El blog del Dr. Enrique Rubio

Categoría: General (Página 12 de 51)

CONCIENCIA Y COMA, SU ANATOMIA

 

INHIBICIÓN CEREBRAL DE LA MENTE – Enriquerubio.net

La conciencia da significado a lo que somos, lo que queremos, nuestro lugar en el mundo, toda nuestra experiencia.
La conciencia es lo más genuinamente humano, es la interpretación subjetiva de lo que nos pasa. Todo lo que nos sucede viene prendado de señales procedentes de nuestros sentidos y nuestro entorno, pero además viene unido a emociones y recuerdos. Como una especie de voz superpuesta, es uno de los elementos fundamentales de la existencia humana. Nuestra película interna, imprescindible para que la vida tenga sentido y valor. Quizá sea el fenómeno más misterioso del mundo.
Pero aparte de definirla, la conciencia suscita muchas preguntas para las que aún no tenemos buenas respuestas. Se suelen clasificar en fáciles y difíciles. Vayamos con las fáciles: ¿qué tiene de especial el cerebro para generar la conciencia? ¿Está además situada en alguna zona concreta? Y por supuesto, ¿cómo funciona? O, dicho de otra forma, ¿por qué una pieza de materia activa altamente organizada genera una sensación consciente? ¿
¿Dónde está la conciencia?
Un grupo de científicos de la Universidad de Oxford ha descubierto la parte del cerebro donde se encuentra la conciencia humana. … Se trata de la corteza prefrontal lateral del cerebro, el lugar donde, según ellos, se aloja la voz de la conciencia. 2 feb. 2014

SIn embargo la conciencia es mucho mas y esta representada en áreas mas difusas.

Empecemos por los trastornos de conciencia

El Coma

 

El estado de coma es una alteración grave del nivel de conciencia. En el coma el paciente presenta un estado de completa falta de respuesta (exceptuando únicamente algunos reflejos automáticos).

se pueden identificar diferentes grados de nivel de conciencia, que va desde el estado de alerta normal hasta lo que se conoce como muerte cerebral.

Estado de alerta: situación normal en una persona sana, tanto en vigilia como en sueño fisiológico.

Obnubilación-confusión: cuando existe una disminución moderada del nivel de conciencia, pero el paciente se puede despertar fácilmente con estímulos, hay una alteración de la atención y respuestas lentas. Puede aparecer también desorientación témporo-espacial y agitación (estado confusional), especialmente nocturna, alternando con periodos de lucidez.

Estupor: el paciente está dormido, con un nivel de conciencia muy disminuido, y con mínimas respuestas verbales y motoras a los estímulos.

Coma: estado de falta de respuesta ante cualquier estímulo. El paciente permanece con los ojos cerrados. Durante un estado de coma el tronco encefálico, parte del cerebro que controla las funciones vitales como la respiración, está activo. Así, el organismo es capaz de mantenerse mientras se suplan necesidades básicas como la alimentación. El paciente respira, regula las constantes vitales, pero no hay actividad en las áreas superiores del cerebro ni aparece movimiento alguno que indique un mínimo nivel de conciencia.

Estado vegetativo persistente: estado de falta de conciencia total pero que mantiene apertura espontánea ocular durante periodos de despertar. Los pacientes mantienen la función respiratoria, alternando periodos de sueño aparente con periodos de vigilia con los ojos abiertos. No hay ninguna actividad motora voluntaria

Muerte cerebral: situación de ausencia total de respuesta cerebral que incluye la ausencia de funciones automáticas como la respiratoria. Es una situación irreversible.

Las causas del coma son múltiples, y engloban a todas aquellas que afecten al sistema nervioso central. Ello incluye:

Traumatismos craneoencefálicos.

Tóxicos

Hipoxia (falta de oxígeno por paro cardiaco , por ejemplo)

Lesiones vasculares cerebrales (hemorragia, infarto cerebral)

Infecciones del SNC (meningoencefalitis)

Intoxicaciones o envenenamientos

Tumores cerebrales

Enfermedades metabólicas (encefalopatía mitocondrial)

Trastornos del desarrollo (hidrocefalia congénita)

El diagnóstico se basa en la exploración neurológica, donde mediante una serie de maniobras de estimulación sencilla se puede establecer el grado de nivel de conciencia.

Para conocer la causa el médico puede indicar pruebas como EKG (infarto grave), analítica con tóxicos, pruebas de neuroimagen (lesiones cerebrales). El EEG (registro de la actividad cerebral) es útil durante la evolución del coma para distinguir otros estados como la muerte encefálica donde no existe ningún tipo de trazado eléctrico.

La evolución del coma puede ser hacia un estado vegetativo idéntico al coma pero en el que sí se producen movimientos espontáneos de ojos, o a un estado de mínima conciencia en el que el paciente puede llegar a seguir a alguien con la mirada o responder instrucciones muy básicas, a un empeoramiento y complicaciones que conllevan al fallecimiento o a su recuperación.

En el coma el paciente respira, regula las constantes vitales, pero no hay actividad en las áreas superiores del cerebro ni movimiento alguno que indique un mínimo nivel de conciencia.

El diagnóstico se basa en la exploración neurológica, donde mediante una serie de maniobras de estimulación sencilla se puede establecer el grado de nivel de conciencia.

El pronóstico y evolución de la persona en coma es aún un desafío. Depende sobre todo de la causa, y también de la zona anatómica y extensión de la afectación (daño neurológico) y la edad.

Anatomia de la conciencia

Las estructuras neuroanatómicas encargadas del mantenimiento del nivel de consciencia son múltiples y variadas, interviniendo prácticamente todas las vías y centros nerviosos en mayor o menor medida, los cuales están organizados jerárquicamente y cooperan de forma funcional. Entre ellos el principal sistema encargado es el denominado Sistema Reticular Activador Ascendente (SRAA), definido de forma clásica por los experimentos de Moruzzi y Magoun, como una red neuronal originada en el tegmentum de la protuberancia  y mesencéfalo
El sustrato anatómico de la consciencia comprende el SRAA desde el nivel mediopontino hasta los núcleos intralaminares, los de la línea media y los talámicos e hipotalámicos paraventriculares junto a sistemas corticales cerebrales difusamente interconectados

 

Tálamo y conciencia

 

Investigadores de EE UU han conseguido estimular el tálamo lateral central de un macaco anestesiado y han encontrado vínculos entre esta región y la capacidad de experimentar sensaciones conscientes. Las técnicas empleadas podrían servir para despertar a la gente que se encuentra en coma. El estado de coma es una alteración grave del nivel de conciencia. Que es el coma, un  paciente presenta un estado de completa falta de respuesta (exceptuando únicamente algunos reflejos automáticos).

Se pueden identificar diferentes grados de nivel de conciencia, que va desde el estado de alerta normal hasta lo que se conoce como muerte cerebral.

Estado de alerta: situación normal en una persona sana, tanto en vigilia como en sueño fisiológico.

Obnubilación-confusión: cuando existe una disminución moderada del nivel de conciencia, pero el paciente se puede despertar fácilmente con estímulos, hay una alteración de la atención y respuestas lentas. Puede aparecer también desorientación témporo-espacial y agitación (estado confusional), especialmente nocturna, alternando con periodos de lucidez.

Estupor: el paciente está dormido, con un nivel de conciencia muy disminuido, y con mínimas respuestas verbales y motoras a los estímulos.

Coma: estado de falta de respuesta ante cualquier estímulo. El paciente permanece con los ojos cerrados. Durante un estado de coma el tronco encefálico, parte del cerebro que controla las funciones vitales como la respiración, está activo. Así, el organismo es capaz de mantenerse mientras se suplan necesidades básicas como la alimentación. El paciente respira, regula las constantes vitales, pero no hay actividad en las áreas superiores del cerebro ni aparece movimiento alguno que indique un mínimo nivel de conciencia.

Estado vegetativo persistente: estado de falta de conciencia total pero que mantiene apertura espontánea ocular durante periodos de despertar. Los pacientes mantienen la función respiratoria, alternando periodos de sueño aparente con periodos de vigilia con los ojos abiertos. No hay ninguna actividad motora voluntaria

Muerte cerebral: situación de ausencia total de respuesta cerebral que incluye la ausencia de funciones automáticas como la respiratoria. Es una situación irreversible.

tálamo lateral central tiene una función primordial en la conciencia. / Pixabay

Los expertos en neurociencia llevan años preguntándose en qué parte del cerebro surge la conciencia, es decir, la capacidad de experimentar sensaciones internas y externas. Ahora, un nuevo estudio publicado en la revista Neuron indica que un área específica del cerebro –el tálamo lateral central– parece desempeñar un papel clave.

Los investigadores consiguieron limitar las partes del cerebro que estaban más vinculadas a la conciencia

 

Estudios previos, incluyendo algunos en humanos, sugerían que ciertas áreas, como la corteza parietal y el tálamo, estaban involucradas en dicha capacidad y destacaban la comunicación ellas. “Decidimos ir más allá del enfoque clásico, que estudiaba la actividad de cada área de una en una”, dice Yuri Saalmann, profesor de la Universidad de Wisconsin-Madison (EE UU) y autor principal. “Grabamos múltiples áreas al mismo tiempo para ver cómo se comportaba toda la red”,.

Según los autores, la corteza cerebral tiene seis capas que desempeñan diferentes papeles en el procesamiento y la comunicación neuronal. “Utilizamos sondas laminares que pueden abarcar las capas corticales y grabar desde todas ellas simultáneamente”, explica a SINC Michele  Redinbaugh, estudiante de posgrado en el departamento de psicología de la institución estadounidense y autora del trabajo.

