Enriquerubio.net El blog del Dr. Enrique Rubio

21 enero 2021

EL CONTAGIO DE LOS VIRUS SARS-CoV-2

Filed under: MICROSBIOS — Enrique Rubio @ 20:09

EL CONTAGIO DE LOS VIRUS SARS-CoV-2

Aunque hemos oído hablar muchas veces de las gotitas que transportan los Virus SARS-CoV-2 en esta terrible enfermedad, está claro el tamaño de la gota el peso de la misma la duración en la atmósfera que nos rodea y el tiempo de exposición  son importantes. 

No solo importa el tamaño de las gotas: los flujos y partículas aéreas están sometidos a muchos fenómenos. Solo así se explica el ‘éxito’ del coronavirus.

Ya  tenemos algunas cosas claras.

 Las personas agrupadas en un lugar con poca ventilación son las fuentes mayor de contagio 

Los hospitales,  la residencia de ancianos  y los grupos de persona aislado en un lugar con poca ventilación se contagian sistemáticamente y supone un porcentaje más de 50% de los contagios.Los sanitarios y mayores lo tienen mal.

Sentados en la calle con Con 2 metros de distancia entre personas y mascarilla y sobre todo si hay una buena ventilación. el aire de la calle,  la  infección es claramente  menor,

Viene el problema,  de si los virus se transmiten además de otras formas que no conocemos. Lo que sí vemos con claridad es que tras una festividad donde la gente se agrupa mucho el contagio está asegurado.

SARS-CoV-2Transmisión aérea de partículas y gotas.Mantener la distancia es importante, pero hay que tener en cuenta otros factores de protección para salvarse del contagio.

Un equipo internacional y multidisciplinar coordinado por Julian W. Tang, de la Universidad de Leicester, y Stephanie J. Dancer, de la Universidad de Edimburgo, explican y refutan en el número de enero de The Journal of Hospital Infection seis mitos o malentendidos sobre la difusión del coronavirus. Entre los firmantes figuran expertos en aerosoles, ventilación, ingeniería, física, epidemiología, virología y medicina clínica de varias universidades de todo el mundo.

ESTOS ANCIANOS ESTAN MAS ESPUESTOS A CONTAGIO
AQUI ES MAS DIFICIL

Comprender los mecanismos de transmisión del SARS-CoV-2 es clave para prevenir su propagación, pero hasta mediados del año pasado no quedó claro el poder aerotransportado del virus y aún hoy sigue habiendo confusión sobre la infectividad de aerosoles, gotas, gotículas y partículas.

No hay duda -dicen- de que el SARS-CoV-2 se transmite a través de una gama variable de tamaños de partículas en el aire sujetas a parámetros de ventilación y de comportamiento humano. Reconocen sin embargo la escasez de pruebas sólidas sobre la infectividad en algunos escenarios, como el de los polémicos fómites o las partículas muy pequeñas, y la dificultad, por sus fallos y su coste, de seguir los contagios a través de adecuadas secuenciaciones genómicas que detecten el origen exacto en una superficie, una mano o un aerosol.

Cada uno de los mitos que analizan se deriva de estudios con cierta evidencia y de su experiencia en cada una de las disciplinas científicas. “Esperamos facilitar la comprensión de por qué algunas declaraciones comunes están obsoletas y por qué las pruebas actuales apuntan en una dirección diferente”.

Mito 1: «Los aerosoles son gotas con un diámetro de 5 micrómetros (µm) o menos»

Este mito se originó a partir de una definición históricamente incorrecta y recogida por la Organización Mundial de la Salud: «… las gotas de <5 µm de diámetro se conocen como núcleos de gotas o aerosoles».

Las gotas respiratorias, formadas a partir de secreciones respiratorias y saliva, se emiten a través del habla, las toses, los estornudos e incluso la respiración. Sus diámetros abarcan un espectro de <1 a >100 µm. Las más pequeños se secan rápidamente al 20-40% de su diámetro original, dejando residuos llamados «núcleos de gotas», que la mayoría de los médicos creen que son sinónimos de «aerosoles».

Con una amplia gama de diámetros, esas gotas exhaladas pueden permanecer suspendidas en el aire y considerarse aerosoles. No es posible especificar un punto de corte para el diámetro de las partículas en el aire porque la capacidad de una partícula para permanecer suspendida depende de muchos factores distintos del tamaño, incluyendo la fuerza con la que se expulsan, y las características del flujo de aire circundante (velocidad, turbulencia, dirección, temperatura y humedad relativa).

Dependiendo de esas condiciones, muchas partículas que previamente habrían sido clasificadas como ‘grandes’ (diámetro >5 µm) pueden viajar mucho más lejos que la distancia ‘mítica’ de 1-2 metros, dentro de la cual se afirma que tales partículas caen al suelo. Así que teniendo esto en cuenta, incluso las partículas grandes también pueden comportarse como ‘aerosoles’ tradicionales. Tanto los ‘aerosoles’ como las ‘gotas’ deben considerarse como extremos de un rango de tamaño para el que su patrón aerotransportado variará en función de las condiciones ambientales.

Los autores definen las ‘gotas’ como partículas que caen al suelo (o cualquier superficie incluyendo las verticales) bajo la influencia de la gravedad o el impulso del aire exhalado de una persona infectada, y los ‘aerosoles’ como partículas que permanecen suspendidas debido al tamaño o las condiciones ambientales. El término ‘partículas’ designa tanto gotas como aerosoles.

A efectos de la transmisión, un umbral de tamaño más racional para distinguir las gotas de los aerosoles, en términos de su comportamiento físico y de su vía de exposición, es de 100 µm.

Mito 2: «Todas las partículas de más de 5 µm caen a 1-2 metros de la fuente»

Es una afirmación muy repetida, pero científicamente falsa. Las partículas exhaladas de 5-10 µm de diámetro caen lentamente al suelo bajo la influencia de la gravedad en el aire interior. Esto supone de 8 a 30 minutos desde una altura de 1,5 m. Sin embargo, la mayoría de las habitaciones tienen corrientes de aire ambiente de 0,1-0,2 m/s, lo que significa que estas partículas son demasiado pequeñas para asentarse en el suelo dentro de esa distancia de 1-2 m de la fuente.

Una gota debe ser mayor que 50-100 µm para tener una alta probabilidad de aterrizaje a esos 1-2 m de la fuente emisora en interiores. Los flujos de aire pueden extender este tiempo de suspensión por más tiempo. Y esas gotas de más de 50-100 µm pueden recorrer más de dos metros impulsadas por toses o estornudos.

Las partículas que son demasiado pequeñas para asentarse rápidamente por la gravedad pueden moverse hacia arriba en el penacho térmico de una persona, la columna de aire caliente en movimiento ascendente producida por el calor corporal. Estas partículas pueden verse influenciadas por otros flujos de aire generados por la ventilación, el tráfico de personas, los movimientos de las puertas y los flujos convectivos (por ejemplo, corrientes de aire producidas por equipos eléctricos y cuerpos calientes), antes de ser finalmente inhaladas. Tales flujos son especialmente importantes para las partículas de <5-10 µm, que se pueden transportar a distancias de más de dos metros.

En el aire quieto, las partículas de diferentes tamaños tienen diferentes tiempos de sedimentación en función de leyes físicas, como la de Stokes. Así, los cálculos muestran que incluso las partículas con un diámetro de alrededor de 50 µm tardarán unos 20 segundos en asentarse a partir de una altura de 1,5 m y deben considerarse como aerosoles. Las ligeras turbulencias en las salas de hospitales pueden hacer que partículas de ese tamaño aguanten más tiempo en el aire y sean capaces de viajar más de 2 metros desde la fuente.

El período de tiempo clínicamente relevante para las partículas suspendidas en el aire depende de la ventilación. Los sistemas de ventilación de un hospital suministran aire limpio de forma continua. Si la habitación tiene una tasa de intercambio de aire de 6 cambios por hora (ACH), entonces la duración de interés es de 10-30 minutos. Si la tasa es de 12 ACH, entonces la duración baja a 5-15 minutos. Si el hospital no tiene sistemas de ventilación mecánica y en ausencia de ventanas o puertas abiertas, las partículas podrían tardar horas en asentarse en el suelo.

Mito 3: «Si es de corto alcance, entonces no puede ser aerosol»

La distancia social de 1-2 m, distancia conversacional, es la que define el corto y el largo alcance. Comúnmente se piensa que la transmisión de largo alcance es una prueba de transmisión en el aire, pero la ausencia de transmisión de largo alcance detectable no excluye la transmisión aérea.

El contagio del agente infeccioso por medio de la inhalación puede ocurrir a cualquier distancia, si bien es más probable que ocurra a corta distancia pues los aerosoles se concentran cerca de la fuente. Basta observar cómo se disipa el humo de un fumador. Un fenómeno similar se puede experimentar por el olfato, por ejemplo, si se está lo suficientemente cerca de alguien que ha comido ajo o bebido alcohol o se ha perfumado: el olor se desvanece a medida que uno se aleja. Sin embargo, si la respiración exhalada sigue difuminando olores perceptibles, entonces también se puede estar inhalando cualquier virus presente en ese aliento exhalado. Muchos brotes son difíciles de explicar sin esa inhalación de SARS-CoV-2 aerosolizado.

Los aerosoles se concentran obviamente a corta distancia del emisor infeccioso (<1 m): desde gotas grandes balísticas hasta aerosoles diminutos. Que haya transmisión en rangos mayores (más allá de 1-2 m) depende de varios parámetros: cantidad de viriones en el aire producidos por la fuente; distribución de viriones transportados por diferentes tamaños de partículas; patrones de flujo de aire en el entorno; tasa de descomposición de la infectividad del virus; dosis infecciosa necesaria para causar una infección; dilución del inóculo a distancia; y eliminación oportuna por aire fresco, ventilación o limpieza del aire.

El riesgo de transmisión de mayor alcance (>2 m) es menor en comparación con el de corta distancia (<1 m), pero puede ocurrir. Desafortunadamente, los eventos de transmisión de gran alcance pueden ser muy difíciles de probar cuando ese patógeno ya está muy extendido en la comunidad, con múltiples fuentes capaces de emitir el virus a varias distancias.

Mito 4: «Si el número reproductivo básico, R0, no es tan grande como para el sarampión, entonces no puede ser aerosol”

El número reproductivo básico o R0 se define como el número medio de casos secundarios derivados de un único caso índice infectado en una población distribuida uniformemente y totalmente susceptible. El problema es que este R0 no está directamente relacionado con si una enfermedad se transmite o no por inhalación de aerosoles.

Diversos microbios pueden diseminarse por vía aerotransportada, pero no se transmiten necesariamente de persona a persona. Por ejemplo, los hantavirus y el Bacillus anthracis, causante del ántrax, tienen reservorios animales y ambos se adquieren por inhalación, pero no se transmiten de persona a persona. Tienen un R0=0 y, sin embargo, se consideran enfermedades transmitidas por el aire.

En el caso de los virus aéreos, como el sarampión y la varicela, la identificación precisa de los casos es relativamente sencilla porque estos virus causan una patología cutánea distintiva en el 99% de los infectados. Y pueden diagnosticarse sin pruebas de laboratorio. Las estimaciones del R0 son, por lo tanto, mucho más precisas. Dado que muchos casos de covid-19 son asintomáticos, el R0 es mucho más difícil de evaluar.

Cuando los pacientes presentan una ‘enfermedad similar a la gripe’, con síntomas leves o ninguno en absoluto, el alcance de cualquier brote y, en consecuencia, el número de casos secundarios, es mucho más difícil de determinar. Las personas no necesariamente sabrán que han estado expuestas o serán conscientes de su capacidad para transmitir la infección a otros. No se autoaislarán y no se contarán como posibles casos secundarios.

Esto hace que sea imposible el rastreo de contactos y el seguimiento de todos los involucrados en un evento de exposición específico, a menos que haya un registro muy detallado. Además, no se pueden excluir otros contactos que podrían haber contagiado desde una fuente diferente. Incluso en los casos en los que un único brote pueda asociarse a una fuente concreta, esa misma fuente puede haber propagado ya otros casos secundarios que no se puedan rastrear ni contabilizar. Puede haber una cantidad sustancial de transmisión presinstomática y además no todos los infectados son igualmente contagiosos.

Mito 5a: «Si es un aerosol, entonces las mascarillas no sirven»

Esta afirmación es falsa porque se presenta esencialmente como un escenario binario simplificado, es decir, las mascarillas funcionan (completamente) o no funcionan (en absoluto) contra virus en partículas respiratorias.

Varios estudios de laboratorio ya han demostrado que las mascarillas quirúrgicas y caseras son algo eficaces tanto para frenar las partículas exhaladas como para proteger de la inhalación de partículas ajenas. Contienen y reducen esas partículas hasta 3-4 veces (es decir, ∼67-75%), e incluso el 100% en el caso de coronavirus estacionales. Además, cuando un contagiado usa una mascarilla, el tamaño de su penacho exhalado también se reduce.

Las mascarillas quirúrgicas protegen al usuario al reducir la exposición a las gotas entrantes y aerosoles de infectados en un promedio de seis veces en función de su capacidad de filtración. Incluso las de tela caseras pueden reducir la exposición de las partículas entrantes hasta en 2-4 veces (es decir, ∼50-75%). La experiencia con el SARS-CoV-2 recomienda los modelos N95/FFP2/FFP3 para los sanitarios de primera línea. Para los que no pueden tolerar esas mascarillas durante largos períodos, las quirúrgicas ofrecen cierta protección pero no son tan efectivas.

Mito 5b: «Si el virus solo mide 100 nanómetros (0,1 µm), las mascarillas y los filtros no funcionan»

Hay dos malentendidos en este asunto. En primer lugar, hay una falta de comprensión de cómo funcionan realmente los filtros de alta eficiencia. No actúan como simples cedazos o coladores, sino que eliminan físicamente las partículas utilizando una combinación de impacto e interceptación (donde las partículas en movimiento más rápido golpean y se pegan a las fibras de la mascarilla a través de una colisión directa); tamización (donde las partículas en movimiento más lento tocan y se adhieren a las fibras de la mascarilla); y fuerzas electrostáticas (donde las partículas de carga opuesta y las fibras de la mascarilla se adhieren entre sí). Juntos, estos factores crean una «trampa de colisión dinámica» a medida que las partículas pasan a través de la red de canales de aire entre fibras a varias velocidades.

La eficiencia mínima de filtración se produce típicamente para partículas de unos 0,3 µm de diámetro. Aquellas más pequeñas se capturan con mayor eficiencia porque su movimiento browniano (que permite la difusión a nivel atómico) hace que colisionen con las fibras del filtro a una alta velocidad. Y las partículas más grandes que este diámetro se eliminan a través del impacto y la interceptación.

En segundo lugar, los virus no suelen ir ‘desnudos’ por el aire. Son expulsados en gotas que contienen agua, sal, proteínas y otros componentes de las secreciones respiratorias. Las gotas salivales y mucosas son mucho más grandes que el virus, y es el tamaño total el que determina cómo se mueven las gotas y aerosoles y son capturados por las mascarillas y los filtros.

