero que cumplen su función en la historia de la vida”.
Como dice el astrobiólogo Charles S. Cockell de la Universidad de Edimburgo, encerrado en su casa como tanta gente durante esta pandemia, quizá el concepto de vida solo es una palabra. Según la definición que entienda cada uno, los virus entran o no a formar parte de ella, pero puede que estemos perdiendo el tiempo: “No importa si el coronavirus está vivo o no y que no nos pongamos de acuerdo. Lo relevante es conocer su biología, cómo interactúa con nosotros y cómo lo podemos vencer”.

Así como los antibióticos atacan la membrana celular de las bacterias, este tipo de fármacos no sirve para tratar los virus (porque no tienen la misma estructura que una bacteria).
Para combatir los virus necesitamos vacunas, que permiten que el sistema inmunitario reconozca el virus como un intruso y lo destruya.
Las vacunas crean una especie de memoria contra el virus. Así, cada vez que entra en nuestro cuerpo, las células inmunitarias reconocen las proteínas que recubren el virus y actúan contra él.
El problema es que los virus tienen una gran capacidad de mutación: el envoltorio de proteínas puede cambiar y ‘engañar’ al sistema inmunitario, que deja de reconocerlo como un elemento nocivo y no reacciona. Por eso los virus tienen tanta resistencia.
Desde que se creó la primera vacuna a finales del siglo XVIII, se han desarrollado vacunas para enfermedades como la rabia, la poliomielitis, la fiebre amarilla, la tuberculosis o el sarampión.
Existen virus que no producen ninguna enfermedad, mientras que otros pueden resultar mortales.
Uno de los virus más extendidos es la influenza, responsable de la gripe. Existen diferentes tipos de influenza, que va mutando de año en año: por eso, aunque se encuentre una vacuna, siempre hay gripe porque aparecen nuevas formas del virus.
La fiebre amarilla está provocada por un virus que se transmite por la picada de un mosquito. Si no se tiene el tratamiento adecuado, puede resultar mortal. Se trata de una enfermedad endémica en África y América Latina, donde cuesta mucho erradicarla por la falta de recursos económicos, de saneamiento y de campañas que fomenten los hábitos higiénicos y sanitarios.
El virus VIH es otro de los más conocidos porque causa la síndrome de inmunodeficiencia adquirida (sida). Desde que se detectó por primera vez en 1980, se calcula que más de 35 millones de personas han muerto de sida. Todavía no se ha encontrado una vacuna para prevenir el contagio, pero sí existen tratamientos para evitar que el virus evolucione hasta la fase más avanzada.
ALBA FERNÁNDEZ
11/02/2020 10:30 | Actualizado a 16/03/2020 13:57

DE DÓNDE SURGIÓ LA IDEA DE CRISPR?

DE DÓNDE SURGIÓ LA IDEA DE CRISPR?