Así consiguieron limitar las partes del cerebro que eran importantes y las vías de comunicación de las capas que estaban más vinculadas a la conciencia. También descartaron otras áreas que anteriormente se habían relacionado con ella.

Animales despiertos de la anestesia

Para llevar a cabo la investigación, los científicos utilizaron macacos como modelo animal y los estudiaron despiertos, dormidos y anestesiados. Estimularon el tálamo lateral central, que se encuentra en el centro del cerebro anterior (prosencéfalo), con unos electrodos más pequeños de lo habitual, diseñados específicamente para esta prueba.

“Nuestros electrodos tienen un diseño muy diferente”, apunta Saalmann. “Están mucho más adaptados a la forma del cerebro que queremos estimular. También imitan con más detalle la actividad eléctrica que se tiene un sistema normal y saludable”, aclara.

“Actuaron como si estuviesen despiertos y, cuando desconectamos la estimulación, los animales volvieron directamente a estar inconscientes”

 

Estimular esta área fue suficiente para despertar a los animales que estaban anestesiados y provocar comportamientos normales de vigilia. “Cuando estimulábamos esta zona, podíamos despertar a los animales y restablecer toda la actividad neuronal que normalmente tendrían en la corteza cerebral durante la vigilia”, afirma Saalmann. “Actuaron como si estuviesen despiertos y, cuando desconectamos la estimulación, los animales volvieron directamente a estar inconscientes”, concreta.

Acercamiento a los trastornos de la conciencia

Para comprobar el estado de vigilia, se examinó su respuesta neuronal a una estimulación auditiva que consistía en activar una serie de pitidos intercalados con otros sonidos aleatorios. Los animales respondieron de la misma manera en la que los animales despiertos lo harían.

“La motivación primordial de esta investigación es ayudar a las personas con trastornos de la conciencia a vivir mejor”, asegura Redinbaugh. El objetivo de su estudio es entender los mecanismos mínimos del estado de conciencia para dirigir clínicamente la parte correcta del cerebro.

“Es posible que podamos usar este tipo de electrodos estimulantes del cerebro para sacar a la gente del coma. Nuestros hallazgos también pueden ser útiles para desarrollar nuevas formas de monitorear a los pacientes bajo anestesia clínica, para asegurarnos de que estén inconscientes de manera segura”, explica.

 

El Coma de Pase, es un problema en neurología y los que hemos tenido ocasión de tratar este tipo de pacientes, nos desesperábamos al igual que sus familias. Al ver enfermos en coma, siempre

Referencia bibliográfica:

Redinbaugh, M. et al. “Thalamus Modulates Consciousness via Layer-Specific Control of Cortex”. Neuron. 12 de febrero de

 

 

María Marín  12/2/2020 17:00 CEST Dra. Eva Ormaechea

Especialista en Medicina Intensiva

Médico consultor de Advance Medical

Ciudades de España con más días de lluvia al año

Ciudades de España con más días de lluvia al año

*La tabla muestra los días del año con al menos 1 mm. de agua caída.

Ciudad Días lluvia/año
1 San Sebastián 141.1
2 Santiago de Compostela 139.5
3 Pontevedra 131.3
4 A Coruña 129.6
5 Vigo 129.2
6 Lugo 126.3
7 Bilbao 124.0
8 Santander 123.6
9 Oviedo 122.3
10 Vitoria-Gasteiz 99.3
11 Ourense 96.9
12 Pamplona 93.5
13 Burgos 83.5
14 Soria 78.8
15 Segovia 78.6
16 León 74.9
17 Guadalajara 74.1
18 Cuenca 71.2
19 Valladolid 68.5
20 Ávila 66.9
21 Logroño 66.6
22 Girona 65.8
23 Cáceres 64.2
24 Zamora 64.2
25 Salamanca 63.8
26 Maó (Menorca) 63.6
27 Huesca 60.7
28 Madrid 59.4
29 Ciudad Real 59.3
30 Badajoz 59.2
31 Teruel 57.4
32 Córdoba 56.6
33 Toledo 53.8
34 Barcelona 53.3
35 Palma (Mallorca) 53.1
36 Granada 52.1
37 Huelva 51.5
38 Zaragoza 51.1
39 Cádiz 50.7
40 Sevilla 50.5
41 Albacete 50.4
42 Tarragona 50.3
43 Lleida 46.2
44 Jaén 46.0
45 Castellón 45.5
46 Valencia 43.9
47 Málaga 42.3
48 Alicante 37.5
49 Murcia 36.5
50 Santa Cruz de Tenerife (Tenerife) 29.7
51 Almería 25.4
52 Gando (Gran Canaria) 22.1

*En este estudio se han tenido en cuenta solo la estación meteorológica principal de cada provincia, normalmente la de la capital.
Fuente: Guía resumida del clima en España 1981-2010. Aemet.

Mapa de las zonas de España con más días de lluvia al año

 

 

Logotipo enterat.com

EL DIENCÉFALO Y SUS CONEXIONES

EL DÍENCÉFALO se forma biológicamente a partir de la parte media del prosencéfalo y posee una placa de techo y una supuesta placa del piso donde se expresaría el marcador y no posee placa basal  La placa del techo consta de una capa de células ependimarias cubiertas por mesénquima vascular que van a originar el plexo coroideo del tercer ventrículo la porción más caudal de la placa del techo y se convertirá en la epífisis.

Las placas forman las paredes laterales del diencéfalo, el surco hipotalámico divide la placa en una región dorsal el tálamo y una ventral el hipotálamo .

El tálamo se proyecta gradualmente hacia la luz del díencéfalo y ambos tálamos se fusionan en la línea media formando la adhesión interna o masa intermedia.

El hipotálamo que forma la parte inferior de la placa , se diferencia en áreas nucleares que regulan distintas funciones viscerales la hipófisis y se desarrolla a partir de dos partes diferentes un derivado ectodérmico conocido como bolsa de Ranke que formará el lóbulo anterior de la hipófisis  , el infundido lo que formará el tallo y el lóbulo posterior de la hipófisis

El Diencéfalo se extiende desde el foramen interventricular hasta un plano ubicado a nivel del borde anterior del colículo superior incluye el tálamo dorsal el meta tálamo el hipotálamo el subtálamo y el epitálamo siendo estos dos últimos las porciones más pequeñas . Está ubicado entre el encéfalo y el mesencéfalo y es el centro principal de procesamiento para la información que va a llegar a la corteza cerebral desde todas las vías sensitivas excepto el olfato La cavidad del día encéfalo es el tercer ventrículo, el límite rostral del día encéfalo corresponde al foramen interventricular la lámina terminal y el quiasma óptico el. El  límite caudal queda establecido por una línea que se extiende desde la comisura posterior al borde caudal de los cuerpos familiares el límite lateral corresponde a la cápsula interna.

Las cuatro divisiones del díencéfalo se pueden observar en una sección sagital mediana del prosencéfalo el tálamo se ubica superior al surco hipotalámico y se extiende desde el foramen interventricular hasta llegar al nivel del esplendor del cuerpo Calloso , el hipotálamo se encuentra inferior al surco hipotalámico y está limitado  rostralmente por la lámina terminal y caudal mente por una línea que se extiende desde la cara posterior del cuerpo mamilar hasta el surco hipotalámico el sub tálamo no se encuentra cercano al tercer ventrículo y ocupa una porción caudal al hipotálamo y lateral a la línea mediana el epp y tálamo se ubica posterior y caudal la cavidad del día encéfalo el tercer ventrículo es un espacio estrecho orientado de manera vertical en el espacio ubicado entre el tálamo y el hipotálamo de ambos lados además de las conexiones con los ventrículos laterales y con el acueducto mesh encefálico el tercer ventrículo posee pequeños recesos, el receso supra óptico asociado al que quiasma óptico, el receso infundibular asociado al infundibulo y los recesos pineal y supra pineal relacionados con la glándula pineal el tálamo es una estructura par formada por una masiva colección de núcleos que participan de una amplia cantidad de funciones que involucran los sistemas motor sensitivo y límbico recibe una gran cantidad de aferencia y proyecta a través de fibras talamocorticales hacia diferentes áreas de la corteza cerebral  recibiendo conexiones recíprocas a través de fibras cortico talamicas los tálamos derecho e izquierdo se ubican a ambos lados del tercer ventrículo se extienden desde el foramen interventricular hasta el segmento mesencefálico hacia los lados. Cada tálamo se relaciona con la cápsula interna que lo separa del núcleo lenticular en dirección anterior el tálamo se relaciona con la cabeza del núcleo caudado y en dirección posterior con el atrio hacia arriba se ubica el cuerpo del núcleo caudado y hacia abajo el hipotálamo la región subtalámico y el mesencéfalo de adelante hacia atrás presenta una forma ovoide con un extremo anterior un extremo posterior y cuatro caras superior inferior medial y lateral en su extremo anterior presenta el tubérculo está la mico anterior donde se encuentra el extremo anterior de la estría  medular del tálamo medular corresponde a un conjunto de fibras que unen el  tubérculo Talamico anterior con la  Abenula,  el borde superior de esta estría talamica se denomina tenía estriotalamica y es donde se fija el plexo coroideo del tercer ventrículo el extremo posterior del tálamo está formado por el Pulviar, la cara superior se relaciona con la estría terminal que lo separa del núcleo caudado los dos tercios anteriores de la cara medial del tálamo forman la pared lateral del tercer ventrículo en un alto porcentaje los Tálamos están fusionados y por la adhesión intertertalamica a nivel de su cara medial, la cara lateral se relaciona con la cápsula interna y está cubierta por una capa de axones que van a constituir la lámina medular externa lateral a ella se encuentra el núcleo reticular del tálamo la lámina medular externa y el núcleo reticular,  se mezclan con el fascículo talamico y la zona Incierta respectivamente en el espesor del tálamo se extiende una lámina medular interna que lo que hace es separar los diferentes grupos nucleares en los que se divide el tálamo esta lámina medular interna está formada por fibras mielinicas y divide al tálamo: en un grupo anterior un grupo medial un grupo, lateral y grupos intralaminares cuyos cuerpos neuronales se ubican en el espesor de la lámina medular interna en el área que separa el grupo lateral del grupo medial.