Los filtros de aire de alta eficiencia (HEPA) pueden atrapar el 99,97 % o más de partículas de 0,3 µm (300 nanómetros) de diámetro. Las gotas salivales/mucosas exhaladas comienzan a partir de un tamaño de 0,5 µm y se eliminan por completo mediante filtros HEPA. De hecho, la filtración HEPA no es estrictamente necesaria en los sistemas de ventilación de la mayoría de los edificios comerciales, aunque sí en los hospitalarios. Los limpiadores de aire ‘portátiles’ que filtran el aire de una sala a través de filtros HEPA integrados son una opción para áreas no especializadas, como oficinas y aulas, aunque su rendimiento puede estar limitado por mezclas imperfectas, ruidos y corrientes.

Mito 6: «A menos que crezca en cultivos, no es infeccioso»

El cultivo viral es sorprendentemente difícil, una de las razones por las que el aislamiento de virus en cultivo celular es mucho menos sensible que su detección por métodos moleculares. Esto se debe en parte a que se necesita más de un virus para infectar con éxito un cultivo celular. Por ejemplo, con la gripe la cantidad de virus necesaria para infectar el 50% de una monocapa celular in vitro es de unas 300 copias de su genoma.

Esta diferencia de sensibilidad se ve agravada por las técnicas de muestreo de aire disponibles actualmente. La mayoría de los estudios utilizan sistemas de alta velocidad que succionan cualquier virus en el aire a un medio de cultivo de líquidos burbujeantes. Sin embargo, estos dispositivos de muestreo de aire generan altas fuerzas de cizallamiento que pueden dañar las proteínas virales de la superficie y evitar que crezcan en el cultivo.

Por el contrario, las velocidades naturales de exhalación humana y flujo de inhalación son mucho más lentas, lo que las hace menos propensas a deteriorar los virus. Es decir, nuestras tecnologías de muestreo de aire no replican con precisión los mecanismos que conducen a la infección respiratoria humana por inhalación.

Como consecuencia, la falta de detección de virus viables en muestras de aire no prueba necesariamente la ausencia de virus vivos en muestras donde el ARN viral se detecta por métodos moleculares. Encontrar ARN viral en muestras de aire debe interpretarse como presencia de virus vivos, según el principio de precaución, que siempre debe reforzar el control eficaz de la infección. Para el SARS-CoV-2, dos grupos de investigación han demostrado la presencia de virus infecciosos en muestras de aerosoles de salas de pacientes. Por las razones antes mencionadas, es muy probable que estos estudios subestimen la cantidad de aerosoles viables e inhalables.

En resumen: no hay que despreciar la capacidad infecciosa de la exposición a pequeñas partículas en el aire, que puede ser igual de probable que la transmisión más aceptada a través de gotas respiratorias más grandes o del contacto directo con personas infectadas o superficies contaminadas. Las pruebas que se van acumulando refuerzan la necesidad de equipos de protección personal, de ventilación suficiente y eficaz, de control de hacinamientos en atención sanitaria, transportes e interiores, y de estrategias de higiene, desinfección, filtración y limpieza ambiental

José R. Zárate Mar, 19/01/2021 – 08:00

20 enero 2021

Transcripción

Filed under: genetica — Enrique Rubio @ 22:04

Transcripción

Dentro de cada célula del cuerpo humano se encuentra material genético conocido como adn aquí se contienen las instrucciones genéticas para el desarrollo y funcionamiento de todos los organismos vivos y uno que otro virus está se encarga de transmitir rasgos hereditarios a futuras generaciones y por ello es un componente esencial para la vida gracias a esto cada célula sabe qué tiene que hacer para formar tejidos manejar energía del cuerpo construir defensas y sobre todo mantenernos vivos los procesos que realiza cada célula parecen precisos pero no son perfectos ya que el adn que contiene cada célula puede llegar a ser alterado por un sinfín de razones como enfermedades lesiones o sustancias químicas lo cual puede producir errores que generan cambios estos cambios nos conocemos comúnmente como mutaciones, una mutación es una alteración o cambio en la información genética de un ser vivo en su secuencia de doble cadena unidas entre sí formando combinaciones esenciales y una alteración en esta secuencia puede variar desde simples cambios estéticos del cuerpo humano hasta enfermedades genéticas las cuales son muy difíciles de tratar y eliminar debido a que están situadas en el código genético de cada célula una manera de eliminar estas enfermedades que surgen de errores en el adn es modificando la secuencia y aquí es donde las cosas se ponen interesantes porque esto significa que prácticamente se debe crear un editor de texto suena a ciencia ficción pero esto ya es una realidad todo esto es posible gracias a crist que en español significa

Repeticiones paalindromicas cortas agrupadas irregularmente interespaciadas

Esto hace referencia a lo siguiente;

Cuando una bacteria es atacada por un virus este debe defenderse a toda costa si sobrevive guardo un pedazo del adn del virus que él atacó y lo agrega a su genoma solo que al hacer esto genera una conexión para aislarlo he aquí la repetición una vez teniendo esto la bacteria genera inmunidad contra ese virus y este es información que hereda a futuras generaciones de esta colección de adn se genera a rn el cual es guardado en una proteína llamada cast 9 ésta es la que se encarga de buscar identificar y desactivar el virus en caso de que vuelva a atacar ahora el adn contiene secuencias repetidas que se encuentran tanto en genomas eucariotas como en procariotas estas secuencias son conocidas erróneamente como adn basura debido a que no codifican para proteínas estudios realizados por biólogos han demostrado que estas secuencias tienen varias aplicaciones entre ellas reparar regular y marcar partes del adn esto con el fin de modificar el adn para combatir enfermedades repararse o simplemente controlar el proceso de corte y empalme del adn estas secuencias repetidas pueden ser utilizadas como marcadores e interruptores para cast 9 esto significa que se puede programar una proteína casi 9 con arn para modificar eliminar o agregar partes del adn y gracias a las secuencias repetidas al momento de editar el adn se evita cortar demás la secuencia lo cual aumenta la precisión y evita los problemas que se dan al momento de modificar el adn con químicos o radiación ósea dejamos de editar aleatoriamente el adn y lo convertimos en algo más preciso la manipulación genética es algo que se ha hecho desde que empezamos a controlar la selección natural en granjas y laboratorios para crear animales con más carnes plantas más resistentes e incluso curarnos de enfermedades crisis pero lo que hace es abrir todo un panorama de aplicaciones de mejoras para cosas que ya hacemos pero como se lo pueden imaginar tiene serias implicaciones morales y éticas

LA IMPORTANCIA DEL CRISPR

Filed under: General,GENES,genetica — Enrique Rubio @ 13:24

Las maneras más innovadoras de utilizar el CRISPR

El científico estadounidense James Wason y el británico Francis Crick culminaron su descubrimiento de la estructura molecular del ADN, en forma de doble hélice. Ese hallazgo revolucionó entonces la ciencia, al permitir entender cómo funciona la molécula portadora del programa genético de los organismos vivos. Ahora, esto tiene implicaciones aún más profundas gracias a la tecnología de edición de genes CRISPR —las siglas en inglés de repeticiones palindrómicas cortas agrupadas y regularmente espaciadas—, que permite a los científicos cortar y alterar con precisión el ADN de cualquier célula.

Aunque CRISPR —también conocido como “tijera molecular”— aún no ha curado enfermedades ni ha acabado con el hambre en el mundo, ya se está utilizando de algunas maneras sorprendentes.

Convertir cerdos en donantes de órganos

Durante décadas, la mejor solución que han concebido los científicos para reducir la lista de las miles de personas que esperan recibir un trasplante de órganos en todo el mundo ha sido utilizar órganos de animales en humanos. Por ejemplo, el primer trasplante de corazón se realizó en 1964, cuando el órgano de un chimpancé fue implantado en un humano, que falleció dos horas después de la cirugía.

Además de que el cuerpo humano rechaza tejidos extraños, otro riesgo de esa alternativa es la posibilidad de que las infecciones de los animales puedan transmitirse a los receptores humanos. Pero la empresa eGenesis, que nació en el laboratorio del genetista George Church de la Universidad de Harvard, cree que el CRISPR puede resolver o eliminar estos obstáculos.

La empresa eGenesis ha utilizado la edición genética para eliminar una familia de virus que se encuentran en el ADN de los cerdos. Crédito: eGenesis

El equipo de Church ha utilizado la edición genética para eliminar una familia de virus que se encuentran en el ADN de los cerdos, para que estos —cuyos pulmones y el corazón son de tamaño similar a los de los humanos— puedan ser donantes a personas sin riesgo de contaminación.

La compañía también está experimentando con CRISPR para modificar los genes relacionados con el sistema inmunológico y evitar que el cuerpo humano rechace los órganos de donantes. Sin embargo, los científicos advierten que todavía quedan algunos años para que se pueda hacer un ensayo clínico de trasplantes humanos con órganos producidos en cerdos genéticamente modificados.

Alternativas a la insulina

Las personas con diabetes tipo 2 (resistente a la insulina) podrían tener una opción para sustituir las inyecciones con un injerto de piel. Se trataría de un injerto que contiene una versión modificada por CRISPR de una proteína que ayuda a la insulina a regular los niveles de glucosa en la sangre. Investigadores de la Universidad de Chicago están utilizando CRISPR para para alterar el gen GLP-1, responsable de la codificación de la hormona péptido 1, que provoca la liberación de insulina y luego ayuda a eliminar el exceso de glucosa de la sangre.

Usando CRISPR, los científicos han comprobado que el gen GLP-1 podría modificarse para que sus efectos de regulación tengan larga duración. Cerca del 80% de los injertos de piel que se aplicaron en ratones liberaron con éxito la hormona editada en la sangre, regulando los niveles de glucosa durante cuatro meses y revirtiendo la resistencia a la insulina y el aumento de peso en los pacientes.

Investigadores de la Universidad de Chicago están utilizando CRISPR para para alterar el gen GLP-1. Crédito: University of Chicago

Los tratamientos en humanos tardarán tiempo en desarrollarse, pero la buena noticia es que los científicos ya pueden hacer crecer el tejido de la piel muy fácilmente en el laboratorio utilizando células madre. La previsión es que esa técnica pueda tratar también enfermedades como la hemofilia (cuando el cuerpo no puede hacer los coágulos de sangre de manera adecuada).

Acabar con enfermedades endémicas

Las enfermedades transmitidas por mosquitos, especialmente la malaria, matan a más de 400.000 personas cada año en todo el mundo. Para reducir esa cifra, algunos científicos proponen utilizar una tecnología llamada unidad genética. Se trata de una herramienta de ingeniería genética diseñada para diseminar ciertos genes a través de una especie. Y aunque no es una idea nueva, estas unidades de genes están más cerca de ser realidad gracias al CRISPR.

En un artículo publicado en septiembre de 2018, los investigadores del Imperial College de Londres mostraron que una unidad genética realizada con CRISPR podría suprimir una población de Anopheles gambiae, el tipo de mosquito que transmite la malaria en el África subsahariana. Los investigadores utilizaron el “corta y pega” genético para atacar el gen Doublesex, responsable por el desarrollo femenino. Cuando los mosquitos hembra heredaron dos copias de este gen modificado, no pudieron picar ni poner huevos.

Una unidad genética realizada con CRISPR podría suprimir una población de Anopheles gambiae, el mosquito que transmite la malaria. Crédito: James D. Gathany

Los investigadores pusieron esos mosquitos en jaulas y encontraron que eran autodestructivos para su especie en su entorno cercano: después de ocho generaciones, ya no quedaban hembras normales para reproducirse y la población se extinguió.

Ese tipo de experimentos no han sido realizados fuera de los laboratorios todavía —existe la posibilidad de que las alteraciones genéticas diseñadas para impactar las poblaciones puedan mutar y transmitir rasgos ventajosos a las demás generaciones—, pero ese estudio comprobó que se transmitió la modificación genética casi el 100% de las veces, evitando la resistencia.

Líderes de la Unión Africana respaldaron la investigación como un esfuerzo por combatir la malaria en sus países, pero aún podrían pasar años antes de que la tecnología se pruebe en la naturaleza.

Cambiar el color de las flores

La herramienta de edición genética interrumpió con éxito el gen responsable del color de los tallos, las hojas y los pétalos. Fuente: Nature

Científicos japoneses están utilizando CRISPR para cambiar el color de la flor de una planta de jardín tradicional (Ipomoea nil). Los investigadores programaron CRISPR para atacar un gen específico, conocido como gen DFR-B y lo insertaron en embriones de plantas.

La herramienta de edición de genes interrumpió con éxito el gen DFR-B, que es responsable del color de los tallos, las hojas y los pétalos, cambiando así el color violeta característico de la flor al blanco.

Joana Oliveira

16 enero 2021

UN AVANCE DE LA TECNICA CRISPR

Filed under: GENES,genetica — Enrique Rubio @ 22:04

EL Dr Mujica, hizo un descubrimiento extraordinario al señalar y cortar una secuencia de ADN patologico, y poder intercalar otro ADN normal, en levaduras de la Sal en Alicante

Pero recientemente , se ha simplificado la técnica, que en vez de recortar la secuencia patológica de ADN, añade al genoma del paciente una copia en buen estado del gen dañado, para que recupere su función normal y la enfermedad remita.

CRISPR-Cas9 actúa como unas tijeras que cortan la doble hélice del ADN, lo que a veces puede desencadenar cambios no deseados en las letras o bases (A, T, G, C) que escriben el genoma. Si se consiguen eliminar esos “efectos secundarios”. La técnica, cambiaria la estrategia de “cortar y pegar” por un sistema de edición de textos -“buscar y reemplazar”- de tal precisión, que en teoría podría corregir alrededor del 89% de las variantes genéticas humanas asociadas con enfermedades.
“Si CRISPR son las tijeras, los editores de bases serían el lápiz: en lugar de cortar la doble hélice, convierten una letra del ADN en otra, sin llegar a romper la doble cadena, lo que permite corregir los principales tipos de mutaciones de forma eficiente, pero no todas. El editor ‘prime’ supondría el sistema de ‘búsqueda y sustitución’ de un procesador de texto; permite realizar directamente mutaciones puntuales específicas, inserciones y eliminaciones de una sola letra y combinaciones de estas, también sin tener que romper la doble cadena”, La tecnología de edición genética CRISPR-Cas9 ha revolucionado la investigación biológica y médica, al proporcionar la herramienta más sencilla con la que editar el ADN. Su potencial es enorme: desde corregir mutaciones asociadas a enfermedades a obtener plantas más resistentes para el cultivo.