istock.com/Panuwach
Los humanos han estado jugando con la genética durante miles de años, incluso cuando no lo sabíamos. Creamos corgis y pomeranios modernos criando parejas de lobos salvajes para la docilidad, seleccionando sin saberlo los genes que controlan el tamaño y el temperamento. Los plátanos se convirtieron en un alimento básico del desayuno ya que continuamente criamos a sus antepasados poco apetitosos para producir fruta con las semillas menos comestibles. Tomó siglos, pero los resultados hablan por sí mismos.
En la actualidad, manipulamos genes individuales en organismos, transformando un proceso que lleva generaciones en algo que lleva una fracción del tiempo. Los científicos podrían criar un ratón negro con un ratón blanco, localizar y eliminar los genes del pelaje blanco en el embrión del ratón, y estar seguros de que el ratón bebé crecería con pelaje negro. Antes del año 2000, los investigadores emplearon muchas tecnologías diferentes para reescribir la genética de organismos como este. Pero eran complejos, caros y específicos de una determinada planta o animal.
¿De dónde surgió la idea de CRISPR?
En la década de 1980, el científico japonés Yoshizumi Ishino y su equipo en la Universidad de Osaka descubrieron grupos de ADN en algunas bacterias que contenían repeticiones extrañas. No se sabía por qué repetían o qué hacían los grupos, si acaso. En 2001, los investigadores Francisco Mojica y Ruud Jansen acuñaron un nombre para estas secciones repetitivas: CRISPR, que significa repeticiones palindrómicas cortas agrupadas regularmente entre espacios. Unos años más tarde, varios grupos independientes de investigadores notaron que estos grupos repetitivos agrupaban el ADN que provenía de virus que habían atacado a la bacteria antes.
Se dieron cuenta de que esta bacteria estaba incorporando segmentos de ADN de los invasores virales en su propio genoma y lo usaba como un sistema de alerta temprana contra los ataques del mismo virus.
Ingrese CRISPR-Cas9. Esta técnica de edición de genes se basa en el mecanismo de defensa natural que se encuentra en algunas bacterias. Utiliza una enzima específica, Cas9, para identificar y eliminar genes predeterminados y secuencias de ADN. Es una forma de manipulación de genes más barata, más efectiva e infinitamente adaptable, y parece funcionar en todos los organismos modelo. Desde su descubrimiento inicial alrededor del cambio de milenio, los científicos no se han dado cuenta del impacto que esta tecnología puede tener en el campo de la genética.
Pero, ¿cómo funciona y qué tipo de tratamientos podemos esperar de CRISPR en el futuro? Le preguntamos a Sean Ryder , profesor de bioquímica y farmacología molecular en la Facultad de Medicina de la Universidad de Massachusetts sobre este revolucionario avance en genética.
Los segmentos CRISPR identifican y señalan el ADN correspondiente en los virus. Pero son enzimas particulares, incluida una llamada Cas9, que sirven como armas contra los invasores. Cas9 lleva consigo una copia de la secuencia CRISPR, buscando ADN coincidente en los virus. Dondequiera que encuentre ese ADN coincidente, Cas9 lo corta y lo rompe. Juntos, forman el sistema CRISPR-Cas9.
CRISPR y Cas9 podrían haber sido un mecanismo de defensa inteligente para las bacterias. Pero en 2012, los investigadores Jennifer Doudna, Emmanuelle Charpentier y un equipo separado dirigido por la bioquímica lituana Virginijus Siksnys descubrieron que Cas9 podría reprogramarse para atacar, destruir o reemplazar secuencias genéticas específicas, y no solo en bacterias y virus. Fue entonces cuando realmente apareció su potencial para editar genes.
¿Cómo funciona la tecnología?
En las bacterias, Cas9 transporta crRNA, la información genética de los virus para identificar dónde realizar sus cortes. Los investigadores descubrieron que podían alimentar la información genética falsa de la enzima, reemplazando los CRISPR naturales con una secuencia de ARN de su elección, y enviando a Cas9 a atacar cualquier gen que quisieran.