El grupo anterior está integrado por los núcleos anteriores que son tres, uno más grande el núcleo entero ventral y dos más pequeños el antero dorsal y el anteromedial.

El grupo medial está formado por el núcleo dorso mediano que presenta una porción caudal parvo celular una porción rostral magno celular y una porción para laminar el grupo lateral presenta una división dorsal y una división ventral los núcleos de la división dorsal son el latero dorsal el latero posterior y el más voluminoso de todos el pulmonar que presenta una parte anterior una mediana una lateral y una inferior los núcleos de la división ventral son el ventral anterior el ventral lateral y el ventral

posterior que se divide en ventral posterolateral ventral postero medial y

un pequeño núcleo llamado ventral postero inferior entre el núcleo central

lateral y el central posterior se encuentra también un que se llama grupo ventral intermedio dentro del grupo ventral y ubicados en la porción inferior y posterior del pulmonar se ubican dos núcleos el cuerpo geniculado medial y el cuerpo geniculado lateral que a menudo se consideran una parte separada del tálamo denominado metatálamo

El grupo posterior está constituido por el complejo nuclear posterior el grupo intra laminar ubicado en el espesor de la lámina medular interna incluye a los núcleos centro mediano para central y para fascículo existe otro grupo de núcleos que se van a denominar núcleos medianos o periventriculares constituidos por el núcleo

Paramedial  y el medio ventricular que se ubican superiores al surco hipotalámico cada uno de los núcleos talamicos da origen a fibras talamocorticales que llegan a determinadas áreas de la corteza cerebral las que proveen además proyecciones recíprocas fibras cortico tala micas algunos núcleos están asociados con una función puntual y por lo tanto con un giro específico y un área funcional de la corteza cerebral.

Las relaciones más importantes son el núcleo central lateral motor que proyecta los giros pre central y para central anterior el núcleo dentro pósterior lateral que recibe sensaciones de todo el cuerpo y proyecta a los giros post central y para central posterior el grupo nuclear dentro póster o medial que recibe sensaciones de la cara y proyecta el giro post central el cuerpo geniculado mediano que recibe sus percepciones auditivas y proyecta el giro temporal transverso el cuerpo geniculado lateral que recibe información visual y proyecta a la corteza del surco calcarino el núcleo anterior proyecta al giro del cíngulo y está relacionado con la conducta los núcleos del tálamo se pueden clasificar de acuerdo a sus conexiones como núcleos de relevo o núcleos de asociación un núcleo de relevo es aquel que recibe aferencia predominantemente de una fuente única tal como una vía sensitiva un núcleo cerebeloso o un núcleo basal la información a frente es procesada y enviada a una región localizada específica de la corteza sensitiva y motora o límbica. Ejemplos de núcleos de relevo son los cuerpos geniculados medial y lateral los núcleos dentro posterolateral y dentro póster o medial y los núcleos ventral lateral ventral anterior y el núcleo tal amigo anterior estos núcleos no sólo transmiten información sino que un procesamiento considerable de esa información tiene lugar en ellos en cambio un núcleo de asociación recibe a diferencias de diferentes estructuras o regiones corticales y envía esa información a una o varias áreas de asociación en la corteza cerebral ejemplos de núcleos de asociación son el núcleo dorso mediano el núcleo latero dorsal el núcleo latero posterior y los núcleos del complejo pulmonar el hipotálamo es uno de los grupos celulares con mayor influencia sobre las funciones viscerales y el que tiene acceso directo al resto de los núcleos viscerales del neuroeje influyen en las respuestas al medio externo y al medio interno y es un centro vital es la parte del díencéfalo implicada en el control central de las funciones viscerales por medio de los sistemas vegetativo y endocrino y el control de la conducta afectiva o emocional por medio del sistema límbico aunque su rol principal es el mantenimiento de la homeostasis, regula parcialmente numerosas funciones que incluyen el equilibrio hidroelectrolítico la ingesta de alimentos, la temperatura la tensión arterial y el deseo sexual.

Los mecanismos de sueño y vigilia y los ritmos circadianos y el  metabolismo general

El límite rostral es la lámina terminal, membrana delgada que se extiende centralmente desde la comisura anterior hasta el borde rostral del Quiasma óptico. Esta lámina separa el hipotálamo de los núcleos septal es ubicados más rostralmente superiormente está limitado por el surco hipotalámico que lo separa del tálamo dorsal el límite lateral está formado rostral mente por la sustancia innominada y caudal mente por el borde medial del brazo posterior de la cápsula interna. El límite medial es la porción inferior del tercer ventrículo

En direccion caudal no posee un límite definido continuandose con el segmento mesencefálico y la sustancia gris periaqueductal. Inferiormente se continúa con la hipófisis a través del nfundibulo y el tallo hipofisario.

El infundbulo hipofisario se localiza por detrás del que quiasma óptico y presenta forma de embudo conteniendo una pequeña porción del tercer ventrículo el receso infundibular se continúa con la hipófisis a través del tallo hipofisario el cual atraviesa el diafragma de la silla turca por un pequeño orificio .

El hipotálamo se divide en el área preóptica y en las zonas lateral medial y periventricular.

El área pre óptica es una zona de transición que se extiende en sentido rostral pasando por fuera de la lámina terminal funcionalmente forma parte del diencéfalo, aunque deriva en biológicamente de las vesículas del encefálicas está constituida principalmente por los núcleos preópticos medial y preóptico lateral . Caudales al área preóptica se localizan las otras tres zonas la zona peri ventricular es la más interna la zona media rodea a la periventricular y contiene numerosos núcleos individuales. Se divide a su vez en tres Regiones, la región supra óptica a nivel del quiasma óptico la región Tuberal que es la parte más extensa y que se corresponde con el Tuber  Sinerium y la región Mamilar que se ubica en la zona de los cuerpos mami lares. La zona lateral se encuentra separada de la zona medial por una línea imaginaria que se extiende desde el Fornix los comisuras hasta el fascículo Mamilo Talamico. Esta zona lateral tiene un conjunto de fibras denominadas fascículo Procencefálico medial o fascículo encefálico medial que conectan el hipotálamo con los núcleos septales hacia el rostral y la formación reticular  caudal .

En el área pre óptica el núcleo preóptico medial contiene neuronas que fabrican la hormona liberadora de gonadotropina la cual es transportada a lo largo del tracto tubero infundidolar los capilares del sistema aporte hipofisario y desde éste al lóbulo anterior de la hipófisis influye también en las conductas relacionadas con la ingesta la reproducción y la locomoción. El núcleo preóptico lateral  rostral a la zona hipotalámica lateral puede participar en la regulación de la locomoción por su relación con el pálido ventral la zona lateral se divide en un área hipotalámica el lateral que se denomina el núcleo hipotalámico lateral y los núcleos túver es el núcleo hipotalámico lateral  que constituye un centro del apetito los núcleos tuberales proyectan a través del tracto tubero infundibular y transportan hormonas al sistema  porta hipofisario en la zona medial      la región supra óptica contiene a los núcleo supraquiasmático anterior supra óptico y para ventricular , los núcleos  de neuronas de los núcleos supra ópticos y para ventricular contienen oxitocina y hormona antidiurética y transmiten estas sustancias a la hipófisis posterior a través del tracto supra óptico hipofisario. El núcleo supraquiasmático recibe una referencia directa de la retina y actúa en la regulación de los ritmos circadianos, el núcleo anterior se localiza caudal al área pre óptica y actúa sobre todo en el mantenimiento de la temperatura corporal la región tuveral, incluye a los núcleos dorsomedial ventromedial y el núcleo centro mediano se considera se relaciona con la conducta emocional el núcleo arqueolar al cuarto es la localización de neuronas que contienen hormonas liberadoras. Estas llegan a la hipófisis anterior a través del tracto tubero in funicular y del sistema porta hipofisario, la región mámilar contiene los núcleos mamilares medial intermedio y lateral el polémico posterior el núcleo familiar medial es muy voluminoso y aquí se origina el fascículo más me lo está la mico que se dirige al núcleo anterior del tálamo los núcleos mami lares intermedios y lateral son mucho más pequeños el núcleo hipotalámico posterior se continúa con la sustancia gris peri aqueduct al la zona peri ventricular está formada por pequeños cuerpos celulares por dentro de la zona media y subyacentes a las células ependimarias del tercer ventrículo estas neuronas proyectan a través del tracto tubero infunde volar al sistema porta hipofisario para actuar sobre la hipófisis anterior las conexiones referentes del hipotálamo incluyen el fornyx el fascículo prost ncefálico medial las fibras amígdala hipotalámicas que se dividen en la estría terminal y la vía amígdala fuga ventral y fibras talas muy polémicas y proyecciones cortico hipotalámicas desde el córtex prefrontal las referencias son proyecciones difusas ascendentes y descendentes las proyecciones ascendentes comprenden al fascículo familar que se divide en un fascículo mamilo talamigo y un fascículo mamilo  y a las fibras hipotálamo está la micas e hipotálamo a migra linas las proyecciones descendentes incluyen fibras tálamo espinales e hipotálamo medular es el fascículo longitudinal dorsal y el fascículo mami lote comentario mencionado previamente al mismo tiempo h ay múltiples vías que conectan los múltiples núcleos del hipotálamo entre ellos el tracto supra óptico hipofisario y el tracto tubero infundido lar el epp y tálamo se ubica en la porción posterior y mediana del díaencéfalo está formado por la ave nula la glándula pineal y la estrella medular del tálamo esta estrella medular del tálamo es la principal referencia de estos núcleos la glándula pineal es un órgano mediano que se ubica por debajo del es pleno del cuerpo calloso y por encima de los coliculos superiores, la avenula es un lugar de sinapsis entre las fibras de la pineal los centros olfatorios y el tronco encefálico en el lugar donde se une con el tálamo presenta un ensanchamiento el trigo no avn ular donde se localizan los núcleos abedulares lateral y medial entre este trígono y el culminar se encuentra el surco de nul ar la comisura anular es un pequeño grupo de fibras por encima del borde superior de la comisura posterior que conectan las regiones avenulares de ambos lados en el ‘epit álamo se encuentra la glándula pineal y se ubican los núcleos abedulares en el trigono avenular los núcleos protectores en el área pretextan y el órgano subcomisión al a nivel del inicio del acueducto mesencefálico el área pretectal.