La gran innovación de esta técnica prime consiste en la fusión de la proteína Cas9 –que es la encargada de cortar el ADN en el sistema de edición clásico– con una enzima de transcriptasa inversa –molécula que genera ADN a partir de ARN- y la modificación de la guía de ARN para que, a la vez que localiza el sitio que se quiere editar, actúe de molde para corregira la mutación. De esta forma, se evita la rotura de doble cadena.
Los científicos han probado la técnica con más de 175 ediciones genéticas en células humanas, incluida la corrección del error que causa la anemia de células falciformes y la enfermedad de Tay Sachs, una patología por depósito lisosomal que afecta al sistema nervioso central. Según exponen en el artículo, la técnica es muy eficiente y produce menos “efectos secundarios” que la clásica CRISPR-Cas9.
Pero esta investigación es un “cambio revolucionario” que se produce en la técnica del CRISPR.
Este trabajo ofrece , un método robusto de corrección de alelos patogénicos Y abre un gran número de posibilidades biotecnológicas. Permite corregir pequeños alelos con un nivel de certidumbre más alto que métodos anteriores y en un rango de condiciones muy grande (incluyendo células que se dividen poco). También parece que tiene un nivel bajo de off-target (ediciones fuera de diana)”. Güell considera que si bien el CRISPR-Cas9 clásico funciona muy bien “para romper o inactivar genes”, el editor prime parece “bastante superior para corregir” errores genéticos. Y, además, “potencialmente es más seguro”, al evitar la rotura de doble cadena de ADN.

Los resultados de una nueva tecnología llamada Uni-large, desarrollada para modificar el genoma para hacer frente a diversas enfermedades de manera más segura y eficiente que otras soluciones, están ya en fase de revisión para su publicación, ha explicado a Diario Médico Marc Güell, investigador principal de este proyecto en el Grupo de Investigación en Biología Sintética Traslacional del Departamento de Ciencias Experimentales y de la Salud (DCEXS) de la Universidad Pompeu Fabra (UPF) de Barcelona.

Uni-large está pensada para tratar las enfermedades de origen genético y algunos tipos de cáncer derivados del mal funcionamiento de un gen (como la leucemia, por ejemplo). Según información de la UPF, consiste en añadir al genoma del paciente una copia en buen estado del gen dañado, para que recupere su función normal y la enfermedad remita. La universidad ha patentado esta tecnología y previsto su protección a la par que ha creado una empresa, Integra Therapeutics, que desarrollará y comercializará los programas terapéuticos vinculados a ella, ha precisado Güell.

Inicialmente el equipo está probando su utilidad en el tratamiento de la distrofia muscular congénita tipo 1A (MDC1A), una enfermedad hereditaria para la que no existe ninguna terapia efectiva. Se trata de la distrofia muscular congénita más frecuente y provoca debilidad progresiva y pérdida de la masa muscular.

Entre las ventajas de Uni-large destaca su universalidad puesto que otras técnicas de edición genética, como la CRISPR, pueden corregir mutaciones individuales de cada paciente (medicina personalizada), mientras que la nueva tecnología sería útil con todos los pacientes de una determinada enfermedad. Además, con CRISPR hay que hacer un corte en el genoma para reparar la mutación, lo que puede provocar accidentes como la pérdida o la rotura de cromosomas, mientras que con Uni-large no se corta, sólo se pega un gen, lo que evita riesgos. Además, el método es especialmente útil con enfermedades como la MDC1A donde el gen implicado es muy grande y otras tecnologías no permiten reparaciones eficientes.

Güell recalca especialmente que Uni-large es de la misma familia de la tecnología CRISPR, pero la suya está pensada para poner un gen entero; es decir, permite escalar “muy bien”, lo cual la hace universal.

 Inmediatamente ha surgido una modificación

Explica que hace años, tras una estancia en Estados Unidos, empezó a trabajar en la idea de combinar la precisión de las tecnologías modernas pero sin perder de vista la clásica. Probaron con células en cultivos y se fueron realizando ajustes hasta llegar a un modelo de ratón con distrofia muscular donde ya se ha visto que funciona “bastante bien”.

Fue Francis Mojica, quien realizó la primeras contribuciones​ que describían las secuencias repetidas CRISPR en arqueas y su papel en los mecanismos de inmunidad de las células procariotas. Sus descubrimientos cristalizaron más tarde en el desarrollo de la tecnología CRISPR-Cas.

Referencia
Sonia Moreno Biología Molecular
Carmen Fernández. Barcelona 21 octubre, 2019

Marc Güell, en el edificio del PRBB de Barcelona. 16/01/2021 –

15 enero 2021

LAS VACUNAS DE ARN

Filed under: General — Enrique Rubio @ 22:54

LAS VACUNAS DE ARN 

UN GRAN AVANCE EN INMUNOLOGIA

Vacunas de ARN mensajero, son aquellas que en las que se emplea ácido ribonucleico para lograr el desarrollo de una respuesta inmune. Se diferencian de las vacunas tradicionales en que no se administran agentes vivos atenuados ni fragmentos del mismo, por lo que no existe el peligro de provocar la enfermedad que se pretende prevenir. Para fabricarlas es preciso encontrar las secuencias de ADN que codifican antígenos esenciales del agente infeccioso y después transcribirlo para obtener el ARN correspondiente, el cual se usará como vacuna. Aunque existen diferentes tipos de ARN, en las vacunas se utiliza ARN mensajero. Una vez administrada, parte del ARN puede degradarse por acción de las ARNasas, pero la porción que entra en las células genera péptidos similares a los del agente patógeno, lo que provoca una respuesta inmune que protege de la infección. 1​ 2​ 3​ 4​ 5

Este proceder es revolucionario y puede ser aplicado y varias enfermedades autoinmunes.

Posiblemente no fue puesto en marcha, hasta que se conoció mejor, la producción desde el ARN, de anticuerpos específicos, sin peligrosidad de enfermedad, ni perdida de inmunidad

Liposoma cargado de ARN mensajero.

Microesferas de lípidos (liposomas) cargadas de ARNm penetran en la célula por un proceso de endocitosis.

Esquema general del proceso de traducción genética mediante el cual se sintetiza una proteína a partir del ARN mensajero (mRNA).

Las vacunas tradicionales contienen el agente infeccioso inactivado o fragmentos del mismo que al introducirse en el cuerpo provocan una respuesta inmune por parte del organismo, el cual de esta forma responde con gran rapidez y eficacia cuando sufre una infección verdadera por el microorganismo específico para el que está diseñada la vacuna. Sin embargo las vacunas de ARN consisten en una secuencia de ácido nucleico que introduce en la célula el código para que la maquinaria celular fabrique la proteína extraña del agente infeccioso, la cual posteriormente es presentada en la membrana celular y reconocida por el sistema inmune, que genera inmunidad contra el mismo; por lo tanto puede decirse que no introduce el antígeno, sino las instrucciones para fabricarlo. 6

El ARN mensajero o ARNm es el ácido ribonucleico que transfiere el código genético desde el ADN a los ribosomas en el citoplasma de una célula. Actúa por tanto como plantilla o patrón para la síntesis de una proteína. Se trata de un ácido nucleico de cadena única (monocatenario), a diferencia del ADN, que tiene dos cadenas enlazadas (bicatenario). Las vacunas de ARN mensajero están formadas por cadenas de esta molécula que codifican un antígeno específico de un patógeno. Cuando el ARNm entra en la célula, el ribosoma sintetiza la proteína codificada que corresponde a un antígeno del patógeno, el cual posteriormente se presenta en la superficie de la célula, donde es reconocido por las células del sistema inmune, generando inmunidad.

Para evitar la rápida degradación de la molécula antes de entrar a la célula, se utilizan varias estrategias, una de ellas emplea microesferas de lípidos (liposomas) en cuyo interior se encuentra el ARN, que de esta forma entra en la célula con facilidad por un proceso de endocitosis. La idea de encapsular ARNm en nanopartículas lipídicas ha resultado atractiva por varias razones. El recubrimiento de lípidos proporciona una capa de protección que evita la rápida degradación, lo que hace posible un proceso de traducción genética para formación de proteínas más eficiente. Además, la capa externa de lípidos puede modificarse, lo que permite que se una a las células deseadas a través de interacciones de ligandos. Las nanopartículas pueden administrarse al organismo a través de diferentes rutas, por ejemplo por vía intravenosa o por inyección intramuscular.

Determinadas vacunas utilizan ARN autoampliflicable (replicón)Nota 1​, es decir, el ARN introducido se multiplica por sí mismo en el interior de la célula, lo que hace que se genere una cantidad muy superior del antígeno contra el que se pretende crear inmunidad. Esta técnica no pueden producir agentes infecciosos activos porque se ha eliminado el gen de la proteína estructural del virus y este no puede formarse completo ni propagarse a las células adyacentes.789

Una de las particularidades de las vacunas de ARN es que desencadenan la respuesta inmune mediante varios mecanismos. Estimulan la formación de anticuerpos y reclutan linfocitos T citotóxicos mediante la unión de la proteína virica producida en los ribosomas al complejo mayor de histocompatibilidad tipo I (MHC). Este doble mecanismo no tiene lugar con otros tipos de vacunas.

Mecanismo de acción de las vacunas de ARN e interacción con el complejo mayor de histocompatibilidad (MHC)

Las vacunas de ARN son menos estables que otros tipos de vacunas y pueden ser degradadas fácilmente por el calor. Por ello deben conservarse congeladas o a temperaturas muy bajas, lo que representa un inconveniente para el proceso de distribución. 2

Las ventajes potenciales de las vacunas de ARN son:

  • Seguridad. No se inoculan microorganismos vivos ni atenuados, por lo que no existe la posibilidad de provocar una infección.3
  • El ARN no se integra en el genoma del hospedador, que está formado por ADN, por lo que no existe la posibilidad de alterar el genoma. 3
  • El ARN se degrada con relativa rapidez, lo que podría evitar la aparición de efectos secundarios a largo plazo. 3
  • El proceso de producción puede ser rápido y más estandarizado que en las vacunas tradicionales, lo que facilitaría una rápida respuesta ante la aparición de nuevos agentes infecciosos.3

Se han realizado ensayos clínicos con vacunas ARN desarrolladas para evitar la aparición de diferentes enfermedades infecciosas causadas por virus, entre otras las provocadas por el virus de la gripevirus de la rabiacitomegalovirusVIHvirus Zika y SARS-CoV-2.10

COVID-19]

Virus Zika

Virus de la gripe 22

Virus de la rabia] .23

Citomegalovirus.24

Cáncer Las vacunas de ARN contra el cáncer no son preventivas, están diseñadas para el tratamiento de personas que ya están diagnósticadas de esta enfermedad e intentan potenciar el sistema inmunológico para que destruya las células malignas del tumor. 25​ 26

Los primeros estudios sobre la eficacia de vacunas de ARNm fueron realizados por Woff en 1990. Posteriormente se desarrollaron dos formas: vacunas de ARNm convencional y vacunas de ARNm autorreplicativo. Los trabajos iniciales no alcanzaron resultados prácticos por la fragilidad de la molécula de ARN y su inactivación por endonucleasas, sin embargo con el tiempo se han desarrollado métodos que aumentan la estabilidad del ARNm y permiten su producción sintética en el laboratorio a partir de plásmidos de ADN, mediante una transcripción enzimática y ARN polimerasa, sin que sean precisos cultivos celulares.27

  • .

Referencias]

  1.  Vacunas de ARN: la más prometedora generación de vacunas. Autor: María Coronada García Hidalgo. MoleQla, revista de Ciencias de la Universidad Pablo de Olavide. Número 26, 2017. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b Vacunas de ADN o ARN contra el nuevo coronavirus. Schmidt C. Investigación y Ciencia, junio 2020. Consultado el 20 de noviembre de 2020.
    1. ↑ Saltar a:a b c d e f RNA vaccines: an introduction, phg foundation, 2018. Autor: Laura Blackburn. Consultado el 20 de noviembre de 2020.
    1.  Verbeke, Rein; Lentacker, Ine; De Smedt, Stefaan C.; Dewitte, Heleen (octubre de 2019). «Three decades of messenger RNA vaccine development». Nano Today 28: 100766. doi:10.1016/j.nantod.2019.100766.
    1. ↑ Saltar a:a b mRNA vaccines — a new era in vaccinology. Autores: Pardi, N., Hogan, M., Porter, F. et al. Nat Rev Drug Discov 17, 261–279 (2018).
    1.  Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol., publicado el 27 de marzo de 2019.
    1.  Luis Enjuanes: «Nuestra vacuna será más potente«. Libertad Digital, publicado el 21 de noviembre de 2020
    1.  Amplifying RNA Vaccine Development. N Engl J Med 2020; 382:2469-2471
    1.  Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Molecular Therapy. Volumen 26, ISSUE 2, P446-455, 7 de febrero de 2018.
    1.  Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances 07 agosto 2020: Vol. 6, no. 32. Consultado el 20 de noviembre de 2020.
    1.  Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet, 2017 Sep 23; 390(10101): 1511-1520.
    1.  An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. 2017 Mar 21;7(1):252. VV.AA. Consultado el 22 de noviembre de 2020.
    1.  «Safety, Tolerability, and Immunogenicity of mRNA-1325 in Healthy Adult Subjects – Full Text View – ClinicalTrials.gov» (en inglés).
    1. ↑ Saltar a:a b Fernandez, E; Diamond, MS (19 April 2017). «Vaccination strategies against Zika virus»Current Opinion in Virology 23: 59-67. PMC 5576498PMID 28432975doi:10.1016/j.coviro.2017.03.006.
    1.  Pfizer and BioNTech Achieve First Authorization in the World for a Vaccine to Combat COVID-19. Drugs.com, consultado el 3 de diciembre de 2020
    1.  Canadá aprueba la vacuna de Pfizer contra la Covid-19. Diario de Mallorca, publicado el 9 de diciembre de 2020.
    1.  La EMA autoriza la vacuna de Pfizer. La Vanguardia, publicado el 21 de diciembre de 2020.
    1.  «FDA Takes Additional Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for Second COVID-19 Vaccine»U.S. Food and Drug Administration (FDA). Consultado el 18 December 2020.
    1.  Agencia SINC (7 de enero de 2021). «La Comisión Europea autoriza el uso de la vacuna de Moderna». Agencia SINC. Consultado el 7 de enero de 2021.
    1.  «Vaccine Development, Testing, and Regulation — History of Vaccines»www.historyofvaccines.org. Consultado el 28 de enero de 2016.
    1.  «Zika virus: US scientists say vaccine ’10 years away’ – BBC News»BBC News (en inglés británico). Consultado el 28 de enero de 201628 de enero de 2016.
    1.  Una vacuna contra la gripe elaborada a partir del ARN. CORDIS. Resultados de investigación en la UE. Consultado el 9 de diciembre de 2020
    1.  Advances in RNA Vaccines for Preventive Indications: A Case Study of a Vaccine against Rabies. Autores: Nicole Armbruster, Edith Jasny, Benjamin Petsch. Vaccines (Basel). Diciembre 2019 ; 7(4): 132. Publicado el 27 de septiembre de 2019. PMID: 31569785
    1.  Laboratorio Moderna. Consultado el 13 de diciembre de 2020.
    1.  Cancer Treatment Vaccines. National Cancer Institute, consultado el 5 de diciembre de 2020.
    1.  Vaccine Strategy in Melanoma. Surg Oncol Clin N Am. Julio 2019; 28(3): 337–351.
    1.  Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. (1990) 247:1465–8.
    1.  Replicones: moléculas de ARN con capacidad para replicarse pero no para propagarse de una célula a otra.