istock.com/traffic_analyzer
Si a Cas9 se le asigna una secuencia de ARN específica y se entrega a las células, buscará las secuencias correspondientes en el ADN celular alojado en los núcleos y realizará un corte de doble cadena, cortando la hélice completa en un punto predeterminado. El ADN cortado es una emergencia para la célula, por lo que inmediatamente intentará repararlo. La forma más sencilla de hacerlo es volviendo a colocar los hilos cortados en su lugar y pegándolos. Es eficiente, pero también es propenso a errores. Y si la cadena no se vuelve a unir perfectamente, puede cambiar el marco del código genético, lo que podría eliminar el gen que se ha cortado o inutilizarlo. Cas9 también puede cortar genes completos de manera efectiva mediante el uso de dos guías que cortan en dos lugares, eliminando la secuencia intermedia, y las hebras en cada extremo se unirán sin la secuencia de corte.
Es posible usar una secuencia de ADN diseñada en el laboratorio para reparar un gen que ha sido cortado por Cas9. Esto puede usarse para reparar un gen roto o para modificar su función. Sin embargo, esta tecnología es menos eficiente que simplemente eliminar un gen.
¿Para qué se utiliza CRISPR actualmente?
En el laboratorio, los investigadores usan CRISPR regularmente para alterar genes en plantas, bacterias y modelos animales. Si elimina un gen particular en ratones de laboratorio, puede observar directamente qué rasgos o comportamientos se ven afectados. Así es como se ha realizado mucha investigación genética durante décadas, pero CRISPR hace que estos estudios sean más baratos, más rápidos y más confiables.
También hay ensayos clínicos que utilizan CRISPR para tratar varios tipos de enfermedades y trastornos. Por ejemplo, en la Universidad de Pensilvania, los investigadores están utilizando CRISPR para tratar potencialmente el mieloma múltiple, un cáncer de la sangre y la médula ósea. Han recolectado células de la médula ósea y editado las células T, parte del sistema inmunitario, para atacar con mayor precisión las células cancerosas antes de volver a colocarlas en el cuerpo. La misma técnica se ha utilizado para el sarcoma, un cáncer similar. Todavía no tenemos resultados, pero hay mucho interés en este enfoque.
CRISPR-Cas9 también se está utilizando para desarrollar tratamientos para enfermedades como la anemia falciforme. En la anemia de células falciformes, tener dos copias malas de la beta-globina causa síntomas graves, mientras que tener solo una copia mala produce muchos menos síntomas. Por lo tanto, los investigadores han recolectado células sanguíneas, ejecutan el sistema CRISPR para reparar la copia incorrecta y reintrodujeron las células fijas nuevamente en el torrente sanguíneo. Estas técnicas son inteligentes y podrían tener ramificaciones sorprendentes para los pacientes.
¿Qué enfermedades y trastornos cerebrales podría tratar CRISPR en el futuro?
CRISPR probablemente será más útil para afecciones hereditarias, como la enfermedad de Huntington. En Huntington’s, los genes de uno de los padres siempre causarán problemas porque es un gen dominante y actualmente no hay tratamientos confiables disponibles. Si puede eliminar ese gen dominante, el cuerpo recurrirá al gen recesivo y saludable para obtener instrucciones. En este caso, podemos identificar inmediatamente un problema desde el punto de vista de la concepción e intentar actuar rápidamente para eliminar ese gen dominante.
Las condiciones hereditarias son los objetivos más probables para la terapia génica porque CRISPR, aunque es más eficaz que las tecnologías anteriores, todavía no tiene una tasa de éxito del 100 por ciento. La tecnología siempre es más efectiva in vitro porque cada célula de su cuerpo contiene ADN, y un tratamiento puede requerir la alteración de la gran mayoría de esas cadenas de ADN. Cuantas menos celdas se editen, más probable es que CRISPR pueda eliminarlas de manera efectiva. Si sabemos que es probable que haya un problema genético temprano, es más probable que haya un tratamiento efectivo.
Todavía hay muchas preguntas y obstáculos que deben superarse antes de que podamos editar genomas humanos completos. Por ejemplo, un grupo de científicos chinos utilizó CRISPR para editar los genomas de las gemelas para tener inmunidad contra una determinada cepa del VIH. La edición se realizó durante la ICSI, la inyección intracitoplasmática de espermatozoides y la fertilización in vitro. Una vez que se determinó que los embriones fertilizados en este enfoque fueron modificados, se implantaron en la madre y se llevaron a término. Eso los convirtió en los primeros niños editados genéticamente de la historia. Desafortunadamente, el trabajo se realizó en secreto, con poca supervisión o justificación médica. CRISPR-Cas9 se usó para destruir un gen normal con la esperanza de prevenir la posibilidad de infección por VIH. Si bien no se han publicado datos,
Pero incluso si CRISPR-Cas9 funcionó según lo planeado, simplemente no sabemos las consecuencias involuntarias de alterar este gen en humanos. No sabemos todo sobre el genoma humano. Hay evidencia de que el gen que fue editado para prevenir esta cepa particular del VIH también juega un papel en la inteligencia y la memoria en los animales. Es posible que estas chicas hayan visto alteradas sus habilidades cognitivas de alguna manera. Y hay evidencia de que el gen noqueado ayudó a proteger contra el virus del Nilo Occidental, por lo que es más probable que contraigan esa terrible enfermedad en el futuro. Por último, y quizás lo más inquietante, las modificaciones podrían tener consecuencias no deseadas, ya que un informe reciente ha demostrado que una mutación particular de CCR5 en humanos es perjudicial.
Me resulta extraordinariamente arriesgado y peligroso crear mutaciones en genes que no entendemos completamente, sin conocer las consecuencias completas de cualquier cambio. Y cuando estas niñas crezcan, podrían transmitir sus genes editados. Por lo tanto, no solo afecta al paciente, sino que afecta a su progenie y a su progenie, en toda la línea familiar. Para que me sienta cómodo con este tipo de edición de genes, la tecnología tendrá que ser más precisa, más fácil de aplicar y capaz de editar con precisión los genes, no solo cortarlos o eliminarlos. Y no creo que estemos allí todavía.