El subtálamo se ubica central al tálamo dorsal, en el subtálamo se encuentra el núcleo subtalámico de Louis con forma de lente biconvexa y que se ubica rostral a la sustancia entre el extremo inferior de la cápsula interna y la zona incierta recibe diferencias de la corteza motora proyecta hacia la sustancia y se conecta recíprocamente con el globo pálido del núcleo lenticular la zona incierta está formada por fibras y células nerviosas entremezcladas y se ubica en dirección inferior y medial al núcleo reticular del tálamo y superior  al núcleo subtalámico proyecta referencias hacia la corteza motora el currículo superior el área pretextar y el puente reciben referencias desde la corteza motora y del mismo medial intervendrían la sinapsis del sistema extra piramidal alrededor de la zona incierta se ubican los núcleos de los campos personales o núcleos de los campos de forelt el rostro al núcleo rojo se ubica el núcleo del campo medi al o área prerúbrica y entre la zona incierta y el tálamo se encuentra el núcleo del campo dorsal entre la zona incierta y el núcleo subtalámico está el núcleo del hipocampo ventral las vías subtalámicos están constituidas por el asa lenticular que se extiende desde el globo pálido del núcleo lenticular a los núcleos centrales del tálamo pasando por el borde anterior de la cápsula interna el fascículo lenticular o núcleo del campo ventral h2 que se extiende desde el globo pálido del núcleo lenticular a los núcleos centrales del tálamo, atravesando la cápsula interna el fascículo estriotalamico que constituye el núcleo del campo dorsal h1 y está formado por la unión del asa lenticular y el fascículo lenticular.

 El asa pedúnculo se ubica entre el núcleo lenticular y el núcleo amígdala El fascículo subtalámico se está ubicando desde el núcleo lenticular hasta el núcleo subtalámico, en este corte coronal se distinguen el tálamo, la cápsula interna, él lenticular con el globo pálido y sus diferentes porciones y el putamén el asa lenticular y el fascículo lenticular

Un nuevo corte muestra nuevamente el tálamo.

Se ven los núcleos reticular, la cápsula interna él lenticular con el putamén y el globo pálido Se encuentra también el fasículo lenticular el núcleo subtalámico con su forma de lente biconvexa la ‘zona incierta. Continuando a los núcleos reticular es del tálamo y el fascículo está la mico en este corte axial identificamos a los núcleos rojos se observa el núcleo

subtalámico de louis y se ve el fascículo subtalámico llegando hasta el globo pálido la vascularización del día encéfalo corresponde al círculo arterial del cerebro los elementos que intervienen son el grupo anteromedial formado por la porción pre comunicante de la arteria cerebral anterior y la arteria comunicante anterior.

La porción pre comunicante de la arteria cerebral posterior y la porción post comunicante de la arteria cerebral posterior el hipotálamo está agregado por pequeñas arterias que se originan en este círculo arterial cerebral los núcleos del área pre óptica y la región supra óptica los núcleos cep tales y las porciones rostral es del área hipotalámica son irrigados por ramas del grupo anteromedial mientras que las regiones tuve la lima mi larsson vascular izadas por ramas del grupo posterior medial las arterias hipofisarias superiores e inferiores ramas de la carótida interna que irigagan la hipófisis

En la colección de imágenes de Albert Watson podemos distinguir un corte coronal donde se identifican algunas porciones del díencéfalo vemos el tálamo el núcleo subtalámico  

El puente o protuberancia y se identifican las fibras de las vías cortico espinales y cortico nucleares también se encuentra al núcleo caudado la corona radiada la cápsula interna el globo pálido separado del putamén por la lámina medular entre el  putamén y el caudado encontramos esos puentes caudo-lenticulares .

Laterales al putamén se ubica la cápsula externa, por fuera de la misma encontramos; el ante muro, claustro y lateralmente se ubica la cápsula Extrema.

Por último lo que observamos es la corteza del lóbulo de la ínsula y el óculo del lóbulo parietal

Trabajo de

VALERIA FOLINI

 

 

 

 

EL CEREBRO GENERA NUEVAS NEURONAS DESDE E HIPOCAMPOA

Dani Duch
REDACCIÓN
30/01/2022 06:00
El cerebro genera nuevas neuronas toda la vida gracias a la presencia de
células madre en el hipocampo, una estructura relacionada con la
memoria y las emociones. Así lo ha demostrado María Llorens-Martín,
del Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC-UAM),
que también ha visto cómo las enfermedades neurodegenerativas dañan
este proceso y ha publicado sus resultados en Science . La investigadora
ha desarrollado técnicas con las que ha analizado muestras de 48 cerebros
humanos postmortem con esclerosis lateral amiotrófica (ELA),
enfermedad de Huntington, párkinson, demencia con cuerpos de Lewy y
demencia frontotemporal. Además, ha reconstruido todas las etapas de la
neurogénesis de una neurona: desde su nacimiento hasta su maduración.
Esto le ha permitido identificar una firma característica de cada una de
estas enfermedades, que bloquean la aparición de nuevas neuronas en un
punto distinto del proceso de maduración celular.E

LA CONCIENCIA Y LA SUBCONCIENCIA

LA CONCIENCIA Y LA SUBCONCIENCIA

Si pudiéramos enlazar con claridad todos los componentes del cerebro, aumentaríamos marcadamente nuestro conocimiento .

Definir el cerebro, de forma que comprenda su materia y psiquismo al mismo tiempo no es fácil, pero seguimos intentándolo.

Premack y Woodruf elaboraron la teoría la mente que nos cuenta que el cerebro es una máquina predictiva encaminada a reducir la incertidumbre del entorno. Y  se refiere a la habilidad para comprender y predecir la conducta de otras personas, sus conocimientos, sus intenciones, sus emociones y sus creencias.

Hollande reconocía la persecución de los judíos en Francia al mismo tiempo que alertaba contra el antisemitismo.

Durante unos dos años alrededor de  76.000 Judios fueron  deportados por Francia  a pertición de la Alemania nazi a los campos de exterminio de Auschwitz y Birkeneau. De ellos sobrevivieron menos de 2000.

¿Cómo fue posible este horror? dice Hollande,  En la Francia de las luces, de los derechos humanos, la Francia de las revolucion. Como tantos verdugos fueron a casas de familias desarmadas. ¿”. Ese crimen fue cometido en Francia por Francia . Las autoridades francesas encabezadas por  el mariscal Pétain representaban legítimamente al Estado francés.  Estos no eran seres humanos, o por lo menos habían dejado de serlo.

Está claro que la idea que tenemos del funcionamiento de nuestro cerebro no es real, éste no se adapta a nuestra realidad. Ponerse de acuerdo el hombre le ha llevado a los conflictos más sanguinarios imaginables, y persiste en ellos.

No podemos dar un paso adelante si no entendemos mejor al cerebro, y no de una forma aproximada sido real y total.

El planteamiento de su estudio no funciona por partes, lo hace globalmente.

 

Podemos decir que el funcionamiento del sistema vegetativo lo aclara en gran parte Porges con la creación de la teoría Polivagal , que vincula la evolución del sistema nervioso autónomo de los mamíferos con el comportamiento social y enfatiza la importancia del estado fisiológico en la expresión de problemas de conducta y trastornos psiquiátricos. Aunque muchos autores han coqueteado con la materia y la conducta, no es hasta Porges, cuando el sistema vegetativo alcanza un nivel de expresión psíquica

La teoría está conduciendo a tratamientos innovadores basados en la comprensión de los mecanismos que median los síntomas observados en varios trastornos conductuales, psiquiátricos y físicos .