14 enero 2021

SOBRE LAS VACUNAS CONTRA CORONAVIRUS SARS-COV-2.

Filed under: INFECCIONES E INFLAMACION,Vacunas — Enrique Rubio @ 21:23

ASTRAZENECA, PFIZER ,MODERNA Y JANSSEN

La actitud de nuestros investigadores para controlar la epidemia de coronavirus es algo genial y admirable. Una Legión de investigadores se han volcado para ayudar al mundo y lo están consiguiendo .

Describo a continuación los distintos tipos de vacunas

La vacuna de la Universidad de Oxford y AstraZeneca, conocida como AZD1222, cuya comercialización acaba de aprobar Reino Unido, utiliza un vector viral no replicante (adenovirus de chimpancé) que contiene genes que codifican la proteína S del coronavirus SARS-CoV-2. Al igual que las vacunas de ARNm -la de Pfizer+BioNTech y la de Moderna– se basan en una tecnología novedosa; la única vacuna con vector de adenovirus aprobada se dirige a la enfermedad del Ébola y es de Janssen, que también está ensayando una vacuna por esta vía para el coronavirus.

Los datos que avalan la seguridad y eficacia de la vacuna recién aprobada se basan en cuatro ensayos controlados llevados a cabo en 23.745 participantes en el Reino Unido, Brasil y Sudáfrica. Los resultados del análisis intermedio (11.636 personas) de la fase III se publicaron en The Lancet.

La interrupción del ensayo debido a un caso de mielitis tranversa (que finalmente se localizó en el grupo que no había recibido la vacuna) fue el primer revés que se vivió en esta carrera científica bajo los focos. Salvo la mielitis y una anemia hemolítica (también en el grupo control), que se han resuelto, no se han comunicado efectos graves en el ensayo. A diferencia de las vacunas de Pfizer y de Moderna, no se ha informado ningún caso de parálisis de Bell.

La reactogenicidad es la esperable en una vacuna, todos son síntomas leves, y quizá se presenten con algo más de frecuencia que en la vacunad de ARNm. Los estudios indican que hasta un 60% de los sujetos refirieron sensibilidad en el punto de la inyección; una de cada dos personas refieren fatiga, dolor en el lugar del pinchazo y dolor de cabeza, y más de un 30% tienen fiebre.

Los estudios indican con los datos combinados de estos estudios una eficacia del 70,4% en la prevención de la enfermedad, pero un error en el desarrollo de uno de los ensayos reveló que no todos los participantes habían recibido las dos dosis completas estipuladas. De hecho, en aquellas personas que recibieron media dosis primero y una segunda dosis después se observó una eficacia superior, del 90%, mientras que entre los que habían recibido las dos dosis completas, la eficacia en el ensayo se estableció en un 62,1%.

Hay algunas hipótesis que explicarían por qué media dosis y una entera obtendrían (si se confirma que es así) más eficacia que las dos dosis completas, y que tiene que ver con la potencial respuesta inmune provocada por el vector de la vacuna, el adenovirus, como sintetiza, Jaime Pérez Martín vocal de la Asociación Española de Vacunología. “No obstante, los datos que hay publicados no permiten afirmar claramente que sea más protectora una pauta que otra”.

El dato de eficacia contrasta con el aportado por las dos vacunas de ARN mensajero que desarrollaron Pfizer y BioNTech, por un lado, y Moderna, por otro. La primera ya está aprobada por la FDA y la EMA, y ha comenzado a administrarse en España, mientras que la de Moderna está aún a la espera del visto bueno de la agencia europea, que previsiblemente se producirá la semana que viene, tras recibir el respaldo de la FDA hace unos días. Los estudios con estas vacunas indican que frente a placebo, la inmunización protege de enfermedad en más del 90%, pero, desde la Sociedad Española Medicina Preventiva, Salud Pública e Higiene (Sempsph) hacen hincapié en que los estudios no han comparado un tipo de vacuna con otras.

“Los datos de eficacia que se aportan –un 70% en el caso de la vacuna de AstraZeneca, y un 90% en el de Pfizer- se han obtenido frente a placebo, no son equiparables entre sí. Esto solo podría saberse si se hiciera un ensayo clínico de una frente a la otra”, enfatizan fuentes de la sociedad científica.

La aprobación británica recoge que la administración será de dos dosis de 0,5 ml que se administrarán con un intervalo de entre cuatro y doce semanas. Una característica de esta vacuna, a diferencia de la de ARNm recientemente aprobada en la Unión Europea, es que cuanto mayor sea el tiempo de separación entre la primera y la segunda dosis, mayor es la generación de anticuerpos. Aún hay que determinar si ese aumento de la separación se corresponde con una mayor protección. No obstante, en este contexto pandémico puede parecer poco oportuno esperar tres meses para obtener la inmunidad idónea.

La vacuna se indica a partir de los 18 años -dos más que la indicación de la de Pfizer y el mismo umbral mínimo establecido para la de Moderna- y su eficacia en mayores de 65 años no está tan medida como en otros estudios, si bien casi un 6% de los participantes de los ensayos se encuentran en esta franja de edad, la baja incidencia de infecciones impidió tener datos robustos de eficacia. No obstante, en este grupo poblacional se constató, a través de la medición de anticuerpos, una respuesta adecuada. El perfil de seguridad fue similar con respecto al grupo de 18 a 64 años.

Con todo, la ficha técnica de la vacuna dice que “los datos de eficacia y seguridad son limitados en individuos mayores de 65 años”. Para Pérez Martín parece plausible con esta información que el objetivo de esta vacuna sea una población más joven, si bien “es una estrategia que deben definir los expertos en salud pública británicos. No olvidemos que hay que vacunar a mucha a gente».

Además de los ensayos con los que ha logrado la aprobación británica, la compañía tiene en marcha también un ensayo de combinación de su vacuna con la rusa, conocida como Sputnik V (Ad26), basada también en un vector viral, aunque en este caso humano, con el objetivo de averiguar si mejora así la eficacia de la de AstraZeneca.

Una ventaja diferenciadora de esta vacuna frente, en concreto frente a la de Pfizer+BioNTech, son las condiciones de refrigeración necesarias para su manejo. Así, esta última requiere una temperatura de conservación de unos -75°C±15°C, aunque la multinacional estadounidense ha desarrollado un sistema para facilitar en gran medida la logística de distribución y almacenamiento hasta el punto final de administración de su vacuna gracias a una sofisticada infraestructura, con torre de control incluida, para el seguimiento permanente de los viales. La vacuna aprobada hoy de AstraZeneca -y la de Moderna-, por su parte, pueden mantenerse a una temperatura entre 2º y 8º, con lo que pueden ser almacenadas durante al menos seis meses, transportadas y manipuladas en condiciones de refregeración habituales en la vacunación y, por tanto, administradas con facilidad en los centros sanitarios.

Junto a esta característica favorable, y para lograr la mayor distribución posible de la vacuna, AstraZeneca «ha aprovechado su propia capacidad industrial y se ha asociado con más de 20 colaboradores para la distribución de la vacuna en más de 15 países apoyados por más de 20 centros de analítica para establecer cadenas de suministro en paralelo en un tiempo récord y garantizar así el acceso global a la vacuna, con el objetivo de alcanzar los 3.000 millones de dosis, según explica Per Alfredsson, vicepresidente de Operaciones Biológicas de la compañía.

 La vacuna de Janssen una dosis única

‘The New England’ publica resultados de un ensayo en fase 2 con la vacuna Ad26.COV2.S, una de las vacunas que podría administrarse en una sola dosis.

La vacuna de Janssen se basa en un vector viral (adenovirus humano) sin capacidad de replicación.

Sonia Moreno

Jue, 14/01/2021 – 08:00

El análisis intermedio del ensayo en fase 1-2a de la candidata vacunal Ad26SARS-Cov-2 que desarrolla Janssen, filial europea de Johnson & Johnson, revela un buen perfil de seguridad y reactogenidad, así como de inmunogenicidad en un esquema de una dosis y de dos dosis, según acaba de publicar The New England Journal of Medicine.

Meses antes de que Araceli Rosario Hidalgo se convirtiera en la primera española en recibir una vacuna autorizada contra la covid, en España la candidata vacunal de Janssen era la primera inmunización que se administraba a los voluntarios en el contexto de un ensayo, que posteriormente se ha continuado a la fase 3 en varios hospitales de todo el país.

Esta inmunización se basa en un vector viral sin capacidad de replicación –adenovirus humano a diferencia del de chimpancé de la vacuna de Oxford y AstraZeneca- y utiliza la misma plataforma y tecnología que la vacuna de Janssen aprobada para la prevención del Ébola.

Los resultados que recoge ahora The New England se corresponden a un ensayo realizado en doce centros de Bélgica y Estados Unidos, sobre 805 participantes repartidos en un grupo de entre 18 y 55 años, y otro grupo específico de 65 años o más. En el estudio se han recabado datos frente a placebo de la administración de una dosis baja o una dosis alta en un esquema de una sola dosis o de dos dosis.

Como es de esperar en esta fase de ensayo, los criterios de valoración principales fueron la seguridad y la reactogenicidad de cada programa de dosis.

Tras la administración de la primera dosis de vacuna, los eventos adversos más frecuentes fueron fatiga, dolor de cabeza, mialgia y dolor en el lugar de la inyección. El evento adverso sistémico más frecuente fue la fiebre. Los efectos adversos sistémicos fueron menos frecuentes entre los mayores que en los individuos más jóvenes, y en los que recibieron la dosis baja de la vacuna que en los que recibieron la dosis alta. Al contrario de lo que se ha observado con las vacunas de ARN mensajero, la reactogenicidad fue menor después de la segunda dosis.

El trabajo, que ha dirigido la viróloga holandesa Hanneke Schuitemaker, de Janssen, está ahora recopilando datos a largo plazo para comparar el régimen de dosis única con dos dosis, por lo que aún no pueden extraerse conclusiones fehacientes al cotejar ambos regímenes. No obstante, en esta publicación se informa de que una dosis única de Ad26.COV2.S provocó una respuesta humoral fuerte en la mayoría de los que la recibieron, con la presencia de unión a la proteína coronavírica S y anticuerpos neutralizantes en más del 90% de los participantes, independientemente del grupo de edad o de la dosis.

Los autores escriben que “durante 71 días de seguimiento tras la primera dosis, los títulos de anticuerpos aumentaron y se estabilizaron aún más, lo que sugiere la durabilidad de la respuesta inmune provocada por Ad26.COV2.S”.

La potencia de la vacuna tras una dosis ya se había observado previamente en modelo experimental, con primates no humanos, con un estudio que demostró protección completa frente a la replicación del SARS-CoV-2 en pulmón y en las mucosas nasales.

“Una vacuna eficaz de dosis única para la covid-19 tiene obvias ventajas logísticas sobre una vacuna de dos dosis, especialmente durante una pandemia”, escriben los autores. “Observamos que entre los participantes de 18 y 55 años, una segunda dosis de vacuna el día 57 aumentó aún más el título de anticuerpos, un hallazgo que también estaba en línea con nuestras observaciones recientes en primates no humanos”.

El estudio está analizando ahora si una segunda dosis proporciona un beneficio adicional para mejorar la eficacia o la durabilidad, especialmente en personas de edad avanzada en quienes la respuesta inmune después de la primera dosis tendió a ser moderadamente más baja que la de los participantes más jóvenes.  

Para los investigadores los hallazgos presentados en este estudio, junto con los resultados de los estudios preclínicos, respaldan la decisión de avanzar en dos ensayos de fase 3 para evaluar la eficacia de un régimen de dosis única o de dos dosis de la dosis más baja de la vacuna.

La compañía confía en poder anunciar los primeros datos de la fase 3 de su vacuna candidata administrada en dosis única a fines de enero de 2021. Si se demuestra que es eficaz con un buen perfil de seguridad, Janssen espera presentar una solicitud de autorización de uso de emergencia ante la FDA estadounidense poco después.

Gracias a todos estos investigadores

SOBRE LAS VACUNAS CONTRA CORONAVIRUS SARS-COV-2.

ASTRAZENECA, PFIZER ,MODERNA Y JANSSEN

La actitud de nuestros investigadores para controlar la epidemia de coronavirus es algo genial y admirable. Una Legión de investigadores se han volcado para ayudar al mundo y lo están consiguiendo .

Describo a continuación los distintos tipos de vacunas que se lo siento coche calle perpendicular no tiene día cuenta marca están utilizando en España crees que sea Patricia mayo

La vacuna de la Universidad de Oxford y AstraZeneca, conocida como AZD1222, cuya comercialización acaba de aprobar Reino Unido, utiliza un vector viral no replicante (adenovirus de chimpancé) que contiene genes que codifican la proteína S del coronavirus SARS-CoV-2. Al igual que las vacunas de ARNm -la de Pfizer+BioNTech y la de Moderna– se basan en una tecnología novedosa; la única vacuna con vector de adenovirus aprobada se dirige a la enfermedad del Ébola y es de Janssen, que también está ensayando una vacuna por esta vía para el coronavirus.

Los datos que avalan la seguridad y eficacia de la vacuna recién aprobada se basan en cuatro ensayos controlados llevados a cabo en 23.745 participantes en el Reino Unido, Brasil y Sudáfrica. Los resultados del análisis intermedio (11.636 personas) de la fase III se publicaron en The Lancet.

La interrupción del ensayo debido a un caso de mielitis tranversa (que finalmente se localizó en el grupo que no había recibido la vacuna) fue el primer revés que se vivió en esta carrera científica bajo los focos. Salvo la mielitis y una anemia hemolítica (también en el grupo control), que se han resuelto, no se han comunicado efectos graves en el ensayo. A diferencia de las vacunas de Pfizer y de Moderna, no se ha informado ningún caso de parálisis de Bell.

La reactogenicidad es la esperable en una vacuna, todos son síntomas leves, y quizá se presenten con algo más de frecuencia que en la vacunad de ARNm. Los estudios indican que hasta un 60% de los sujetos refirieron sensibilidad en el punto de la inyección; una de cada dos personas refieren fatiga, dolor en el lugar del pinchazo y dolor de cabeza, y más de un 30% tienen fiebre.

Los estudios indican con los datos combinados de estos estudios una eficacia del 70,4% en la prevención de la enfermedad, pero un error en el desarrollo de uno de los ensayos reveló que no todos los participantes habían recibido las dos dosis completas estipuladas. De hecho, en aquellas personas que recibieron media dosis primero y una segunda dosis después se observó una eficacia superior, del 90%, mientras que entre los que habían recibido las dos dosis completas, la eficacia en el ensayo se estableció en un 62,1%.