Michael W. Richardson
Michael W. Richardson es escritor y editor con sede en Brooklyn, Nueva York, y abarca temas que van desde el cerebro y el comportamiento hasta el medio ambiente.

CÓMO FUNCIONA EL SISTEMA DE RECOMPENSA DEL CEREBRO?

¿CÓMO FUNCIONA EL SISTEMA DE RECOMPENSA DEL CEREBRO?

Para sobrevivir en los distintos entornos y seguir con su evolución, el ser humano ha desarrollado mecanismos cada vez más efectivos, sofisticados y vinculados a las características cambiantes del medio ambiente. En esa circunstancia, es el cerebro el encargado de desarrollar los mecanismos de supervivencia y adaptación a los mencionados hábitats. Cuenta con un sistema denominado sistema de recompensa, el cual responde a las gratificaciones naturales de supervivencia básica como comida, agua y sexo para mantenerse vivo.
Mecanismos del sistema de recompensa del cerebro
Los sistemas de recompensa son centros en el sistema nervioso central que obedecen a estímulos específicos y naturales. Regulados por neurotransmisores, permiten que el individuo desarrolle conductas aprendidas que responden a hechos placenteros o de desagrado.
Este sistema está compuesto por zonas mesolímbicas y mesocorticales del cerebro. La estimulación excesiva de éste conlleva, en las personas predispuestas, a cambios bioquímicos permanentes que median la reacción adictiva, de modo puede cambiar su funcionamiento y su respuesta a los estímulos ambientales.

El sistema de recompensa es el más importante implicado en el desarrollo de la adicción. Las áreas del cerebro que conforman el sistema de recompensa cerebral son: el Área Ventral Tegmental, el Núcleo Accumbens, la Corteza Prefrontal y el Hipotálamo Lateral.
Estos núcleos cerebrales están interconectados entre sí en un circuito llamado Circuito Reforzador Límbico-Motor que está relacionado con funciones de motivación (el Límbico) y locomotoras (el Motor).

¿Cómo se crea una adicción?
Algunas personas tienden a ser más propensas a las adicciones que otras, como asimismo algunos humanos son más susceptibles al ataque por patógenos que las demás.
Las últimas investigaciones implican a diversos neurotransmisores, así como a vías o sistemas cerebrales, tales como el sistema de recompensa mesolímbico, como factores claves en el desarrollo de la sintomatología adictiva.

Las actividades hedonistas y las sustancias de abuso afectan el cerebro a través del acceso provisto por el sistema de la recompensa, el cual está constituido por neuronas que descargan sustancias químicas, o neurotransmisores, cuando son estimuladas.
Así, las sustancias y actividades de abuso, siempre placenteras, a pesar de ser nocivas para el organismo, logran apoderarse de centros del cerebro, por medio del placer, para asegurar el hábito mantenido de las mismas.

Una rata se agazapa en la jaula del laboratorio. De su cabeza emerge un fino alambre. El animal está unido a una fuente de corriente eléctrica a través de ese cable que envía impulsos a su cerebro. Completamente agotado, ya no come ni bebe; también ha dejado hace tiempo de cuidar de su prole. No es víctima de fuerzas externas malintencionadas: el propio roedor se autoadministra los impulsos eléctricos accionando una pequeña palanca.
James Olds y Peter Milner, de la Universidad McGill en Montreal, observaron durante un experimento que ya forma parte de la historia de la neurociencia. A lo largo de la década de los cincuenta del siglo xx, surgieron las primeras pruebas de que el encéfalo albergaba una especie de centro del placer.