Todo el mundo habla del Valor del sistema vegetativo y su relación con lo subconsciente o por lo menos aquella parte de nuestra conciencia que no está a flor de piel ,

La frase de Antonio Damasio puede sorprendernos, porque entronca la materia con con el psiquismo.

“La vida psíquica es el esfuerzo permanente entre dos cerebros. Un cerebro emocional inconsciente, preocupado sobre todo por sobrevivir y ante todo conectado al cuerpo. Un cerebro cognitivo, consciente, racional y volcado en el mundo externo”.

Estos dos cerebros son independientes entre si, cada uno de ellos contribuye de manera muy distinta a nuestra experiencia de vida y a nuestro comportamiento.

Este juego de palabras y de conceptos no se corresponde con la verdad o con nuestra verdad.

Hace falta mas verdad y tranquilidad para llegar a una verdad.

La conjunción entre mas verdad y menos ilusiones, hará  una mejor realidad.

Conjugar; tratamientos innovadores basados en la comprensión de los mecanismos que median los síntomas observados en varios trastornos conductuales, psiquiátricos y físicos .

Hace falta una verdad mas persistente, mas estableconcencia y subconcencia

ULTIMAS CARTAS DE DON MANUEL CRUZ

Querido amigo Don Enrique
Mientras otros están entretenidos
con el macabro juego de la nueva guerra,
tu pasas pronto a despertar el interés por
los verdaderos problemas como
nuevas terapéuticas en oncología,
la pandemia de la angustia, la depresión y otros
trastornos psicológicos, las nuevas terapéuticas en oncología,
el transhumanismo, la vida líquida…..
Felicitaciones


Un fuerte abrazo
mchbcn@gmail.com
Manuel Cruz Hernández

FALLO DEL TATAMIENRTO DE LOS TUMORES MALIGNOS Y AGRESIVOS

Saben por qué falla el tratamiento en los tumores cerebrales más agresivos

La investigación de la UGR abre nuevas vías de tratamiento y podría servir para diseñar nuevas terapias

Formación de neuroesferas derivadas de GMB y su análisis mediante microscopía tras la exposición a temozolamida. También se muestra el estudio de metilación del promotor de MGMT y de expresión de MGMT a nivel de RNAm y proteico de las líneas tumorales antes y después de la exposición a temozolamida / UGR

+

Saben por qué falla el tratamiento en los tumores cerebrales más agresivos

La investigación de la UGR abre nuevas vías de tratamiento y podría servir para diseñar nuevas terapias

Formación de neuroesferas derivadas de GMB y su análisis mediante microscopía  tras la exposición a temozolamida. También se muestra el estudio de metilación del promotor de MGMT y de expresión de MGMT a nivel de RNAm y proteico de las líneas tumorales antes y después de la exposición a temozolamida
Formación de neuroesferas derivadas de GMB y su análisis mediante microscopía tras la exposición a temozolamida. También se muestra el estudio de metilación del promotor de MGMT y de expresión de MGMT a nivel de RNAm y proteico de las líneas tumorales antes y después de la exposición a temozolamida / UGR

 

Granada

11/11/2015 – 11:28 h. CET

Un equipo de científicos, en el que participa la Universidad de Granada, ha avanzado en la determinación de las causas por las que el glioblastoma multiforme (GBM), uno de los tumores cerebrales más agresivos que existe, es resistente a los fármacos que se emplean en la actualidad, una de las principales limitaciones en su tratamiento. Los resultados han sido publicados recientemente en dos artículos en la revista PlosOne.

Los investigadores demuestran que los proteoglicanos (elementos estructurales de las células), denominados decorina (DCN) y lumican (LUM), podrían ser decisivos en el comportamiento y en el desarrollo de resistencia a los fármacos que se emplean para tratar el glioblastoma multiforme, como la temozolamida (TMZ). Por otra parte, han puesto de manifiesto que la inhibición en la transcripción de algunas de las subunidades que forman parte del «mismatchrepair (MMR) complex», un sistema que reconoce y repara errores en el ADN, podría participar en el fracaso de las actuales terapias contra este tipo de tumor.

Este importante avance científico podría ser relevante tanto para la búsqueda de nuevos marcadores de resistencia en GBM como para el diseño de nuevas estrategias terapéuticas que eludan la resistencia a drogas de estos tumores.

Los estudios en células madre de glioblastoma han sido llevados a cabo por investigadores del Instituto de Biopatología y Medicina Regenerativa (IBIMER) de la Universidad de Granada y del Instituto Biosanitario de Granada (Grupo CTS 107), en colaboración, por una parte, con el Instituto de Investigación Biomédica de Bellvitge de Barcelona, el Servicio de Oncología Médica del Complejo Hospitalario Universitario de Granada y, por otra parte, con el Instituto Nacional de Bioestructuras y Biosistemas (INBB) de Roma y del departamento de Ciencias Biomédicas de la Universidad de Sassari.

Una baja supervivencia

Los GBM, los tumores más frecuentes y agresivos del sistema nervioso central, siguen presentando una baja supervivencia (menos de un año y medio desde su diagnóstico), a pesar del uso de TMZ en combinación con otros fármacos o radioterapia, debido, entre otras causas, al desarrollo de resistencia.

En el trabajo en el que participa la UGR se analiza cómo la expresión sinérgica masiva de DCN y LUM en neuroesferas de células madre derivadas de GBM se correlaciona con una menor tasa de proliferación de las células tumorales y un menor desarrollo de apoptosis (un tipo de muerte celular que usan los organismos multicelulares para eliminar células dañadas o no necesarias), pero también con un aumento en la resistencia al tratamiento con TMZ, uno de los fármacos clave en el tratamiento actual de estos pacientes.

Por otra parte, estudios llevados a cabo en líneas de glioblastoma y neuroblastoma expuestas a fármacos demuestran cómo la resistencia a TMZ no sólo está mediada por el clásico mecanismo de la enzima de reparación del ADN MGMT, sino que está relacionada con el silenciamiento del complejo MMR tras la exposición al fármaco.

Los estudios se centran ahora en demostrar la relevancia de estas dos moléculas en el comportamiento de los glioblastomas ‘in vivo’ y analizar en este mismo sistema el mecanismo de resistencia basado en el complejo MMR.

HIFU, ultrasonidos de alta intensidad, la técnica que corrige el temblor esencial

 

 

 

r José A. Obeso, director de HM CINAC Madrid, y el doctor Raúl Martínez, neurólogo del centro.

En HM CINAC Madrid ya se han tratado a más de 150 pacientes con temblor esencial con este procedimiento seguro, eficaz y mínimamente invasivo.

14 diciembre, 2021 02:25GUARDAR

  1. BRANDED CONTENT

 

  1. HM HOSPITALES

 

  1. MARCAS Ñ

 

  1. NEUROLOGÍA

 

  1. PÁRKINSON

 

  1. SALUD

Marcas Ñ

Las personas que padecen temblor esencial y ven cómo su actividad cotidiana se complica día a día pueden corregir ahora su problema de manera segura, eficaz y mínimamente invasiva mediante un tratamiento basado en la aplicación de ultrasonidos. El Centro Integral de Neurociencias HM CINAC Madrid, perteneciente a HM Hospitales, ha tratado con esta técnica a más de 150 pacientes, logrando corregir los movimientos incontrolados y mejorando de forma clara y evidente su calidad de vida.

El temblor esencial suele confundirse con la enfermedad de Parkinson pero son entidades completamente distintas. Mientras que la segunda es una enfermedad neurodegenerativa, el primero es un desorden monosintomático en el que el principal y casi siempre único signo clínico es el temblor. La discapacidad en estos pacientes viene del hecho que dicho temblor se presenta mayormente cuando realizan tareas o acciones, tan cotidianas como abrocharse un botón o cortar la carne, y aunque empeora con los años, no conlleva otros problemas de salud. Además, es conocido que el estrés emocional, el cansancio o excitantes como la cafeína pueden empeorar el problema.

HIFU, la técnica que corrige el temblor esencial

La aplicación de ultrasonidos evita una intervención quirúrgica invasiva y los efectos adversos relacionados con el acto quirúrgico.

Sin embargo, padecer temblores en las manos, la cabeza y la voz –zonas en las que se manifiesta la enfermedad- se convierte en un problema de gravedad para las personas que los padecen, ya que además de condicionar su vida, en muchas ocasiones, producen rechazo social. Hasta ahora el único tratamiento disponible para el paciente era una medicación que no siempre funcionaba, por lo que la alternativa más eficaz era someterse a una intervención quirúrgica invasiva en la se implantaban unos electrodos en el cerebro. Hoy, el paso por el quirófano y el riesgo de sufrir los efectos secundarios relacionados con la cirugía puede evitarse con HIFU, una tecnología de ultrasonidos de alta intensidad, que, mediante una termoablación, aumento de temperatura en un punto diana del cerebro sobre el que se necesita actuar, se aborda esta patología de forma inmediata y reduciendo sustancialmente el paso por el hospital.

El Centro Integral de Neurociencias HM CINAC Madrid del Hospital Universitario HM Puerta del Sur de Móstoles es pionero en España en la aplicación de esta tecnología, tanto para el tratamiento de la enfermedad de Parkinson como para el temblor esencial. Sus especialistas han tratado más de 150 casos, consiguiendo eliminar los temblores. El paciente sólo tiene que entrar en un dispositivo parecido al de una resonancia magnética y, al cabo de tres horas, sale sin síntomas, pues lo habitual es que una sola sesión sea suficiente para solucionar el problema.