Hay algunas hipótesis que explicarían por qué media dosis y una entera obtendrían (si se confirma que es así) más eficacia que las dos dosis completas, y que tiene que ver con la potencial respuesta inmune provocada por el vector de la vacuna, el adenovirus, como sintetiza, Jaime Pérez Martín vocal de la Asociación Española de Vacunología. “No obstante, los datos que hay publicados no permiten afirmar claramente que sea más protectora una pauta que otra”.

El dato de eficacia contrasta con el aportado por las dos vacunas de ARN mensajero que desarrollaron Pfizer y BioNTech, por un lado, y Moderna, por otro. La primera ya está aprobada por la FDA y la EMA, y ha comenzado a administrarse en España, mientras que la de Moderna está aún a la espera del visto bueno de la agencia europea, que previsiblemente se producirá la semana que viene, tras recibir el respaldo de la FDA hace unos días. Los estudios con estas vacunas indican que frente a placebo, la inmunización protege de enfermedad en más del 90%, pero, desde la Sociedad Española Medicina Preventiva, Salud Pública e Higiene (Sempsph) hacen hincapié en que los estudios no han comparado un tipo de vacuna con otras.

“Los datos de eficacia que se aportan –un 70% en el caso de la vacuna de AstraZeneca, y un 90% en el de Pfizer- se han obtenido frente a placebo, no son equiparables entre sí. Esto solo podría saberse si se hiciera un ensayo clínico de una frente a la otra”, enfatizan fuentes de la sociedad científica.

La aprobación británica recoge que la administración será de dos dosis de 0,5 ml que se administrarán con un intervalo de entre cuatro y doce semanas. Una característica de esta vacuna, a diferencia de la de ARNm recientemente aprobada en la Unión Europea, es que cuanto mayor sea el tiempo de separación entre la primera y la segunda dosis, mayor es la generación de anticuerpos. Aún hay que determinar si ese aumento de la separación se corresponde con una mayor protección. No obstante, en este contexto pandémico puede parecer poco oportuno esperar tres meses para obtener la inmunidad idónea.

La vacuna se indica a partir de los 18 años -dos más que la indicación de la de Pfizer y el mismo umbral mínimo establecido para la de Moderna- y su eficacia en mayores de 65 años no está tan medida como en otros estudios, si bien casi un 6% de los participantes de los ensayos se encuentran en esta franja de edad, la baja incidencia de infecciones impidió tener datos robustos de eficacia. No obstante, en este grupo poblacional se constató, a través de la medición de anticuerpos, una respuesta adecuada. El perfil de seguridad fue similar con respecto al grupo de 18 a 64 años.

Con todo, la ficha técnica de la vacuna dice que “los datos de eficacia y seguridad son limitados en individuos mayores de 65 años”. Para Pérez Martín parece plausible con esta información que el objetivo de esta vacuna sea una población más joven, si bien “es una estrategia que deben definir los expertos en salud pública británicos. No olvidemos que hay que vacunar a mucha a gente».

Además de los ensayos con los que ha logrado la aprobación británica, la compañía tiene en marcha también un ensayo de combinación de su vacuna con la rusa, conocida como Sputnik V (Ad26), basada también en un vector viral, aunque en este caso humano, con el objetivo de averiguar si mejora así la eficacia de la de AstraZeneca.

Una ventaja diferenciadora de esta vacuna frente, en concreto frente a la de Pfizer+BioNTech, son las condiciones de refrigeración necesarias para su manejo. Así, esta última requiere una temperatura de conservación de unos -75°C±15°C, aunque la multinacional estadounidense ha desarrollado un sistema para facilitar en gran medida la logística de distribución y almacenamiento hasta el punto final de administración de su vacuna gracias a una sofisticada infraestructura, con torre de control incluida, para el seguimiento permanente de los viales. La vacuna aprobada hoy de AstraZeneca -y la de Moderna-, por su parte, pueden mantenerse a una temperatura entre 2º y 8º, con lo que pueden ser almacenadas durante al menos seis meses, transportadas y manipuladas en condiciones de refregeración habituales en la vacunación y, por tanto, administradas con facilidad en los centros sanitarios.

Junto a esta característica favorable, y para lograr la mayor distribución posible de la vacuna, AstraZeneca «ha aprovechado su propia capacidad industrial y se ha asociado con más de 20 colaboradores para la distribución de la vacuna en más de 15 países apoyados por más de 20 centros de analítica para establecer cadenas de suministro en paralelo en un tiempo récord y garantizar así el acceso global a la vacuna, con el objetivo de alcanzar los 3.000 millones de dosis, según explica Per Alfredsson, vicepresidente de Operaciones Biológicas de la compañía.

 La vacuna de Janssen una dosis única

‘The New England’ publica resultados de un ensayo en fase 2 con la vacuna Ad26.COV2.S, una de las vacunas que podría administrarse en una sola dosis.

La vacuna de Janssen se basa en un vector viral (adenovirus humano) sin capacidad de replicación.

Sonia Moreno

Jue, 14/01/2021 – 08:00

El análisis intermedio del ensayo en fase 1-2a de la candidata vacunal Ad26SARS-Cov-2 que desarrolla Janssen, filial europea de Johnson & Johnson, revela un buen perfil de seguridad y reactogenidad, así como de inmunogenicidad en un esquema de una dosis y de dos dosis, según acaba de publicar The New England Journal of Medicine.

Meses antes de que Araceli Rosario Hidalgo se convirtiera en la primera española en recibir una vacuna autorizada contra la covid, en España la candidata vacunal de Janssen era la primera inmunización que se administraba a los voluntarios en el contexto de un ensayo, que posteriormente se ha continuado a la fase 3 en varios hospitales de todo el país.

Esta inmunización se basa en un vector viral sin capacidad de replicación –adenovirus humano a diferencia del de chimpancé de la vacuna de Oxford y AstraZeneca- y utiliza la misma plataforma y tecnología que la vacuna de Janssen aprobada para la prevención del Ébola.

Los resultados que recoge ahora The New England se corresponden a un ensayo realizado en doce centros de Bélgica y Estados Unidos, sobre 805 participantes repartidos en un grupo de entre 18 y 55 años, y otro grupo específico de 65 años o más. En el estudio se han recabado datos frente a placebo de la administración de una dosis baja o una dosis alta en un esquema de una sola dosis o de dos dosis.

Como es de esperar en esta fase de ensayo, los criterios de valoración principales fueron la seguridad y la reactogenicidad de cada programa de dosis.

Tras la administración de la primera dosis de vacuna, los eventos adversos más frecuentes fueron fatiga, dolor de cabeza, mialgia y dolor en el lugar de la inyección. El evento adverso sistémico más frecuente fue la fiebre. Los efectos adversos sistémicos fueron menos frecuentes entre los mayores que en los individuos más jóvenes, y en los que recibieron la dosis baja de la vacuna que en los que recibieron la dosis alta. Al contrario de lo que se ha observado con las vacunas de ARN mensajero, la reactogenicidad fue menor después de la segunda dosis.

El trabajo, que ha dirigido la viróloga holandesa Hanneke Schuitemaker, de Janssen, está ahora recopilando datos a largo plazo para comparar el régimen de dosis única con dos dosis, por lo que aún no pueden extraerse conclusiones fehacientes al cotejar ambos regímenes. No obstante, en esta publicación se informa de que una dosis única de Ad26.COV2.S provocó una respuesta humoral fuerte en la mayoría de los que la recibieron, con la presencia de unión a la proteína coronavírica S y anticuerpos neutralizantes en más del 90% de los participantes, independientemente del grupo de edad o de la dosis.

Los autores escriben que “durante 71 días de seguimiento tras la primera dosis, los títulos de anticuerpos aumentaron y se estabilizaron aún más, lo que sugiere la durabilidad de la respuesta inmune provocada por Ad26.COV2.S”.

La potencia de la vacuna tras una dosis ya se había observado previamente en modelo experimental, con primates no humanos, con un estudio que demostró protección completa frente a la replicación del SARS-CoV-2 en pulmón y en las mucosas nasales.

“Una vacuna eficaz de dosis única para la covid-19 tiene obvias ventajas logísticas sobre una vacuna de dos dosis, especialmente durante una pandemia”, escriben los autores. “Observamos que entre los participantes de 18 y 55 años, una segunda dosis de vacuna el día 57 aumentó aún más el título de anticuerpos, un hallazgo que también estaba en línea con nuestras observaciones recientes en primates no humanos”.

El estudio está analizando ahora si una segunda dosis proporciona un beneficio adicional para mejorar la eficacia o la durabilidad, especialmente en personas de edad avanzada en quienes la respuesta inmune después de la primera dosis tendió a ser moderadamente más baja que la de los participantes más jóvenes.  

Para los investigadores los hallazgos presentados en este estudio, junto con los resultados de los estudios preclínicos, respaldan la decisión de avanzar en dos ensayos de fase 3 para evaluar la eficacia de un régimen de dosis única o de dos dosis de la dosis más baja de la vacuna.

La compañía confía en poder anunciar los primeros datos de la fase 3 de su vacuna candidata administrada en dosis única a fines de enero de 2021. Si se demuestra que es eficaz con un buen perfil de seguridad, Janssen espera presentar una solicitud de autorización de uso de emergencia ante la FDA estadounidense poco después.

Gracias a todos estos investigadores

HEMISFERECTOMÍA

Filed under: EPILEPSIA — Enrique Rubio @ 20:42

HEMISFERECTOMÍA

La hemisferectomía es un procedimiento neuroquirúrgico que consiste en la extracción o inhabilitación de un hemisferio cerebral (una de las mitades del cerebro). Este procedimiento es usado para tratar un gran número de trastornos convulsivos donde la fuente de la epilepsia se localiza en una área más o menos amplia de uno de los hemisferios del cerebro. Está únicamente reservada para casos extremos en que las crisis no hayan respondido a los medicamentos u otras cirugías menos invasivas.

Comento un caso personal, de un niño con un hematoma subdural agudo de todo un hemisferio, de origen traumático, con resultados aceptables, seguido durante 40 años..

El primer intento por llevar a cabo una hemisferectomía fue experimentada en un perro, en 1888, por Friedrich Goltz. La primera operación en humanos fue realizada por Walter Dandy en 1923. Entre los años 1960 e inicios de los 1970, la  hemisferectomía  consiste  en la extracción de la mitad del cerebro, pero en muchos casos esto dio lugar a complicaciones y efectos secundarios inaceptables, como el llenado excesivo de líquido cefalorraquídeo en el cráneo, causando presión en los lóbulos restantes (lo que se conoce como hidrocefalia). La primera operación exitosa fue llevada a cabo por el doctor Ben Carson, en el Hospital Johns Hopkins de BaltimoreMaryland (Estados Unidos). Hoy en día, la hemisferectomía funcional ha reemplazado en gran medida a este procedimiento, en donde el lóbulo temporal es quitado; se realiza un procedimiento conocido como callostomía; y los lóbulos frontal y occipital son desconectados del resto del cerebro.

Todos los pacientes sometidos a hemisferectomías sufren algún nivel de hemiplejia en el lado del cuerpo opuesto a la porción extraída o inhabilitada, y pueden sufrir problemas en su percepción visual.

Este tipo de cirugía está casi exclusivamente destinada para que se realice en menores de edad, pues sus cerebros generalmente manifiestan más neuroplasticidad, permitiendo a las neuronas del hemisferio remanente tomar el control de las tareas del hemisferio perdido. Esto probablemente se produce mediante el fortalecimiento de las conexiones neuronales que ya existen en el lado sano, pero que de otro modo habrían seguido siendo pequeño en un cerebro que funciona normalmente, que está sano.1​ Un caso, demostrado por Smith & Sugar, 1975, A. Smith, 1987, demostró que un paciente sometido a este procedimiento no tuvo inconvenientes en terminar la universidad y asistir a la escuela de postgrado, anotando por encima del promedio en las pruebas de inteligencia. Los estudios no han encontrado ningún efecto significativo a largo plazo en la memoria, la personalidad, o el humor después del procedimiento,2​ con cambios mínimos en la función cognitiva.3

En general, cuanto mayor sea la capacidad intelectual del paciente antes de la cirugía, mayor es la disminución de la función. La mayoría de los pacientes que terminan con retraso mental leve o severo, suelen tener esta condición antes de la cirugía. Al reseccionar el hemisferio izquierdo, la evidencia indica que algunas de las funciones lingüísticas avanzadas (por ejemplo, la gramática de orden superior) no pueden ser totalmente asumidas por el lado derecho. El grado de pérdida avanzada del lenguaje a menudo depende de la edad del paciente al momento de la cirugía.4

Pese a lo delicado de nuestro cerebro se puede sin partes del y a veces de estructuras fundamentales y aunque es raro, hay cientos de personas, quizá miles, que viven sin grandes partes del cerebro, la mitad o incluso más.

Estas personas no nacieron así.  Si no que tras una enfermedad o un traumatismo en la infancia, como por ejemplo una encefalitis de Rasmussen, empieza a sufrir ataques epilépticos de forma que a veces le hacen la vida imposible. zonas del cuerpo y surgen las convulsiones.

Estas epilepsias se pueden controlar con fármacos, pero siempre ha habido un porcentaje que se llaman refractarias, que no responden a los tratamientos, y otras enfermedades donde el tejido cerebral queda dañado. Estos ataques a veces son tan frecuentes que el niño, porque en estos casos estamos hablando de niños, no se pueden desarrollar con normalidad porque el cerebro nunca está en reposo, o está teniendo un ataque o se está recuperando de un ataque. Una destrucción grosera de la zona afectada parecía lógico que eliminará la fuente de las descargas eléctricas anormales y y en consecuencia destruir el foco epiléptico, una solución dramática pero útil, pero si no se consigue identificar de la zona del cerebro dañada hay que eliminar una amplia zona del cerebro con lo que esto lleva consigo

Sin embargo lo que hemos practicado esta técnica, aunque nunca en gran número porque afortunadamente esta patología es escasa, nos sorprende que estos grandes déficits de se originan son discretamente soportables.

Un estudio reciente, de noviembre de 2019, ha analizado el cerebro de seis personas que habían sufrido esta operación, se les había extirpado un hemisferio cerebral, lo que se llama una hemisferectomía. Los resultados se compararon con los de otros seis adultos sanos a los que también se realizaron escáneres y con una base de datos que incluía los resultados de otros 1500 adultos sanos, con una edad media de 22 años.

El paciente más joven tenía tres meses en el momento de la cirugía mientras que el mayor tenía once años. Los seis pacientes habían sufrido ataques epilépticos desde que eran niños pequeños, uno de ellos había tenido los primeros a los pocos minutos después de nacer. En cuatro se extrajo el lado derecho del cerebro mientras que en los dos restantes fue el lado izquierdo. Las causas eran variadas en dos casos era un ictus alrededor del parto, en otros tres era encefalitis de Rasmussen, que genera epilepsia y daño cerebral y en el sexto era una displasia cortical.