En los ensayos iniciales, los neurobiólogos se centraban en provocar movimientos musculares mediante la estimulación eléctrica del cerebro de modelos animales, pero Olds y Milner pretendían ir más allá: querían conocer si se podía influir en las conductas más complejas mediante los impulsos eléctricos.
En efecto, los roedores aprendieron con rapidez a desarrollar ciertas acciones o a inhibirlas según si experimentaban ese estímulo como una recompensa o, por el contrario, como un castigo. La pareja de investigadores había descubierto un área cerebral cuya estimulación directa mediante electrodos provocaba a las ratas una sensación de bienestar más intensa que la que les ocasionaban los estímulos naturales (comida, agua o contactos sociales). Tras aprender a pulsar «la palanca de la felicidad», los múridos dejaban literalmente de lado todo lo demás y se aplicaban por sí mismos los impulsos eléctricos con una persistencia maníaca.

El área tegmental ventral (VTA) es el principal eslabón del denominado “circuito de recompensa cerebral”. Esta área contiene neuronas que se proyectan hacia numerosas regiones del cerebro, desempeñando un papel fundamental en la motivación, el deseo, el placer y la valoración afectiva.
Las neuronas de la VTA también son la diana de acción de los fármacos antipsicóticos y antiparkinsonianos, al igual que de drogas psicoactivas como la cocaína, el éxtasis y el LSD.
En un trabajo reciente, un equipo de investigadores de la Universidad Autónoma de Madrid (UAM) presentó por primera vez una descripción de la anatomía celular de estas neuronas.
“Contrariamente a lo que esperábamos, encontramos varios tipos de neuronas dopaminérgicas en la VTA, cada uno formando circuitos con distintas regiones cerebrales”, señala Lucía Prensa, del departamento de Anatomía, Histología y Neurociencia de la Facultad de Medicina de la UAM.
Cuerpo de una neurona dopaminérgica de la VTA. (UAM)
En el trabajo, los investigadores emplearon una técnica novedosa de transfección in vivo de neuronas individuales que les permitió visualizar y cuantificar el axón completo de una sola célula, sin importar la extensión y complejidad del mismo.
“Los circuitos del cerebro están formados en gran parte por neuronas cuyo axón se extiende y ramifica sobre distancias enormes, de decenas de centímetros en el caso del cerebro humano. Hasta ahora había sido imposible analizar esos circuitos con resolución celular. Es el sueño de Santiago Ramón y Cajal hecho realidad”, subraya Francisco Clascá, del mismo departamento.
El trabajo, publicado en la revista Frontiers in Neuroanatomy, fue liderado por el laboratorio de los profesores Prensa y Clascá. Este laboratorio está aplicando dicha técnica al estudio de varios sistemas clave del cerebro como parte del proyecto multinacional Human Brain Project-EU Flagship, financiado por la Unión Europea a través del programa ‘Horizonte 2020’.
En el trabajo también participaron Ana Aransay y María García-Amado, doctorandas del programa de Neurociencia de la UAM, y Claudia Rodríguez-López, estudiante de Medicina de la misma universidad.

CÓMO FUNCIONA EL SISTEMA DE RECOMPENSA DEL CEREBRO?

¿CÓMO FUNCIONA EL SISTEMA DE RECOMPENSA DEL CEREBRO?

Para sobrevivir en los distintos entornos y seguir con su evolución, el ser humano ha desarrollado mecanismos cada vez más efectivos, sofisticados y vinculados a las características cambiantes del medio ambiente. En esa circunstancia, es el cerebro el encargado de desarrollar los mecanismos de supervivencia y adaptación a los mencionados hábitats. Cuenta con un sistema denominado sistema de recompensa, el cual responde a las gratificaciones naturales de supervivencia básica como comida, agua y sexo para mantenerse vivo.
Mecanismos del sistema de recompensa del cerebro
Los sistemas de recompensa son centros en el sistema nervioso central que obedecen a estímulos específicos y naturales. Regulados por neurotransmisores, permiten que el individuo desarrolle conductas aprendidas que responden a hechos placenteros o de desagrado.
Este sistema está compuesto por zonas mesolímbicas y mesocorticales del cerebro. La estimulación excesiva de éste conlleva, en las personas predispuestas, a cambios bioquímicos permanentes que median la reacción adictiva, de modo puede cambiar su funcionamiento y su respuesta a los estímulos ambientales.