El paciente entra en una resonancia magnética y sale sin síntomas al cabo de tres horas.

Los neurólogos de HM CINAC Madrid empezaron aplicando los ultrasonidos en un hemisferio cerebral, pero las últimas investigaciones avanzan hacia la bilateralidad — en ambos hemisferios del cerebro—. Los prometedores resultados de esta investigación han sido publicados en la revista ‘Journal of Neurology, Neurosurgery, and Psychiatry’. El ensayo piloto se realizó en nueve pacientes y en colaboración con el Hospital Universitario de Zurich (Suiza). El neurólogo de HM CINAC Madrid y autor principal del estudio, Dr. Raúl Martínez, asegura que “se trata de un avance prometedor. El abordaje bilateral mejora sustancialmente el temblor de voz y de cabeza y permite eliminar el de ambas manos”.

El temblor esencial es un problema neurológico que afecta al 5% de las personas mayores de 65 años, aunque suele iniciarse años antes. La aplicación de ultrasonidos eleva la temperatura en la zona origen de la enfermedad eliminando las neuronas que están generando el temblor. El calor se administra con la ayuda de la resonancia magnética para incidir en el punto diana de forma progresiva y controlada. El Dr. Martínez explica que “pedimos a los pacientes que imiten el movimiento que les genera el temblor como llevarse una cuchara a la boca o beber un vaso de agua y así sabemos si estamos en el punto preciso y podemos ver la mejoría en tiempo real”.

Álvaro Laforet

El temblor esencial es un problema neurológico que afecta al 5% de las personas mayores de 65 años.

Origen desconocido

A pesar de haber avanzado en el tratamiento, el temblor esencial sigue siendo una condición de la que se desconoce la causa. Se trata de un trastorno frecuente que algunos estudios relacionan con la atrofia del cerebelo y otros con una predisposición genética, aunque existe un amplio número de casos en los que las personas afectadas no tenían antecedentes familiares. No es una entidad grave per se, pero sí discapacitante, pues quienes la padecen pueden tener que dejar de hacer actividades tan cotidianas como conducir, escribir, comer sin ayuda o trabajar.

La aplicación de ultrasonidos no cura el temblor esencial, pero mejora notablemente la calidad de vida de los pacientes.

Más información en: www.hmcinac.com

  • El doctor José A. Obeso, director de HM CINAC Madrid, y el doctor Raúl Martínez, neurólogo del centro.

Con la colaboración de:

 

SALUD

HIFU, ultrasonidos de alta intensidad, la técnica que corrige el temblor esencial

En HM CINAC Madrid ya se han tratado a más de 150 pacientes con temblor esencial con este procedimiento seguro, eficaz y mínimamente invasivo.

14 diciembre, 2021 02:25GUARDAR

  1. BRANDED CONTENT

 

  1. HM HOSPITALES

 

  1. MARCAS Ñ

 

  1. NEUROLOGÍA

 

  1. PÁRKINSON

 

Las personas que padecen temblor esencial y ven cómo su actividad cotidiana se complica día a día pueden corregir ahora su problema de manera segura, eficaz y mínimamente invasiva mediante un tratamiento basado en la aplicación de ultrasonidos. El Centro Integral de Neurociencias HM CINAC Madrid, perteneciente a HM Hospitales, ha tratado con esta técnica a más de 150 pacientes, logrando corregir los movimientos incontrolados y mejorando de forma clara y evidente su calidad de vida.

El temblor esencial suele confundirse con la enfermedad de Parkinson pero son entidades completamente distintas. Mientras que la segunda es una enfermedad neurodegenerativa, el primero es un desorden monosintomático en el que el principal y casi siempre único signo clínico es el temblor. La discapacidad en estos pacientes viene del hecho que dicho temblor se presenta mayormente cuando realizan tareas o acciones, tan cotidianas como abrocharse un botón o cortar la carne, y aunque empeora con los años, no conlleva otros problemas de salud. Además, es conocido que el estrés emocional, el cansancio o excitantes como la cafeína pueden empeorar el problema.

HIFU, la técnica que corrige el temblor esencial

La aplicación de ultrasonidos evita una intervención quirúrgica invasiva y los efectos adversos relacionados con el acto quirúrgico.

Sin embargo, padecer temblores en las manos, la cabeza y la voz –zonas en las que se manifiesta la enfermedad- se convierte en un problema de gravedad para las personas que los padecen, ya que además de condicionar su vida, en muchas ocasiones, producen rechazo social. Hasta ahora el único tratamiento disponible para el paciente era una medicación que no siempre funcionaba, por lo que la alternativa más eficaz era someterse a una intervención quirúrgica invasiva en la se implantaban unos electrodos en el cerebro. Hoy, el paso por el quirófano y el riesgo de sufrir los efectos secundarios relacionados con la cirugía puede evitarse con HIFU, una tecnología de ultrasonidos de alta intensidad, que, mediante una termoablación, aumento de temperatura en un punto diana del cerebro sobre el que se necesita actuar, se aborda esta patología de forma inmediata y reduciendo sustancialmente el paso por el hospital.

Recomendado por

 

No sabía que mi ordenador podía bloquear todos los anuncios (Descubra cómo)antivirus-news.com

Si Usted es mayor de 45 años, tiene que jugar este juego clásico. Sin instalación.Forge of Empires

Llévate el nuevo Nissan Juke Híbrido por 190€/mes. Una oferta descaradamente única.Nissan

Una única sesión

El Centro Integral de Neurociencias HM CINAC Madrid del Hospital Universitario HM Puerta del Sur de Móstoles es pionero en España en la aplicación de esta tecnología, tanto para el tratamiento de la enfermedad de Parkinson como para el temblor esencial. Sus especialistas han tratado más de 150 casos, consiguiendo eliminar los temblores. El paciente sólo tiene que entrar en un dispositivo parecido al de una resonancia magnética y, al cabo de tres horas, sale sin síntomas, pues lo habitual es que una sola sesión sea suficiente para solucionar el problema.

El paciente entra en una resonancia magnética y sale sin síntomas al cabo de tres horas.

Los neurólogos de HM CINAC Madrid empezaron aplicando los ultrasonidos en un hemisferio cerebral, pero las últimas investigaciones avanzan hacia la bilateralidad — en ambos hemisferios del cerebro—. Los prometedores resultados de esta investigación han sido publicados en la revista ‘Journal of Neurology, Neurosurgery, and Psychiatry’. El ensayo piloto se realizó en nueve pacientes y en colaboración con el Hospital Universitario de Zurich (Suiza). El neurólogo de HM CINAC Madrid y autor principal del estudio, Dr. Raúl Martínez, asegura que “se trata de un avance prometedor. El abordaje bilateral mejora sustancialmente el temblor de voz y de cabeza y permite eliminar el de ambas manos”.

El temblor esencial es un problema neurológico que afecta al 5% de las personas mayores de 65 años, aunque suele iniciarse años antes. La aplicación de ultrasonidos eleva la temperatura en la zona origen de la enfermedad eliminando las neuronas que están generando el temblor. El calor se administra con la ayuda de la resonancia magnética para incidir en el punto diana de forma progresiva y controlada. El Dr. Martínez explica que “pedimos a los pacientes que imiten el movimiento que les genera el temblor como llevarse una cuchara a la boca o beber un vaso de agua y así sabemos si estamos en el punto preciso y podemos ver la mejoría en tiempo real”.

Álvaro Laforet

El temblor esencial es un problema neurológico que afecta al 5% de las personas mayores de 65 años.

Origen desconocido

A pesar de haber avanzado en el tratamiento, el temblor esencial sigue siendo una condición de la que se desconoce la causa. Se trata de un trastorno frecuente que algunos estudios relacionan con la atrofia del cerebelo y otros con una predisposición genética, aunque existe un amplio número de casos en los que las personas afectadas no tenían antecedentes familiares. No es una entidad grave per se, pero sí discapacitante, pues quienes la padecen pueden tener que dejar de hacer actividades tan cotidianas como conducir, escribir, comer sin ayuda o trabajar.

La aplicación de ultrasonidos no cura el temblor esencial, pero mejora notablemente la calidad de vida de los pacientes.

Más información en: www.hmcinac.com

interesar

 

 

OLIGODENTROCITO

OLIGODENDROCITO

 

 

Los oligodendrocitos son un tipo de células de la neuroglía, más pequeñas que los astrocitos y con pocas prolongaciones, su citoplasma denso contiene un núcleo relativamente pequeño. Sus funciones principales son proporcionar soporte y aislamiento a los axones en el sistema nervioso central de algunos vertebrados, lo que equivale a la función que realizan las células de Schwann en el sistema nervioso periférico. Los oligodendrocitos hacen esto creando la vaina de mielina. Un solo oligodendrocito puede extender sus procesos hasta 50 axones, envolviendo aproximadamente 1 μm de vaina de mielina alrededor de cada axón; las células de Schwann, en cambio, sólo pueden envolver un axón.

Cada oligodendrocito forma un segmento de mielina para varios axones adyacentes. Sus precursores se originan en el tubo neural y se diferencian posteriormente en oligodendrocitos maduros una vez en sus destinos finales dentro del sistema nervioso central.

 

Se han identificado dos tipos de oligodendrocitos en la neuroglia:

Los oligodendrocitos interfasciculares que se encargan de la producción de la vaina de mielina y aislamiento del axón en la sustancia blanca del SNC.

Los oligodendrocitos satelitales, de los cuales aún no se precisa su función, que están presentes en la sustancia gris.