Lo que ha llamado la atención es que estas personas, que ahora tenían entre 20 y 30 años, funcionaban llamativamente bien, tenían empleos como especialista en foniatría, sus funciones de lenguaje eran normales y cuando les pusieron en el escáner charlaron relajadamente como con cualquier otra persona.

Todos ellos, incluso los que se les había extirpado el hemisferio izquierdo, donde se sitúan en la mayoría de las personas las áreas relacionadas con el habla como el área de Broca o el de Wernicke, podían hablar. Al parecer el área del habla se cambia de hemisferio, si el hemisferio izquierdo no existe o está dañado, el área del habla se sitúa en el hemisferio derecho.

Los seis pacientes que ahora tienen entre veintitantos y treinta y tantos se presentaron voluntarios para una resonancia magnética funcional, una técnica que permite ver el cerebro en funcionamiento con una buena resolución espacial y temporal en el Centro de Imagen Cerebral del California Institute of Technology (Caltech), en Pasadena. Los resultados se compararon con los de otros seis adultos sanos a los que también se realizaron escáneres y con una base de datos que incluía los resultados de otros 1500 adultos sanos, con una edad media de 22 años.

En el cerebro hay una serie de redes neuronales, de circuitos funcionales que se cree es el sustrato de nuestras emociones, de la cognición, de los comportamientos. Los investigadores se fijaron especialmente en la actividad cerebral en las redes que regulan la visión, el movimiento, las emociones y el pensamiento, los llamados procesos cognitivos. Puesto que las redes neuronales dedicadas a una única función regulatoria se extienden a menudo en ambos hemisferios, el equipo investigador esperaba ver una actividad neural más débil en los pacientes con hemisferectomía, pero no era el caso.

Los investigadores parcelaron el cerebro en 400 zonas, 200 en cada hemisferio y establecieron siete redes funcionales. El mismo esquema de parcelas que se veía en personas sanas se podía distinguir sin problemas en las personas con medio cerebro. La segunda fase fue ver si se volvía a hacer un escáner a la misma persona al cabo de un tiempo y en la misma persona y para  la misma tarea se veía el mismo patrón de actividad, lo que se conoce como fingerprinting, como tomar las huellas dactilares. El resultado de esta segunda parte del estudio es que los patrones de actividad eran consistentes a lo largo del tiempo. Eso fue la base para el estudio final, ver si las redes funcionales de los participantes con medio cerebro eran iguales o diferentes de las de personas sanas.

El grupo de científicos pudo reconocer las mismas redes en los pacientes con hemisferectomía y la principal y sorprendente conclusión fue que las seis personas operadas y los controles mostraban una conexiones potentes y similares entre las regiones las regiones cerebrales que se asignan típicamente a la misma red funcional. Sin embargo, la conectividad entre regiones de varias redes diferentes, eran mucho mayores en todos los participantes a los que se había quitado un hemisferio y entre todas las redes, que en los individuos control. Estos controles eran similares para nivel de inteligencia, edad, preferencia de mano, es decir si eran zurdos o diestros y sexo.

Los médicos ya habían visto que los pacientes con hemisferectomía funcionaban con un nivel excelente pero lo que más ha llamado la atención ha sido el alto grado de compensación que se veía en el estudio de neuroimagen. Estos resultados apoyan la hipótesis de que un sistema compartido de redes funcionales posibilita la cognición y sugiere que las interacciones entre desde diferentes pueden ser un aspecto clave de la reorganización funcional tras una hemisferectomía.

Estos resultados eran inesperados e interesantes porque lesiones mucho menores producidas por un ictus, un accidente, un tumor u otras razones provocan efectos devastadores. Esta gran capacidad de recuperación se basa probablemente en dos aspectos: el cerebro tiene muchos sistemas redundantes y, otra quizá más llamativo, es que tiene una enorme capacidad de adaptación y flexibilidad, lo que se llama plasticidad neuronal. Por tanto sería importante entender cómo el cerebro pone en marcha estos procesos reparadores o compensadores, para poner en marcha estrategias que mejorasen las perspectivas de estos tratamientos.

Sorprende como los teóricos de la neurología y los investigadores del cerebro hablan de los sistemas redundantes del cerebro y su gran capacidad de adaptación y flexibilidad, lo que se llama plasticidad neuronal. Y dicen que sería importante entender cómo el cerebro pone en marcha estos procesos reparadores o compensadores *Pues está claro que un mejor conocimiento facilitaría la terapia y la respuesta es: * y esto como se hace * otro

Cerebro enfermo, antes de la hemisferectomía

Las hemisferectomias de mi maestro el dr Albert Lasierra,

Albert Lasierra, que fue el primer jefe de servicio de neurocirugía del hospital

Virgen del Rocío de Sevilla entre los años 1960 y 1985.

Tenía una amplia formación nacional y extranjera, que lo había hecho, con el Dr. Obrador en Madrid y sobre todo en Holanda, Utresch, con el Dr. Berviest..

Albert era un verdadero maestro y en la actualidad la mitad de los neurocirujanos de España tienen alguna formación dependiente de este maestro. Y lo mismo ocurre en Sudamérica donde Argentinos, Boliviana, Mexicanos, Chilenos y algunos más fueron discípulos de Albert

Era aragonés, Maño y como tal trabajador incansable con una visión del conjunto genial. Y no perdonaba un fallo.

Don Pedro en Sevilla realizo 16 hemisferectomia. De las cuales una fue hecha por mi.

Es un hombre con 45 años que vive con muy buen estado aunque con una hemi parecía de tres sobre 5 todavía con 45 años a continuación describo el caso clínico de este niño.

Yo era médico adjunto en el servicio de Albert estando un día de guardias ingresa, el hijo de un íntimo amigo mío,  que con dos meses de edad se ha caído del cochecito y viene en coma profundo.

La TAC, muestra un impresionante hematoma subdural izquierdo que va de occipital a frontal.

Aunque el caso es desesperado yo no dudo en hacer una hemi craniectmia izda. Y extirpo el hematoma, procurando tocar lo menos posible el cerebro, que esta destrozado.

Nuestro pronóstico es infausto, y dado que su Padre es mi querido amigo, la situación es dramática. El niño va a una unidad de cuidados intensivos, intubado y por supuesto en, coma. Las unidades de cuidados intensivos en este momento ,  eran algo así como * a ver qué pasa *.

En los días sucesivos el niño va mejorando pero desde el primer momento tienen tal cantidad de crisis generalizadas motoras el lado derecho y  una hemiplajia espástica. Su estado general, no se sabe definir pues el niño es una pura crisis…

Se le suministran toda clase de anticomiciales y el cuadro critico no mejora y el deterioro del niño es enorme.

Nos pensamos detenidamente el problema, consultamos a su familia y decidimos hacer una hemisferectomia del hemisferio izdo.

La intrevencion, es laboriosa, pero no mas que cualquier intervención neuroquirurugica.

En el postoperatorio inmediato dejo de tener crisis, y su evoilucion fue buena, con una hemiparesia espástica muy acentuada, que con el tiempo, haido mejorando, y tienen capacidad de moverse con facilidad y un habla disártrica, con un cociente intelectual de 60 %. Lo he seguido durante 40 años y periódicamente me informan de el.

Referencias

 R. Chen, L. G. Cohen and M. Hallett, Nervous system reorganization following injury. Neuroscience. 2002;111(4):761-73. PMID 12031403

Vining EP, Freeman JM, Pillas DJ, Uematsu S, Carson BS, Brandt J, Boatman D, Pulsifer MB, Zuckerberg A. Why would you remove half a brain? The outcome of 58 children after hemispherectomy-the Johns Hopkins experience: 1968 to 1996. Pediatrics. 1997 Aug;100(2 Pt 1):163-71. PMID 9240794

 Pulsifer MB, Brandt J, Salorio CF, Vining EP, Carson BS, Freeman JM. The cognitive outcome of hemispherectomy in 71 children. Epilepsia. 2004 Mar;45(3):243-54. PMID 15009226

Bayard S, Lassonde M. Cognitive, Sensory and Motor Adjustment to Hemispherectomy. In Neuropsychology of Childhood Epilepsy, Jambaqué I. 2001. Albert Lasierra. Hemisferectomia. Sevilla Medica

  HEMISFERECTOMÍA FUNCIONAL – Una técnica revolucionaria 30 diciembre, 2019. Sevilla                  

   Kliemann D, Adolphs R, Tyszka JM, Fischl B, Yeo BTT, Nair R, Dubois J, Paul LK (2019) Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere. Cell Rep 29(8): 2398-2407.

13 enero 2021

EL LOBULO FRONTAL

Filed under: ANATOMIA,General — Enrique Rubio @ 21:48

ANATOMIA Y FISIOLOGIA DEL LOBULO FRONTAL

El lóbulo frontal es uno de los cuatro lóbulos de la corteza cerebral y constituye una región grande que está situada en la parte delantera del cerebro, justo detrás de la frente. Es el responsable de procesos cognitivos complejos, las llamadas funciones ejecutivas.

El lóbulo frontal se relaciona con el control de los impulsos, el juicio, la producción del lenguaje, la memoria funcional (de trabajo, de corto plazo), funciones motoras, comportamiento sexual, socialización y espontaneidad.

Su nombre, lóbulo frontal proviene del latín: lobus frontalis) es un área de la corteza cerebral de los vertebrados. Los lóbulos frontales son los más “modernos” filogenéticamente. Esto quiere decir que solamente los poseen de forma desarrollada los animales más complejos, Como los vertebrados y en especial los homínidos. En el lóbulo frontal se localizan funciones vitales para la supervivencia .

Las funciones del lóbulo frontal son múltiples y van desde lo puramente somático hasta espiritual solapando esta funciones entre sí

 Esta estandarizado en tres áreas funcionales que tienen una representación anatómica. Teniendo en cuenta que el cerebro la relación forma conjunción es más idea de que real, pero que la necesitamos para entendernos.

Área motora o corteza motora: Proyecta el movimiento que tienen que realizar las extremidades y los movimientos faciales..

Área premotora o corteza premotora: Esta área proporciona el mecanismo para ejecutar los movimiento y selecciona  los movimientos que van a ser ejecutados.

Area prefrontal o corteza prefrontal: Es la que controla los procesos cognitivos para que los movimientos, comportamientos y conductas que se vayan a realizar sean los apropiados al momento y lugar concreto.

Las alteraciones cognitivo-conductuales qué se producen por lesiones en esta área, se pueden estandarizar en:

Dificultad o incapacidad para formar estrategias y/o tomar decisiones correctas en la resolución de problemas.

Dificultad para anticipar, planificar, secuenciar y crear expectativas.

Disminución del pensamiento divergente, el cual está relacionado con la creatividad.

Disminución del habla. Pero no de pérdidas en la capacidad de comunicación, sino de aspectos relacionados con disminución del discurso y la espontaneidad oral, no variación en el tono de voz…

Disminución de la espontaneidad conductual general, como por ejemplo alegrarse tras una buena noticia, llorar por una mala…

Disminución de la flexibilidad conductual, lo cual altera la capacidad de buscar alternativas, cambios o estrategias en las situaciones del día a día. Y además genera rigidez mental produciendo perseverancia en pensamientos o ideas.

Dificultad para inhibir estímulos visuales externos, generando distracción y disminuyendo la capacidad de focalizar y controlar la mirada voluntaria.

Perdida de la memoria de trabajo, lo que dificulta mantener información en el tiempo y por lo tanto generar aprendizajes nuevos.

Disminución o pérdida de la conducta social, que es la que controla que tipo de comportamiento se debe realizar en cada contexto, y por lo tanto aparecerán conductas de desinhibición social como verborrea, irritabilidad, impulsividad, agresividad…

Modificación de la conducta sexual. Pueden aparecer conductas de desinhibición sexual o de indiferencia o disminución del interés sexual.

Disminución o pérdida de la capacidad de asociar acontecimientos personales a situaciones vividas.

A nivel cognitivo-conductual el lóbulo frontal esta encargado de controlar la mayoría de las capacidades relacionadas con la personalidad y las conductas de las persona

Relación de los lóbulos frontales, las funciones ejecutivas y las conductas

Los lóbulos prefrontales son el sustrato anatómico para las funciones ejecutivas, que son aquellas que nos permiten dirigir nuestra conducta hacia un fin y comprenden la atención, planificación, secuenciación y reorientación sobre nuestros actos.

Los lóbulos frontales tienen importantes conexiones con el resto del cerebro. Es el del director de orquesta; que dirige la información de todas las demás estructuras y las coordina para actuar sincrónicamente. Decía Goldberg, en El cerebro ejecutivo.

Los lóbulos frontales también están muy implicados en los componentes motivacionales (motivación) y conductuales (conducta) del sujeto;.​ por lo que si se produce un daño en esta estructura puede suceder que el sujeto mantenga una apariencia de normalidad al no existir déficits motrices, de habla, de memoria o incluso de razonamiento; existiendo sin embargo un importante déficit en las capacidades sociales y conductuales.

Este tipo de pacientes pueden ser por un lado apáticos, inhibidos… o por el contrario desinhibidos, impulsivos, poco considerados, socialmente incompetentes, egocéntricos, etcétera. Este tipo de déficits, al no ser tan evidentes como otros fueron los que llevaron durante mucho tiempo a los médicos a considerar a estos lóbulos como las estructuras «silentes»; es decir, sin función aparente. Solo recientemente se ha reconocido la importancia central del lóbulo frontal en nuestra actividad cognitiva.

El caso de Phineas Gage y Egas Moniz se consideran un prototipos de individuos que tras lesionarse ambos lóbulos frontales, cambiaron marcadamente su conducta.………………………………..

El primer caso en el que se describió un cambio de conducta debido a un daño frontal data de 1848, y fue el posteriormente famoso Phineas Gage, descrito por el doctor Harlow. Actualmente está considerado una de los casos clínicos clásicos dentro de la historia de la neurología y la neuropsicología cognitiva.

El reportaje clínico de Boston destaca la sorpresa del cuerpo médico por la supervivencia de Gage, que debería haber muerto instantáneamente; dice: «inmediatamente después del estallido Gage cayó de espaldas»; algo más tarde tuvo «movimientos convulsivos en las extremidades, pudiendo hablar a los pocos minutos»; los obreros (que le tenían mucho afecto) lo llevaron en brazos hasta la ruta, distante una veintena de metros, y lo subieron a una carreta que lo transportó un kilómetro, hasta el hotel de Joseph Adams; Gage estuvo sentado, muy erguido, todo el trayecto y después «se bajó de la carreta por sí mismo, ayudado por algunos de sus hombres».