El sistema de recompensa es el más importante implicado en el desarrollo de la adicción. Las áreas del cerebro que conforman el sistema de recompensa cerebral son: el Área Ventral Tegmental, el Núcleo Accumbens, la Corteza Prefrontal y el Hipotálamo Lateral.
Estos núcleos cerebrales están interconectados entre sí en un circuito llamado Circuito Reforzador Límbico-Motor que está relacionado con funciones de motivación (el Límbico) y locomotoras (el Motor).

¿Cómo se crea una adicción?
Algunas personas tienden a ser más propensas a las adicciones que otras, como asimismo algunos humanos son más susceptibles al ataque por patógenos que las demás.
Las últimas investigaciones implican a diversos neurotransmisores, así como a vías o sistemas cerebrales, tales como el sistema de recompensa mesolímbico, como factores claves en el desarrollo de la sintomatología adictiva.

Las actividades hedonistas y las sustancias de abuso afectan el cerebro a través del acceso provisto por el sistema de la recompensa, el cual está constituido por neuronas que descargan sustancias químicas, o neurotransmisores, cuando son estimuladas.
Así, las sustancias y actividades de abuso, siempre placenteras, a pesar de ser nocivas para el organismo, logran apoderarse de centros del cerebro, por medio del placer, para asegurar el hábito mantenido de las mismas.

Una rata se agazapa en la jaula del laboratorio. De su cabeza emerge un fino alambre. El animal está unido a una fuente de corriente eléctrica a través de ese cable que envía impulsos a su cerebro. Completamente agotado, ya no come ni bebe; también ha dejado hace tiempo de cuidar de su prole. No es víctima de fuerzas externas malintencionadas: el propio roedor se autoadministra los impulsos eléctricos accionando una pequeña palanca.
James Olds y Peter Milner, de la Universidad McGill en Montreal, observaron durante un experimento que ya forma parte de la historia de la neurociencia. A lo largo de la década de los cincuenta del siglo xx, surgieron las primeras pruebas de que el encéfalo albergaba una especie de centro del placer.

En los ensayos iniciales, los neurobiólogos se centraban en provocar movimientos musculares mediante la estimulación eléctrica del cerebro de modelos animales, pero Olds y Milner pretendían ir más allá: querían conocer si se podía influir en las conductas más complejas mediante los impulsos eléctricos.
En efecto, los roedores aprendieron con rapidez a desarrollar ciertas acciones o a inhibirlas según si experimentaban ese estímulo como una recompensa o, por el contrario, como un castigo. La pareja de investigadores había descubierto un área cerebral cuya estimulación directa mediante electrodos provocaba a las ratas una sensación de bienestar más intensa que la que les ocasionaban los estímulos naturales (comida, agua o contactos sociales). Tras aprender a pulsar «la palanca de la felicidad», los múridos dejaban literalmente de lado todo lo demás y se aplicaban por sí mismos los impulsos eléctricos con una persistencia maníaca.

El área tegmental ventral (VTA) es el principal eslabón del denominado “circuito de recompensa cerebral”. Esta área contiene neuronas que se proyectan hacia numerosas regiones del cerebro, desempeñando un papel fundamental en la motivación, el deseo, el placer y la valoración afectiva.
Las neuronas de la VTA también son la diana de acción de los fármacos antipsicóticos y antiparkinsonianos, al igual que de drogas psicoactivas como la cocaína, el éxtasis y el LSD.
En un trabajo reciente, un equipo de investigadores de la Universidad Autónoma de Madrid (UAM) presentó por primera vez una descripción de la anatomía celular de estas neuronas.
“Contrariamente a lo que esperábamos, encontramos varios tipos de neuronas dopaminérgicas en la VTA, cada uno formando circuitos con distintas regiones cerebrales”, señala Lucía Prensa, del departamento de Anatomía, Histología y Neurociencia de la Facultad de Medicina de la UAM.
Cuerpo de una neurona dopaminérgica de la VTA. (UAM)
En el trabajo, los investigadores emplearon una técnica novedosa de transfección in vivo de neuronas individuales que les permitió visualizar y cuantificar el axón completo de una sola célula, sin importar la extensión y complejidad del mismo.
“Los circuitos del cerebro están formados en gran parte por neuronas cuyo axón se extiende y ramifica sobre distancias enormes, de decenas de centímetros en el caso del cerebro humano. Hasta ahora había sido imposible analizar esos circuitos con resolución celular. Es el sueño de Santiago Ramón y Cajal hecho realidad”, subraya Francisco Clascá, del mismo departamento.
El trabajo, publicado en la revista Frontiers in Neuroanatomy, fue liderado por el laboratorio de los profesores Prensa y Clascá. Este laboratorio está aplicando dicha técnica al estudio de varios sistemas clave del cerebro como parte del proyecto multinacional Human Brain Project-EU Flagship, financiado por la Unión Europea a través del programa ‘Horizonte 2020’.
En el trabajo también participaron Ana Aransay y María García-Amado, doctorandas del programa de Neurociencia de la UAM, y Claudia Rodríguez-López, estudiante de Medicina de la misma universidad.