Formación de oligodendrocitos

Los oligodendrocitos derivan de las células progenitoras de oligodendrocitos (OPCs, del inglés oligodendrocyte precursor cells). Estos se generan en lugares concretos del tubo neura y desde allí migran a su destino final. En su mayoría se originan durante la embriogénesis y en la vida posnatal temprana desde ciertas zonas periventriculares donde se encuentran los OPCs.1​ 23

La generación de un adecuado número de oligodendrocitos comprende varias etapas.

Primero, se inducen oligodendrocitos progenitores a partir de células neuroepiteliales de la zona ventricular.

Después de la migración los oligodendrocitos progenitores se sitúan a lo largo de los tractos fibrosos de la futura sustancia blanca, se hacen no migratorios y se diferencian en oligodencrocitos inmaduros.

Estas células adquieren características multipolares y sintetizan sulfatos y glicolipidos, para finalmente generar oligodendrocitos formadores de mielina.24

Funciones

Además de actuar como sostén y de unión en el mismo sistema, también desempeñan otra importante función que es la de formar la vaina de mielina en la sustancia blanca del SNC. Tienen su origen embrionario en las células de la tubo neural del ectodermo.

Texto Atlas de Histología Tercera Edición Leslie P. Gartner James L. Hiatt

Referencias

Naruse, Masae; Ishizaki, Yasiki; Ikenaka, Kazuhiro; Tanaka, Aoi; Hitoshi, Seiji (2017). «Origin of oligodendrocytes in mammalian forebrains: a revised perspective»The Journal of Physiological Sciences 67 (1): 63-70. PMID 27573166doi:10.1007/s12576-016-0479-7. Consultado el 5 de noviembre de 2021.

Saltar a:a b Taleisnik, Samuel (2010). «5». Neuronas: desarrollo, lesiones y regeneración. Argentina: Editor. p. 99. ISBN 978-987-1432-52-3.

Barres, BA et al. (1999). «Axonal control of oligodendrocyte development». The Journal of Cell Biology.

Baumann, N, et al. (2001). «Biology of oligodendrocyte and myelin in the mammalian central system». Physiol Rev.

 

 

Los oligodendrocitos son un tipo de células de la neuroglía, más pequeñas que los astrocitos y con pocas prolongaciones, su citoplasma denso contiene un núcleo relativamente pequeño. Sus funciones principales son proporcionar soporte y aislamiento a los axones en el sistema nervioso central de algunos vertebrados, lo que equivale a la función que realizan las células de Schwann en el sistema nervioso periférico. Los oligodendrocitos hacen esto creando la vaina de mielina. Un solo oligodendrocito puede extender sus procesos hasta 50 axones, envolviendo aproximadamente 1 μm de vaina de mielina alrededor de cada axón; las células de Schwann, en cambio, sólo pueden envolver un axón.

Cada oligodendrocito forma un segmento de mielina para varios axones adyacentes. Sus precursores se originan en el tubo neural y se diferencian posteriormente en oligodendrocitos maduros una vez en sus destinos finales dentro del sistema nervioso central.

 

Se han identificado dos tipos de oligodendrocitos en la neuroglia:

Los oligodendrocitos interfasciculares que se encargan de la producción de la vaina de mielina y aislamiento del axón en la sustancia blanca del SNC.

Los oligodendrocitos satelitales, de los cuales aún no se precisa su función, que están presentes en la sustancia gris.

Formación de oligodendrocitos

Los oligodendrocitos derivan de las células progenitoras de oligodendrocitos (OPCs, del inglés oligodendrocyte precursor cells). Estos se generan en lugares concretos del tubo neura y desde allí migran a su destino final. En su mayoría se originan durante la embriogénesis y en la vida posnatal temprana desde ciertas zonas periventriculares donde se encuentran los OPCs.1​ 23

La generación de un adecuado número de oligodendrocitos comprende varias etapas.

Primero, se inducen oligodendrocitos progenitores a partir de células neuroepiteliales de la zona ventricular.

Después de la migración los oligodendrocitos progenitores se sitúan a lo largo de los tractos fibrosos de la futura sustancia blanca, se hacen no migratorios y se diferencian en oligodencrocitos inmaduros.

Estas células adquieren características multipolares y sintetizan sulfatos y glicolipidos, para finalmente generar oligodendrocitos formadores de mielina.24

Funciones

Además de actuar como sostén y de unión en el mismo sistema, también desempeñan otra importante función que es la de formar la vaina de mielina en la sustancia blanca del SNC. Tienen su origen embrionario en las células de la tubo neural del ectodermo.

Texto Atlas de Histología Tercera Edición Leslie P. Gartner James L. Hiatt

Referencias

Naruse, Masae; Ishizaki, Yasiki; Ikenaka, Kazuhiro; Tanaka, Aoi; Hitoshi, Seiji (2017). «Origin of oligodendrocytes in mammalian forebrains: a revised perspective»The Journal of Physiological Sciences 67 (1): 63-70. PMID 27573166doi:10.1007/s12576-016-0479-7. Consultado el 5 de noviembre de 2021.

Saltar a:a b Taleisnik, Samuel (2010). «5». Neuronas: desarrollo, lesiones y regeneración. Argentina: Editor. p. 99. ISBN 978-987-1432-52-3.

Barres, BA et al. (1999). «Axonal control of oligodendrocyte development». The Journal of Cell Biology.

Baumann, N, et al. (2001). «Biology of oligodendrocyte and myelin in the mammalian central system». Physiol Rev.

 

 

Los oligodendrocitos son un tipo de células de la neuroglía, más pequeñas que los astrocitos y con pocas prolongaciones, su citoplasma denso contiene un núcleo relativamente pequeño. Sus funciones principales son proporcionar soporte y aislamiento a los axones en el sistema nervioso central de algunos vertebrados, lo que equivale a la función que realizan las células de Schwann en el sistema nervioso periférico. Los oligodendrocitos hacen esto creando la vaina de mielina. Un solo oligodendrocito puede extender sus procesos hasta 50 axones, envolviendo aproximadamente 1 μm de vaina de mielina alrededor de cada axón; las células de Schwann, en cambio, sólo pueden envolver un axón.

Cada oligodendrocito forma un segmento de mielina para varios axones adyacentes. Sus precursores se originan en el tubo neural y se diferencian posteriormente en oligodendrocitos maduros una vez en sus destinos finales dentro del sistema nervioso central.

 

Se han identificado dos tipos de oligodendrocitos en la neuroglia:

Los oligodendrocitos interfasciculares que se encargan de la producción de la vaina de mielina y aislamiento del axón en la sustancia blanca del SNC.

Los oligodendrocitos satelitales, de los cuales aún no se precisa su función, que están presentes en la sustancia gris.

Formación de oligodendrocitos

Los oligodendrocitos derivan de las células progenitoras de oligodendrocitos (OPCs, del inglés oligodendrocyte precursor cells). Estos se generan en lugares concretos del tubo neura y desde allí migran a su destino final. En su mayoría se originan durante la embriogénesis y en la vida posnatal temprana desde ciertas zonas periventriculares donde se encuentran los OPCs.1​ 23

La generación de un adecuado número de oligodendrocitos comprende varias etapas.

Primero, se inducen oligodendrocitos progenitores a partir de células neuroepiteliales de la zona ventricular.

Después de la migración los oligodendrocitos progenitores se sitúan a lo largo de los tractos fibrosos de la futura sustancia blanca, se hacen no migratorios y se diferencian en oligodencrocitos inmaduros.

Estas células adquieren características multipolares y sintetizan sulfatos y glicolipidos, para finalmente generar oligodendrocitos formadores de mielina.24

Funciones

Además de actuar como sostén y de unión en el mismo sistema, también desempeñan otra importante función que es la de formar la vaina de mielina en la sustancia blanca del SNC. Tienen su origen embrionario en las células de la tubo neural del ectodermo.

Texto Atlas de Histología Tercera Edición Leslie P. Gartner James L. Hiatt

Referencias

Naruse, Masae; Ishizaki, Yasiki; Ikenaka, Kazuhiro; Tanaka, Aoi; Hitoshi, Seiji (2017). «Origin of oligodendrocytes in mammalian forebrains: a revised perspective»The Journal of Physiological Sciences 67 (1): 63-70. PMID 27573166doi:10.1007/s12576-016-0479-7. Consultado el 5 de noviembre de 2021.

Saltar a:a b Taleisnik, Samuel (2010). «5». Neuronas: desarrollo, lesiones y regeneración. Argentina: Editor. p. 99. ISBN 978-987-1432-52-3.

Barres, BA et al. (1999). «Axonal control of oligodendrocyte development». The Journal of Cell Biology.

Baumann, N, et al. (2001). «Biology of oligodendrocyte and myelin in the mammalian central system». Physiol Rev.

 

Jonathan Kwok: «Habrá una vacuna contra el cáncer antes de 2030

Jonathan Kwok: «Habrá una vacuna contra el cáncer antes de 2030»

El investigador de la Universidad de Oxford es uno de los científicos que busca obtener una vacuna terapéutica contra el cáncer. «Tenemos que conseguir abaratar los tratamientos».