John Harlow, uno de los médicos del pueblo. Mientras espera, supongo que dice, «pero señor Gage, ¿qué está pasando?» y una hora más tarde de la explosión, llega el doctor Edward Williams, colega más joven de Harlow. Años después describirá la escena como sigue: «Cuando llegué, Gage estaba sentado en una silla, en la galería del hotel de Adams, en Cavendish; me dijo ‘Doctor, aquí hay trabajo para usted’. Había visto la herida antes de bajar del coche, ya que las pulsaciones del cerebro eran patentes, pero sólo pude detallar su aspecto después del examen. La parte superior de la cabeza parecía un embudo invertido; en los bordes de la lesión, había pedazos de hueso; la apertura a través del cráneo e integumentos tenía unos tres centímetros de diámetro, y la herida parecía producida por un objeto en forma de cuña, que hubiera perforado de abajo hacia arriba. Mientras le examinaba la cabeza, Gage contaba a los mirones cómo había sucedido el accidente; se expresaba con tanto juicio que le hice directamente las preguntas del caso, en lugar de plantearlas a los testigos que lo acompañaban. Me relató, como haría muchas veces en años posteriores, algunos detalles del percance. Estoy en condiciones de afirmar que, en ningún momento, entonces o después, advertí en él algún síntoma de irracionalidad, excepto en una ocasión, a dos semanas del accidente, en que insistía en decirme John Kirwin, a pesar de lo cual me contestaba correctamente todas las preguntas». 3

La supervivencia es más increíble todavía si se considera la forma y peso de la barra. Henry Bigelow, profesor de cirugía de Harvard, la describe así: «El fierro que atravesó el cráneo pesa seis kilogramos. Mide un metro con diez centímetros, y tres centímetros de diámetro. El extremo que penetró primero es aguzado, y la punta tiene un largo de veinte centímetros y un diámetro de cinco milímetros, lo que posiblemente salvó la vida del paciente

Todo el episodio es sorprendente: sobrevivir a una explosión como ésa, y poder, a pesar de una enorme herida en el cráneo, hablar, caminar y ser coherente de inmediato, resulta caso increíble. Más asombroso aún es que Gage haya resistido la inevitable infección que se presentó en la herida,. Aunque en esos tiempos no hay antibióticos, el médico, con los productos químicos a su alcance, limpiará vigorosa y regularmente la llaga, y mantendrá al paciente en una posición inclinada para drenarla mejor. Gage tendrá un absceso —que Harlow quitará prestamente con su escalpelo— y fiebre alta, pero su contextura robusta y juvenil superará todos los inconvenientes.

El paciente será dado de alta en menos de dos meses. Sin embargo, ese increíble desenlace pierde relieve si se lo compara con el vuelco extraordinario que se producirá en la personalidad de Gage. Sus sueños, ambiciones, apetencias y desapetencias, están por cambiar. El cuerpo de Gage está vivo y bien, pero un nuevo espíritu lo anima.

Este caso ha sido extensamente investigado por el matrimonio Hanna y António Damásio, De forma que aunque los médicos que lo trataron en vida dieron abundantes anotaciones de su cambio de conducta, no es suficiente para localizar la lesión cerebral ya que al traumatismo que sufrió por la penetración de la de hierro en su cráneo, se siguió unos dias mas tarde de la supuración de la herida y es mas que probable que esta infección dañara además tejidos neurales adyacentes a la lesión y ésta fuera mas extensas que el propio lóbulo frontal. .

Lo más sorprendente de esta desagradable historia es la discrepancia de personalidad de Gage antes y después del accidente. Su normalidad se vio interrumpida por rasgos funestos que no desaparecieron jamás. Había sabido todo lo necesario para optar adecuadamente y ascender en la vida; tenía un marcado sentido de responsabilidad personal y social que se reflejaba en la forma como había logrado avanzar en su carrera profesional; era puntilloso en el trabajo y despertaba admiración en colegas y empleadores. Perfectamente adaptado a la sociedad, al parecer actuaba de manera escrupulosa y ética. Después del accidente se convirtió en un individuo irrespetuoso y amoral, cuyas decisiones no cuidaban sus intereses más elementales; se dio a inventar cuentos que «sólo nacían de su fantasía», según dice Harlow. El futuro no le interesaba y era absolutamente incapaz de preverlo

Si es válido en mi opinión la  leucotomía prefrontal que practicó Almeida Lima en 1935, tras la insistencia de el neurólogo portugués Egas Moniz Y. La leucotomía prefrontal consistía en una ablación de los lóbulos prefrontales del cerebro y su objetivo era tratar trastornos mentales como la depresión. Egas Moniz afirmó tener buenos resultados popularizándose en todo el mundo y recibiendo éste el premio Nobel por ello en 1949. Sin embargo, la realidad era distinta y muchos de sus pacientes tuvieron fuertes cambios de personalidad que les incapacitaron para la vida en sociedad. Pese al atrevimiento de estos autores, es necesario recordar, la ausencia a lo del remedios para tratar a los enfermos psiquiatricos. No siempre la ciencias han sido virtuosas, ni la evolución tampoco lo ha sido, pero es lo que tenemos. Afortunadamente en nuestros días la investigación animal evita estos desastres. Y

Áreas del Lóbulo Frontal

Área precentral

Ubicada en la circunvolución precentral, por delante del Surco Central de Rolando y por detrás del Surco Precentral.

Se divide en:

Región posterior (área motora primaria o área 4 de Brodmann): Su función es llevar a cabo los movimientos individuales de diferentes partes del cuerpo. Recibe aferencias del tálamo, corteza sensitiva, área premotora, cerebelo y ganglios basales ya que esta área constituye la estación final para la conversión del diseño en la ejecución del movimiento.2

Región anterior (área motora secundaria, área premotora, o área 6 de Brodmann y partes de las áreas 8, 44 y 45): Almacena programas de actividad motora reunidos como resultado de la experiencia pasada. Participa en el control de movimientos posturales groseros mediante sus conexiones con los ganglios basales, además recibe aferencias de la corteza sensitiva y tálamo. Es la que programa la actividad del área motora primaria.

esta área no produce perdida permanente del movimiento.3

Campo ocular frontal

Se encarga de los movimientos conjugados de los ojos, sobre todo los del lado opuesto. Controla los movimientos oculares voluntarios y es independiente de estímulos visuales.

Área motora del lenguaje o Área de Broca

Ubicada en la circunvolución frontal inferior, es importante en la formación de palabras, debido a sus conexiones con el área motora primaria. En la mayoría de las personas esta área es dominante en el hemisferio izquierdo, y la ablación del hemisferio no dominante no tiene efectos sobre el lenguaje, mientras que el daño del hemisferio dominante produce pérdida de la capacidad para producir la palabra, es decir una afasia de expresión, conocida como Afasia de Broca.

Corteza prefrontal

Se ubica por delante del área penetrante, región extensa que se conecta con un gran número de vías aferentes y eferentes. Se vincula con la personalidad del individuo y con la regulación de la profundidad de los sentimientos, así como en la determinación de la iniciativa y el juicio del individuo. También interviene en el proceso de atención.

Las lesiones de la corteza prefrontal se pueden presentar como un síndrome apático o pseudodepresivo, que se traduce en una reducción de la espontaneidad motora y verbal, pérdida de iniciativa, actividad motora y mental más lenta, indiferencia afectiva, escasa emotividad y menor interés sexual. (se relaciona con lesión de la región frontomedial).

Mientras otros presentan un síndrome desinhibido o pseudopsicopático, que se caracteriza por dificultad para reducir la velocidad de ciertas conductas, pérdida de autocrítica, conducta social inapropiada, indiferencia por los demás, y desinhibición o promiscuidad sexual (se relaciona con una lesión de la región frontobasal).

La corteza frontopolar es la parte de la corteza cerebral prefrontal, que ha evolucionado más recientemente y está relacionada con la planificación y el control de otras regiones cerebrales. Este corte realizado en la parte frontal del cerebro también revela otros elementos del cráneo, como los ojos, la cavidad nasal, los senos maxilares y la lengua.

Referencias

http://www.sciencedaily.com/releases/2012/07/120725132443.htm

 Snell, Richard S. (5ta edición). Neuroanatomía Clínica..

 https://web.archive.org/web/20071012232050/http://www.oaid.uab.es/nnc/html/entidades/web/03cap/c03_02.html. El


 [ERG1]

TRATAMIENTO QUIRÚRGICO EN EL PARKINSON

Filed under: General — Enrique Rubio @ 15:33


TRATAMIENTO QUIRÚRGICO 1

El tratamiento quirúrgico de la Enfermedad de Parkinson se inició en los años 50 y se abandonó prácticamente con la introducción de la levodopa. Más tarde, en los años 80 se reinició debido a las complicaciones del tratamiento con levodopa a largo plazo. La cirugía de Parkinson se realiza mediante una lesión (talamotomía o palidotomía), o bien con técnicas de estimulación profunda (del tálamo, del subtálamo o del pálido). Actualmente, las más utilizadas son las técnicas de estimulación. No obstante, no todos los pacientes son buenos candidatos a cirugía de Parkinson. El tratamiento quirúrgico está indicado cuando los síntomas motores (temblor, discinesias, alteraciones de la marcha, rigidez, bradicinesia) no pueden ser mejorados suficientemente con el tratamiento farmacológico.

TALAMOTOMÍA:
Es la destrucción quirúrgica de las células de una parte del cerebro llamada Tálamo. Es una lesión irreversible con efectos secundarios permanentes que, en ocasiones, puede tener efectos adversos que alteren otras funciones como la capacidad de hablar o la de moverse. Se realiza únicamente en un lado del cerebro. Entre 1946 y 1967 se realizaron más de 210.000 talamotomías.

PALIDOTOMÍA:
Es la destrucción quirúrgica de células específicas de la parte del cerebro llamada Globo Pálido. Es también, una lesión irreversible utilizada en casos de Enfermedad de Parkinson grave, que no responde al tratamiento farmacológico. En ocasiones, requiere una segunda intervención para conseguir los resultados que persigue. Esta intervención se puede realizar de manera bilateral, es decir, en ambas partes del cerebro.
Entre 1985 y 1995 resurge la cirugía lesional funcional estereotática (palidotomía y talamotomía), aplicada a pacientes con Enfermedad de Parkinson grave.   

ESTIMULACIÓN CEREBRAL (DSB Therapy):
La terapia de estimulación cerebral profunda (DBS Therapy) es un tratamiento quirúrgico que puede reducir algunos de los síntomas asociados a la enfermedad de Parkinson (EP)1. Esta terapia ajustable y, si es necesario, reversible, usa un dispositivo implantado que estimula eléctricamente el cerebro bloqueando las señales que causan los síntomas motores incapacitantes.en el parkinson

¿Cómo funciona?

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para administrar estimulación eléctrica en áreas muy definidas del cerebro.

La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. La estimulación eléctrica puede ajustarse de forma no invasiva para aumentar al máximo los beneficios de la terapia. Como resultado, muchas personas logran tener un mayor control sobre los movimientos de su cuerpo. Un sistema DBS consta de tres componentes implantados:

–       Electrodo: un electrodo se compone de cuatro cables delgados aislados dispuestos en espiral con cuatro polos en la punta del electrodo. El electrodo se implanta en el cerebro.

–       Extensión: una extensión se conecta al electrodo y se conduce bajo la piel desde la cabeza al tórax superior pasando por el cuello.

–       Neuroestimulador: el neuroestimulador se conecta a la extensión. Este pequeño dispositivo estanco, similar a un marcapasos cardíaco, contiene una batería y componentes electrónicos. El neuroestimulador se implanta normalmente bajo la piel en el tórax, debajo de la clavícula (si el paciente lo requiere, el cirujano puede implantar el neuroestimulador en el abdomen). El denominado, a veces, “marcapasos del cerebro” genera los impulsos eléctricos necesarios para la estimulación. Estos impulsos eléctricos se envían a través de la extensión y el electrodo hasta las áreas deseadas del cerebro. Los impulsos se pueden ajustar de forma inalámbrica para comprobar o cambiar los parámetros del neuroestimulador.

Beneficios y riesgos: DBS Therapy

Aunque actualmente no hay ninguna cura para la enfermedad de Parkinson, la terapia de estimulación cerebral profunda (DBS Therapy) de Medtronic para la enfermedad de Parkinson (EP) puede tratar algunos de los síntomas de la enfermedad de Parkinson.1 DBS Therapy no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

Beneficios Se ha demostrado que la DBS reduce algunos de los síntomas asociados a la enfermedad de Parkinson.1 Medtronic DBS Therapy está aprobada actualmente para tratar la enfermedad de Parkinson, el temblor esencial y la distonía.* Desde 1993, más de 60.000 pacientes en todo el mundo se han beneficiado de Medtronic DBS Therapy.2 La terapia de estimulación cerebral profunda es:

– Eficaz: el sistema DBS de Medtronic administra la estimulación en áreas específicas del cerebro. En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.2

– Ajustable: los parámetros de la estimulación los puede establecer su médico para satisfacer sus necesidades específicas.

– Reversible: a diferencia de otros tratamientos quirúrgicos, DBS Therapy no implica la eliminación de ninguna parte del cerebro. El sistema DBS de Medtronic se puede desactivar o extraer.

– Riesgos Los riesgos de DBS Therapy pueden incluir riesgos de la cirugía, efectos secundarios o complicaciones del dispositivo. El implante del sistema de neuroestimulación conlleva los mismos riesgos que van asociados a cualquier otra cirugía cerebral. El médico puede proporcionar más información sobre estos y otros posibles riesgos y efectos secundarios. Muchos efectos secundarios relacionados con la estimulación se pueden solucionar ajustando los valores de estimulación. Puede que sean necesarias varias visitas de seguimiento para encontrar los valores de estimulación óptimos.

Acceder a DBS Therapy Factores que el médico puede valorar: DBS Therapy La terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson no es adecuada para todos los pacientes. Sólo un médico con experiencia en DBS puede determinar si usted cumple los requisitos para la terapia. Generalmente, la terapia no se recomienda para las personas con un diagnóstico reciente de enfermedad de Parkinson ni para aquellos pacientes que responden a la medicación. Puede ser candidato a DBS Therapy si:

– Experimenta períodos molestos en los que no responde al tratamiento (períodos en los que la medicación no ayuda lo suficiente y aparecen los síntomas)

– Experimenta discinesias (movimientos excesivos involuntarios) – No responde a las dosis de fármacos dopaminérgicos en un día típico

Preguntas frecuentes: DBS Therapy ¿Qué es la terapia de estimulación cerebral profunda (DBS Therapy) para la enfermedad de Parkinson? DBS Therapy ofrece un método ajustable y, si es necesario, reversible para el tratamiento de los síntomas de la enfermedad de Parkinson (EP).

¿Cómo funciona la terapia?en el parkinson

DBS Therapy utiliza un dispositivo médico implantado quirúrgicamente, similar a un marcapasos cardíaco, para producir la estimulación eléctrica de las partes del cerebro que controlan el movimiento. La estimulación de estas áreas bloquea las señales que causan los síntomas motores incapacitantes de la enfermedad de Parkinson. Como resultado, algunas personas logran tener un mayor control sobre los movimientos de su cuerpo.

¿Cuáles son los componentes implantados de un sistema DBS?

El sistema DBS consta de tres componentes implantados: – Dos electrodos implantados en el cerebro – Dos extensiones que se conducen bajo la piel desde la cabeza, por el cuello y hasta el tórax superior – Uno o dos neuroestimuladores implantados bajo la piel del pecho debajo de la clavícula y conectados a las extensiones

¿Es posible ajustar la configuración del dispositivo?