MADURACION DEL CEREBRO DE LOS PSICOPATAS

RESPUESTA A LA ATENTA CARTA DE DIEGO

DEL CEREBRO DE LOS PSICOPATAS

El cerebro de los psicópatas presenta indicios de una hipermaduración acelerada durante la infancia, hecho que los protege del sufrimiento, pero dificulta que gestionen sus emociones, aunque son plenamente conscientes de sus actos, según un estudio publicado en Psychological Medicine.
“El psicópata puede ser el resultado de un estrés emocional en las primeras fases de la vida, que provoca la hipermaduración de las estructuras del cerebro implicadas en los sentimientos y la toma de decisiones”, explica el doctor Jesús Pujol.
El especialista es director de investigación de la Unidad de Resonancia Magnética del Servicio de Radiología del Hospital del Mar y del Instituto Hospital del Mar de Investigaciones Médicas (IMIM) y CIBERSAM.
Investigadores del Hospital del Mar de Barcelona y del Parc Taulí de Sabadell también descubrieron que el cerebro de los psicópatas es parecido al de personas que consumen esteroides durante un largo periodo de tiempo.

Los científicos analizaron el cerebro de personas con psicopatías mediante imágenes obtenidas con resonancia magnética para comprobar que sufren una hipermaduración o maduración acelerada de determinadas zonas del cerebro, hecho que afecta a su capacidad para gestionar las emociones.
La investigación ha analizado más de 400 artículos publicados en revistas científicas, ha comprobado que el factor emocional temprano tiene una gran influencia en el desarrollo, formación y comportamiento del psicópata.
El psicópata puede ser el resultado de un estrés emocional en las primeras fases de la vida, que provoca la hipermaduración de las estructuras del cerebro implicadas en los sentimientos y la toma de decisiones.
Los investigadores lo explican por la aparente reducción de la sustancia gris detectada en las imágenes por resonancia magnética, que es debida a un proceso de mielinización excesiva o incremento de sustancia blanca, compatible con esta maduración acelerada.
Las zonas más afectadas son el sistema frontal-basal y temporal anterior y el frontal medial y cíngulo posterior, que relacionan los estímulos externos con las reacciones y los sentimientos.
Pujol subraya que el cerebro humano se protege del estrés emocional en las fases más tempranas de su desarrollo madurando de forma acelerada, hecho que permite una más grande capacidad para tolerar el sufrimiento y evadirse.
“Pero esto, a la vez, tiene efectos secundarios en forma de falta de escrúpulos y de remordimientos, no tienen freno emocional”, según Pujol.
Esta diferencia respecto a un cerebro normal, según el investigador, “no afecta a su capacidad de razonamiento, tienen sentimientos, a pesar de parecer fríos emocionalmente”.
“La asociación entre emoción y cognición durante la toma de decisiones está bloqueada, su cerebro se puede catalogar de diferente, anormal, pero son responsables de lo que hacen, de sus actos”, añade PujoL
Esta afirmación la repiten los psicopatas
Jiménez Martínez, C. 2017. No es mi culpa, fue mi cerebro. ¿Es esta una afirmación válida para aplicar la inimputabilidad a individuos con trastornos de la personalidad y psicópatas?. Derecho Penal y Criminología. 37, 103 (jul. 2017), 81-107. DOI:https://doi.org/10.18601/01210483.v37n103.05.