Jonathan Kwok, investigador de la Universidad de Oxford. Foto: JAVI MARTINEZ
Jonathan Kwok, investigador de la Universidad de Oxford. Foto: JAVI MARTINEZ

«En inglés tenemos un dicho: «Every cloud has a silver lining«, que hace referencia a que detrás de cada nube está la luz del sol. La covid ha sido un nubarrón terrible, realmente horrible, pero hay un rayo de luz. Estas nuevas tecnologías que se desarrollaron a causa de una enfermedad infecciosa terrible pueden redirigirse ahora al cáncer. Hay distintas estrategias en marcha, por lo que estamos en un momento realmente emocionante», asegura el investigador, que participó esta semana en la jornada Drug Discovery and enterpreneurship session organizada por la Fundación CRIS contra el cáncer como CEO de Infititopes, una spin-out de la Universidad de Oxford creada precisamente para potenciar el desarrollo de una vacuna terapéutica contra el cáncer.

«Hace apenas cinco años, nada de esto hubiera sido posible», recuerda el investigador. «En Oxford, como en otras instituciones, con la irrupción de la pandemia aprendimos muy, muy rápido cómo dirigirnos, diseñar y desarrollar vacunas contra la covid; cómo llevar a cabo también de forma rápida y segura ensayos en pacientes y cómo había que trabajar con las agencias reguladoras y las compañías de manufactura para lograr que esos productos se evaluasen correctamente y pudieran llegar cuanto antes a los pacientes. Esa experiencia puede usarse ahora en otros ámbitos, como en el cáncer. Debemos aprovecharla», subraya, convencido, el investigador tras su charla en la Residencia de Estudiantes del CSIC, donde se celebró el acto.

PREGUNTA: ¿Cuánto tiempo tardará en estar disponible una vacuna terapéutica efectiva contra el cáncer?
RESPUESTA: 
Ahora mismo hay una carrera en la que están participando al menos 10 compañías y departamentos académicos con distintas aproximaciones y estrategias. Que haya esa cantidad de abordajes terapéuticos es una buena noticia para todos, porque, como ya vimos con la covid, no tiene que haber una única solución, sino múltiples. Por el camino iremos viendo cuáles son las ventajas de cada uno de estos abordajes, qué técnicas son mejores y cómo pueden combinarse para proporcionar los mejores cuidados para los pacientes. Ya hay algunas opciones que están en las etapas intermedias de la investigación. Y es muy posible que veamos a las agencias reguladoras otorgar a estos estudios la designación de terapia innovadora para estas alternativas, lo que supone agilizar los procesos de evaluación. Por todo ello, creo que habrá una vacuna contra el cáncer disponible antes de que acabe esta década. Creo que nuestra propia vacuna llegará antes de ese plazo. Será muy interesante comprobar cuál de todas funciona mejor. Va a ser realmente fascinante trabajar en esta área de investigación en los próximos años.

Desafíos de las vacunas contra el cáncer

Aunque Kwok no quiere dar demasiados datos sobre su abordaje para mantener en secreto el desarrollo de la terapia, sí desliza alguna de las claves que diferencian su estrategia frente a las de sus competidores. «Hacemos tres cosas especialmente bien», explica. En primer lugar, el proyecto, que pretende guiar al sistema inmunitario para que localice y combata de forma efectiva al enemigo tumoral, ha desarrollado una plataforma tecnológica que permite seleccionar de una forma muy precisa los antígenos del cáncer que pueden utilizarse para despertar una respuesta adecuada del sistema inmunitario del paciente. Además, continúa Kwok, la estrategia utiliza un vector que es capaz de mantener esta respuesta inmunitaria en el tiempo.

«Otros abordajes son muy buenos a la hora de proporcionar una protección a corto plazo. Pero eso no es lo que necesitas si tienes un tumor. Para el cáncer necesitas una protección duradera, dirigida por células T CD8 que mantengan la protección sin que terminen exhaustas y frenen la posibilidad de una metástasis», subraya el investigador.

«Las muertes por cáncer se producen, en entre un 70% y un 90% de los casos, por metástasis. Queremos detener esas metástasis, evitar que ocurran a través de una respuesta sostenida del sistema inmunitario que hemos comprobado que se puede producir a través del vector específico que utilizamos en nuestra vacuna», añade el investigador. «En estudios en modelos de ratón hemos demostrado que podemos prevenir las metástasis por completo», subraya. «Queremos lograr lo mismo en personas». Según explica, está previsto que la primera etapa de los ensayos clínicos, la destinada a comprobar en primer lugar la seguridad de la estrategia, arranque en los próximos meses.

El tercer punto en el que su equipo está trabajando se basa en analizar y tratar de establecer el momento idóneo de administración de estas vacunas. «Muchas veces, tras una cirugía para extraer un tumor, parece que se ha eliminado por completo la enfermedad. Sin embargo, pueden quedar pequeños grupos de células capaces de viajar a otros lugares del organismo e incluso mucho tiempo después provocar una metástasis. Creemos que se puede interrumpir ese proceso con una vacuna». Pero es importante que esa intervención se realice a tiempo, de forma precoz, para no dar ninguna oportunidad para que el cáncer avance, subraya.

P: ¿Cree que el cáncer será una enfermedad curable algún día?
R: 
El cáncer es taimado, astuto. Obviamente no de forma consciente, pero es capaz de cambiar, de mutar para escapar de todo tipo de amenazas. Constantemente está buscando maneras de evadirse de cualquier control, ya sea quimioterapia, inmunoterapia, vacunas… lo que sea. Tengo mucha confianza en que sí seremos capaces de reducir el riesgo de metástasis, que podremos retrasarlas y frenarlas. Creo que estamos en una era en la que veremos muchos progresos, pero, ¿se podrá curar el cáncer? Como oncólogo me gustaría responder que sí, que el cáncer, las muertes y el sufrimiento que provoca van a poder prevenirse, pero aún tenemos un camino por delante.

P: Hoy en día, los tratamientos para combatir el cáncer son muy caros, de los más costosos para el sistema sanitario. ¿Estarán estas terapias innovadoras disponibles para todo el mundo? ¿Podrán sufragarse?
R: 
Para nosotros, que los tratamientos sean asequibles, algo que muchas veces se obvia desde este sector, es muy importante. Ahora mismo hay terapias que pueden implicar cientos de miles de euros por tratamiento, lo que supone muchísimo dinero para cualquier sistema sanitario. Las terapias CAR-T, que requieren obtener los linfocitos T del propio paciente, purificarlos, seleccionarlos y modificarlos específicamente para que puedan combatir el cáncer para después infundírselos de nuevo al paciente, suponen un proceso complejo tecnológicamente que puede costar más de 400.000 euros. Es muy difícil poder asumir eso. Se trata de terapias muy buenas, especialmente en los tumores hematológicos, pero tenemos que encontrar formas de hacer más asequibles los tratamientos. Para nosotros ese objetivo es muy importante. Según nuestras estimaciones, creemos que podríamos desarrollar un tratamiento cuyo precio no fuera muy diferente al de la quimioterapia, que ahora mismo, especialmente desde que hay alternativas genéricas disponibles, es la terapia más barata.

La carrera profesional de Kwok es atípica. Además de trabajar como investigador en universidades punteras, como Oxford y atendiendo pacientes con cáncer en hospitales como el Queen Alexandra de Portsmouth, el científico también tiene experiencia en otras áreas sanitarias, como la gripe pandémica, la medicina personalizada o incluso el abordaje de emergencia de las epidemias de cólera, un campo en el que trabajó en colaboración con Médicos sin Fronteras. Pero lo que más llama la atención de su currículum es que, tras graduarse, aparcó durante unos años la medicina para dedicarse a la banca de inversión. Durante un tiempo se dedicó al análisis y asesoría sobre «las que entonces eran incipientes y ahora son exitosas compañías biotecnológicas, farmacéuticas y de tecnología sanitaria». Y no le fue nada mal. Incluso ganó algún premio por lo acertado de sus recomendaciones.

P: ¿De qué manera le ayuda ahora su pasado en el mundo de la inversión?
R: 
Sobre todo me ayuda a entender cómo piensan los inversores. Como científicos, nuestro objetivo siempre es hacer ciencia excepcional, lo cual es fantástico, pero puede conducir a lo que llamamos en inglés rabbit holes, es decir, a una situación en la que el interés por un tema en particular te lleva a no ver más allá. El objetivo tiene que ser el paciente, encontrar una solución para los pacientes. Conocer el mundo de la inversión me ayuda, pero también sé que hay inversores e inversores. Por supuesto, todos quieren ganar dinero, es su objetivo, pero especialmente en áreas como la biotecnología o el medio ambiente hay que tener en cuenta muchas cuestiones. Al conocer el sector te das cuenta con qué gente quieres construir un negocio.

P: ¿Qué supone para usted, a nivel personal, trabajar en la investigación del cáncer? ¿Por qué decidió involucrarse en este campo de estudios?
R: 
He tenido la oportunidad de trabajar como médico, viendo pacientes en un hospital. Y eso te expone a situaciones muy duras. Una de las conversaciones más duras que he tenido en mi vida, la tengo grabada en mi memoria, fue en una consulta, cuando tuve que decirle a un hombre de poco más de treinta años, con un hijo de sólo cinco, que su mujer, y madre del pequeño, que padecía cáncer de mama metastásico, no iba a volver a casa. Fue terrible. Son esas historias las que queremos cambiar. La próxima generación de terapias del cáncer puede suponer un gran cambio. Si podemos parar el avance del cáncer a tiempo, podremos prevenir la recurrencia de los tumores y evitar que muchas personas mueran. Ese es el objetivo de mi equipo.

Cristina G. Lucio. Madrid
« Entradas anteriores Entradas siguientes »