Un médico puede ajustar de forma no invasiva la configuración del dispositivo y los niveles de estimulación utilizando un dispositivo de programación.

¿Qué beneficios ofrece DBS Therapy?

Aunque no hay ninguna cura para el enfermedad de Parkinson, DBS puede reducir algunos de los síntomas asociados.1

¿Cuáles son los riesgos potenciales de DBS Therapy?

Los riesgos de DBS Therapy pueden incluir riesgos de cirugía, efectos secundarios o complicaciones del dispositivo. Consulte Beneficios y Riesgos para ver más detalles.

¿Cuál es la historia de DBS Therapy?

Los neurólogos y neurocirujanos utilizan la estimulación eléctrica desde los años sesenta como método de localización y distinción de lugares específicos del cerebro. La tecnología de estimulación cerebral se desarrolló en los años ochenta.

¿Cura DBS Therapy la enfermedad de Parkinson?

No hay ninguna cura para la enfermedad de Parkinson en este momento. DBS Therapy puede reducir algunos de los síntomas de la enfermedad de Parkinson1, pero no cura la afección subyacente. Si se interrumpe la terapia, sus síntomas volverán.

¿Cómo es de eficaz DBS para tratar la enfermedad de Parkinson?

En el estudio clínico de la EP, el 87% de los pacientes mostraron mejores resultados motores en el estado de medicación inactiva al final de la evaluación de 12 meses.

IMPLANTE DE CÉLULAS:
Las técnicas de implante de células productoras de dopamina, como las células de cuerpo carotídeo o las células del mesencéfalo fetal, o de factores de crecimiento neuronal se deben considerar todavía en fase de experimentación. Hospitales públicos donde se aplica Cirugía de Parkinson:

En el servicio de neurocirugía de Sevilla sí acumuló una gran experiencia en las tablas moto mías del VIM, para el tratamiento de los movimientos anormales en la enfermedad de Parkinson sobre todo el temblor .

esta experiencia se vio truncada cuando apareció la levodopa .

la intervención estaba indicada preferentemente en temblor uni o bilateral y el objetivo era exclusivamente hacerlo desaparecer .

Se  utilizaba el sistema Estereotáctico de Lekssel que se colocaba con anestesia local en un enfermo despierto para el seguimientos del temblor.

Una vez colocado el marco del Lekssel, se hacía un trepano de 15 mm de diámetro en la región frontal derecha y se utilizaba una aguja de Dandy para practicar una ventrículografia con contraste y se dibujaban así las comisuras anterior y posterior del tercer  ventrículo.

El “Target” para la lesión, localizaba , en la unión del tercio posterior de la línea intercomisural, con los dos tercios anteriores,para el plano sagital. Y la distancia desde la paret externa  tercer ventrículo era siempre de 14 mm.

La lesión se hacia con el criocoagulador de Cooper y se enfriaba con nitrógeno liquido, de manera progresiva hasta 80* bajo cero , donde se formaba una bola de hielo que destruía este núcleo VIN, y de igual forma cuando se había practicado la lesión se calentaba de forma progresiva, hasta que desaparecía la bola de hielo, y no lesionara el de una manera progresiva cerebral al retirarla.

La sonda se introducia en el cerebro hasta el target de forma lenta, solo cuando quedan 5 mm fuera, se hacia una entrada brusca. Entonces, si se había localizado correctamente el núcleo, el enfermo que estaba con el brazo mantenido en alto, dejaba de temblar inmediatamente,

“Estábamos en el sitio”.

Al mismo tiempo, durante toda la intervención se le hacia  hablar, para ver si estábamos invadiendo la capsula interna.

Después de cinco minutos, si el temblor habia desaparecido, no tenia paresia ni alteración del lenguaje. Se retiraba la sonda lentamente.

Los resultados era magníficos, y el porcentaje de éxito muy elevado y la persistencia de los resultados muy prolongados.

La llegada de la DOPA, disminuyo el numero de intervenciones, que fueron hechas en 103 enfermos.

Pese a lo sencillo de la técnica, manejarla con seguridad, costaba y era yo en el servicio de Neurocirugía, el encargado de hacer esta técnica

Nunca lesionamos el n, Pálido ni el n subtalámico, la ventriculografía no permitía localizar esta ultimo núcleo y el estar muy vascularizado, había dado  varios accidentes hemorrágicos según la literatura.

Referencias

Enrique Rubio Garcia

Talamotomia con frio

12 enero 2021

LA ATENCION Y LOS GANGLIOS BASALES

Filed under: General — Enrique Rubio @ 21:35

LA ATENCION Y  LOS GANGLIOS BASALES

Atención

Es la aplicación voluntaria de la actividad mental o de los sentidos a un determinado estímulo u objeto mental o sensible.

También se  utiliza como acto que muestra que se está atento al bienestar o seguridad de una persona o muestra respeto, cortesía o afecto hacia alguien.

La atención como parte de estar consciente, necesita de una complicada actividad y de una compleja red neuronal, pero dispuesta preferentemente en los Ganglios basales Actualmente se acepta que la atención no es una función unitaria y que puede clasificarse en 2 grandes grupos: atención involuntaria y atención voluntaria. La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

La primera corresponde al estado de alerta que ocurre desde que despertamos en la mañana y nos predispone para recibir los estímulos (Maureira & Flores, 2016); la atención voluntaria se clasifica en diversos tipos: a) atención focal, que ocurre cuando un sujeto presta atención a un solo estímulo, desechando otros (Maureira, 2018). También es llamada concentración (Ardila & Ostrosky, 2012); b) atención selectiva o capa- cidad de buscar un estímulo ignorando los demás; c) atención sostenida, definida como la capacidad de ejecutar una conducta cogni- tiva a lo largo de diversas ventanas tempora- les en contra de la fatiga (Maureira & Flores, 2016); d) atención alternante o capacidad de cambiar el foco atencional de un estímulo a otro rápidamente y; e) atención dividida, que corresponde a la capacidad de focalizar dos o más estímulos al mismo tiempo (Ardila & Ostrosky, 2012). …

Se acepta que la atención no es un proceso único, sino que puede ser caracterizado como diversas funciones:

a) Estado de alerta, que corresponde a la atención involuntaria y sirve para aumentar la disposición para recibir información del entorno;

b) Atención selectiva, que corresponde a un tipo de atención voluntaria y sirve para seleccionar un estímulo específico ignorando los demás;

c) Atención sostenida, otro tipo de atención voluntaria, que corresponde a la capacidad de mantener una misma conducta a través del tiempo y la fatiga;

 d) Atención alternante, un tipo de atención voluntaria, que se manifiesta como la capacidad de cambiar el foco de atención de un objeto a otro;

e) Atención dividida, otro tipo de atención voluntaria, que corresponde a la capacidad de focalizarse en dos o más estímulos al mismo tiempo (Maureira y Flores, 2016). El ejercicio físico puede mejorar los niveles de muchas funciones cognitivas, constituyéndose como una herramienta importante para potenciar la actividad cerebral

  Este articulo muestra preferencia por la intervención de los ganglios basales.

Los ganglios basales son grandes estructuras neuronales subcorticales que forman un circuito de núcleos interconectados entre sí cuya función es la iniciación e integración del movimiento. Reciben información de la corteza cerebral y del tronco del encéfalo, la procesan y proyectan de nuevo a la corteza, al tronco y a la médula espinal para contribuir así a la coordinación del movimiento. Este circuito está compuesto por varias estructuras que se pueden categorizar según su anatomía o su función.

   Anatómicamente los ganglios basales son masas de sustancia gris en el telencéfalo que incluyen:

1) núcleo caudado, 2)

2 ) nucleo lenticular (formado por el  n putamen y el globo pálido externo e interno,

3) y la amígdala.

 Funcionalmente se relacionan a través de múltiples conexiones con núcleos próximos que incluyen al núcleo subtalámico (en el diencéfalo), la sustancia negra pars compacta y reticulata (en el mesencéfalo) y el n pedúnculopontino (en el puente).

El estriado es la estructura funcional «receptora» de aferencias extrínsecas a los ganglios basales, a través de diferentes neurotransmisores, en su mayoría excitatorios. Recibe proyecciones: 1) de la corteza cerebral (glutamatérgicas), 2) del tálamo (glutamatérgicas), y 3) de estructuras del tronco del encéfalo: SNpc (dopaminérgicas), del Núcleo pedúnculo pontino (NPP) del puente (glutamatérgicas y colinérgicas), del n dorsal del rafe (serotoninérgicas) y del locus coeruleus (noradrenérgicas).

   La estructura eferente de los ganglios basales es el globo pálido interno, que envía proyecciones gabaérgicas para comunicarse con la corteza frontal a través los núcleos motores del tálamo (ventral anterior y ventrolateral). Las vías eferentes se dividen clásicamente en dos: la vía directa y la vía indirecta.

   La vía directa se activa mediante los receptores dopaminérgicos tipo 1 (D1). Las neuronas espinosas medianas del estriado, producen una inhibición gabaérgica del GPI y la SNr que a su vez inhibe el tálamo cuya función es excitatoria sobre la corteza frontal. Por tanto, cuando el estriado recibe las proyecciones dopaminérgicas de la SNpc, se activa la vía directa y se activa la corteza motora (ya que se inhibe la proyección inhibitoria del GPI sobre el tálamo). La función de la vía indirecta es la contraria y normalmente está inhibida por las proyecciones dopaminérgicas de la SNpr a través de receptores dopaminérgicos D2. Al encenderse, a través de proyecciones gabaérgicas levanta el freno sobre el NST, cuya función habitual es la activación del GPI, que como se ha mencionado previamente, actúa como inhibidor tálamico y de la corteza.

  En presencia de dopamina, neurotransmisor aferente fundamental de los ganglios basales, se activa la vía directa y por tanto la corteza está activada, mientras que se apaga la vía indirecta, y por tanto la corteza no esta inhibida.

   Los trastornos de los ganglios basales se producen como consecuencia de la neurodegeneración o agresión secundaria de cualquiera de sus estructuras, produciendo un desequilibrio en este complicado circuito y por tanto una alteración de la coordinación motora. Se dividen en patologías hipocinéticas que implican pobreza de movimiento y en patologías hipercinéticas caracterizadas por exceso de movimiento

Los circuitos de formación de memoria se originan a partir de información procesada en áreas de asociación polimodal como la corteza frontal, temporal y parietal, de ahí el circuito lleva la información a la corteza parahipocámpica y corteza perirrinal y de ahí a la corteza entorrinal. Esta se comunica a través de la vía perforante con la circunvolución dentada, esta proyecta sus axones a través de las fibras musgosas a la región CA3 del hipocampo, que a su vez se conecta, con la vía colateral de Schaffer, a la región CA1 del hipocampo. Esta región se une con el subículo, el cual proyecta de vuelta a la corteza entorrinal. De aquí la información viaja hacia la corteza parahipocámpica y entorrinal y de ambas vuelve a las cortezas de asociación polimodal

El  circuito consta de dos sub-circuitos: la vía directa y la vía indirecta. La sustancia negra compactada proyecta axones dopaminérgicos al putamen provocando la activación de este núcleo (cuando estimula los receptores D1), que aumenta su inhibición sobre el globo pálido interno y la sustancia gris reticulada mediante sus axones gabaérgicos. Esto produce una disminución de la actividad inhibitoria sobre el tálamo, el cual aumenta su activación sobre la corteza motora. De esta forma se comienza el movimiento. Este circuito es conocido como la vía directa Por otra parte, la sustancia negra compactada provoca la inhibición del putamen (cuando estimula los receptores D2), que disminuye su inhibición sobre el globo pálido externo, lo cual provoca un aumento de la actividad inhibitoria de este núcleo sobre el subtalámico, pero que al mismo tiempo este es excitado por las vías glutamatérgicas que vienen de la corteza, lo que permite que active al globo pálido externo y sustancia gris reticulada. Al ocurrir esto las vías inhibitorias de estos núcleos afectan al tálamo disminuyendo su activación, por lo cual ya no puede estimular la corteza motora y el movimiento se termina. Este circuito es conocido como la vía

Los procesos de memoria más estudiados son la habituación y la sensibilización. Un estímulo excitatorio que se repite produce una disminución del potencial sináptico de la neurona sensitiva sobre las interneuronas y sobre la neurona motora, lo que provoca que la respuesta disminuya. Esta disminución del potencial sináptico se produce por una disminución en la movilización de las vesículas que contienen el neurotransmisor glutamato, lo que provoca una menor liberación de la sustancia química y por ende disminuye la fuerza de la sinapsis, situación que puede durar varios minutos.

Este mecanismo es el que produce la memoria de corto plazo para la habituación. El sistema molecular de la memoria de corto plazo para la sensibilización es más complejo que el de la habituación.

Un estímulo nocivo aplicado en una vía produce un aumento de intensidad en otra vía a la cual se le aplica un estímulo no nocivo, esto mediante una interneurona facilitadora.

Existen dos vías de activación del botón terminal de la neurona sensitiva mediado por esta interneurona: a) en la primera vía la serotonina (5-HT) activa el receptor de la neurona sensitiva que a su vez activa una proteína G que aumenta la actividad de adenililciclasa que convierte el ATP en AMPciclico, el cual activa la proteincinasa dependiente de AMPc (PKA), esta fosforila los canales de potasio (k + ), esto prolonga el potencial de acción y permite más entrada de calcio (Ca ++ ) al botón terminal, lo que aumenta la liberación de glutamato (Glu) a la hendidura sináptica (Fig. 8.6); b) en la segunda vía la serotonina (5-HT) activa otro receptor de la neurona sensitiva que a su vez activa una proteína G que activa la fosfolipasa C (PLC) que a través del diacilglicerol, activa la proteincinasa C (PKC). Está en conjunto con PKA permiten la apertura de canales de Ca ++ con lo cual aumenta la liberación de Glu (Fig. 8.7). En ambos casos se produce una facilitación presináptica, ya que la interneurona facilitadora ayuda a la liberación del neurotransmisor de la neurona sensitiva

La intervención de la corteza cerebral, en las funciones psíquicas es dominante, no obstante la intervención de las estructuras límbicas tienen al mismo tiempo un papel fundamental

Referencias

 Saltar a:a b c Tortora-Derrickson. Principios de Anatomía y Fisiología. Consultado el 30 de noviembre de 2019

Lesiones talámicas: un desafío semiológico. Revista Uruguaya de Medicina Interna, mayo 2016

 The thalamus of secrets. Neurology Journal. Publicado el 6 de marzo de 2016. Consultado el 1 de diciembre de 2019.

 Manual de neurofisiología. Autor: Daniel P. Cardinali. Consultado el 1 de diciembre de 2019.

 El sistema nervioso central humano. Autores: Nieuwenhuys, Voogd, Van Huijzen. Consultado el 8 de diciembre de 2019

Older Posts »

Powered by WordPress