Hola, me parece un artículo muy interesante, quería preguntarle si existe alguna línea para el tratamiento de la psicopatía; es decir, intentar repoblar las áreas mielinizadas de forma precoz, para establecer vínculos neuronales entre las zonas desconectadas, y conseguir una reestructuración de las distintas zonas del cerebro. Creo realmente que es algo de suma importancia, dadas las consecuencias del comportamiento psicopático; a nivel individual, pero sobre todo a nivel global, creo que cualquier persona medianamente intuitiva, con cierto conocimiento en la materia, sabe que los psicópatas copan y han copado puestos de mucho poder, con el único objetivo de perpetuarse; de alguna manera, si atendemos a la clasificación típica del cerebro triúnico, los psicópatas «puentean» el sistema límbico, de manera que únicamente funcionan para satisfacer su supervivencia, sin tener en cuenta aspectos como la colaboración, la empatía o el trabajo en equipo para lograr mayores metas. ¿Cómo se puede afirmar que son plenamente conscientes de sus actos si su consciencia está dividida?, en una simple fórmula, quedaría como:
Cp=Cn-sistema límbico, siendo Cp el cerebro del psicópata y Cn el de una persona normal, es decir, aquella que se ha desarrollado en todos sus aspectos, sin una hipermaduración de determinadas zonas del cerebro.
Cuestiono también la hipermaduración como elemento explicativo de lo que les sucede, es más bien una cicatrización de áreas límbicas, como una fibrosis en una herida mal curada.
¿No le sorprende que no haya más estudios al respecto?
Un saludo y gracias por su post,
Diego

Mi respuesta es que la organicidad de las palabras no llegan a la descripción de los hechos que expresan. Que el concepto de madurez cerebral no cabe en lo objetivo.
Que la mayor definición de inteligencia es la que hace Cajal, cuando habla del lenguaje de las neuronas .
Solo tienen traducción inteligente lo que tiene forma
La maduración cerebral se correlaciona con los cambios cognoscitivos y de comportamiento observados durante la infancia y la adolescencia. …
Se asocia la maduración del hemisferio derecho con la conducta emocional y la maduración del hemisferio izquierdo con el lenguaje.
Pero también se puede decir
Madurar el cerebro es prepararse para el cambio continuo de comportamiento necesario para la vida psíquica y orgánica o metaboilica
Pero a esto hay que agregarle cual es el substrato anatomico de este cambio
¿Qué es lo que cambia aquí?
Son las células neurales, las dendritas, las conexiones, la química de los neurotransmisores.
Solo una serie de agregados anatómicos, responden a estas preguntas
Yo no tengo una idea clara de la anatomía cerebal que nos lleva a la psicopatía, y si madurez cerebral es madurar las dendritas.
No lo se y es muy posible que este saber caiga dentro de lo incosnciente.
Porque crecer es solo el argumento que de la flor tiene una
simiente.

Siempre que hablo de materia neurológica orgánica y su expresión psíquica, me aturde la idea, de estar inventando.
Atrofia de lóbulo limbico, lo traduciría, como perdida de su estructura física normal. Glias, Neuronas, cilindroejes y una multitud de estructuras , perfectamente orquestadas.
Lo que no entiendo es que la atrofia límbica, produzca alteraciones de la conducta, tales como psicopatías.Todo menos inventar y vaticinar lo menos posible.
Lo que si creo cada vez mas es la posibilidad de que gérmenes del parénquima, sean anglobados por patógenos y mutilen funciones fundamentales de nuestro sistema nervioso, locales y a distancia.
La mayoría de la enfermedades neurodegenerativas, son la consecuencia de
UN germen
Una respuesta inflamatoria por macrófagos, que envuelven las estructuras sistema nervioso
Y un defecto psico-organico de las funciones del cerebro y sus componentes

Esto es lo que se llama
Enfermedad neurodegenerativa ENDIQUELA

« Entradas anteriores Entradas siguientes »