Martes 19 de octubre de 2021

La enfermedad de Huntington es una enfermedad hereditaria que lesiona células del cerebro. Las personas nacen con el gen defectuoso pero los síntomas no aparecen hasta después de los 30 o 40 años. Los síntomas iniciales de esta enfermedad pueden incluir movimientos descontrolados, torpeza y problemas de equilibrio , corea. Más adelante, puede impedir caminar, hablar y tragar. Algunas personas dejan de reconocer a sus familiares. Otros están conciente de lo que los rodea y pueden expresar sus emociones.

La enfermedad aparece en el 50% de la descendencia y es fácil de detectar tras un análisis de sangre en que se determine el gen de la enfermedad y si la desarrollará.

No existe una cura. Hay medicinas que pueden ayudarlo a controlar algunos síntomas, pero no pueden retrasar ni detener la enfermedad.

Es una enfermedad neurodegenerativa grave, pero relativamente rara, su prevalencia es  de aproximadamente 2,7 personas por cada 100.000 1 . Es una enfermedad hereditaria con síntomas debilitantes, que generalmente se manifiesta en la edad adulta temprana y progresa con la edad. Todas las personas diagnosticadas con la enfermedad de Huntington han heredado al menos una copia del gen de la huntingtina mutante (HTT). La enfermedad afecta negativamente la función motora, psiquiátrica y cognitiva, hasta que el individuo no puede realizar tareas simples 2 .

Hasta la fecha, no existe tratamiento efectivos en de la enfermedad de Huntington

Los tratamientos actuales aprobados por la FDA para la enfermedad de Huntington simplemente actúan para aliviar un aspecto del perfil clínico y, se limitan a un tratamiento sintomático de la enfermedad. Los inhibidores del transporte vesicular de monoaminas (VMAT) , tetrabenazina  y deutetrabenazina, son los ingredientes activos de los tratamientos aprobados por la FDA para el síntoma motor más común, la corea, una forma de discinesia caracterizada por movimientos espasmódicos involuntarios. Los estabilizadores del estado de ánimo, incluidos los antidepresivos, como la fluoxetina,  y los antipsicóticos atípicos, como la risperidona , también se recetan comúnmente a los pacientes con enfermedad de Huntington.

Aunque el gen HTT se expresa de forma ubicua, el perfil clínico de la enfermedad de Huntington refleja la vulnerabilidad selectiva de HTT mutante (mHTT) en una vía cerebral conocida como circuito de los ganglios basales. Una clase de neuronas GABAérgicas estriatales, denominadas neuronas espinosas medianas (MSN), son un componente principal del circuito. Las MSN son una de las primeras células en sucumbir al estrés celular inducido por mHTT y sufrir apoptosis, seguidas de cerca por las neuronas corticales de proyección glutamatérgica 3 . La atrofia estriatal y cortical es una característica importante de la enfermedad de Huntington, junto con el ARN mHTT y los agregados de proteínas, que forman focos de ARN y cuerpos de inclusión, respectivamente, en la célula 2 .

Esta enfermedad hereditaria y genética tiene el  gen mHTT  diferente del alelo sano en que hay una expansión repetida inestable de una secuencia de tres nucleótidos, CAG, dentro del exón 1 de la forma mutante; esta secuencia de nucleótidos se conoce como microsatélite. Si la expansión de la repetición de microsatélites supera el umbral tolerado de 35 repeticiones CAG, el gen ahora codifica una transcripción mutante y la proteína 2 . En la transcripción del gen mHTT, el ARN mensajero (ARNm) y la proteína resultantes pueden formar cada uno una estructura terciaria anormal debido a su tracto poli-CAG y poli-glutamina, respectivamente. El ARNm y la proteína aberrantes de HTT causan estrés celular al desregular la transcripción y la traducción , induciendo deterioro mitocondrial e interrumpiendo el transporte citoplasmático nuclear 4,5,6. Además, la pérdida de la función HTT normal agrava aún más la patología celular, como lo demuestran los individuos homocigotos para el alelo mutante que desarrollan una progresión de la enfermedad más grave 7 . En última instancia, con el tiempo, el estrés celular se vuelve demasiado grande y la célula sufre apoptosis .

El perfil clínico de los pacientes con enfermedad de Huntington es muy variable, incluso entre individuos con el mismo número de repeticiones de CAG. Esta heterogeneidad interindividual, independiente de mHTT, llevó a la búsqueda de genes de riesgo más allá de HTT 8 . A través de grandes estudios de asociación de genoma de cohorte (GWAS), se identificaron polimorfismos de un solo nucleótido (SNP) específicos en los genes de reparación del ADN como influyentes importantes tanto en la edad de inicio como en la gravedad / velocidad de progresión de la enfermedad 8.9 . La solidez de este descubrimiento ha sido respaldada además por la investigación en modelos de roedores y células madre pluripotentes inducidas derivadas de pacientes (iPSC) 10,11,12 .

La inestabilidad somática es un fenómeno en el que la región expandida de las repeticiones CAG en el gen mHTT se expande aún más con el tiempo, como resultado de una reparación defectuosa del ADN. Durante la replicación y la transcripción del ADN, las regiones de secuencias repetitivas de ADN, en este caso repeticiones CAG, pueden plegarse sobre sí mismas para formar estructuras de horquilla / bucle de ADN cortas llamadas «ADN deslizado». Las proteínas de reparación de errores de emparejamiento reconocen la secuencia de ADN deslizada con errores de emparejamiento, pero durante la reacción de reparación, los bucles se incorporan a la secuencia del gen. Cada vez que se produce esta reparación de desajustes erróneos en las células, la región de repetición CAG crece más [ 13] . Como el proceso ocurre en las células somáticas, se acuñó el término inestabilidad somática. La actividad de proteínas reparadoras de ADN específicas.se sabe que influyen en la tasa de inestabilidad somática. Cuanto mayor sea la tasa de inestabilidad somática, más rápida será la progresión de la enfermedad en los sistemas modelo 11 . Además, las tasas de inestabilidad somática dependen del tipo de célula, y las neuronas MSN muestran una de las tasas más altas de inestabilidad somática. Esto explica en parte la vulnerabilidad selectiva de MSN en la enfermedad de Huntington.

Disminuir o detener la inestabilidad somática podría mitigar significativamente la progresión de la enfermedad y proporcionar una terapia modificadora de la enfermedad muy buscada. Por lo tanto, las proteínas de reparación del daño del ADN son de interés como nuevos objetivos farmacológicos en la enfermedad de Huntington 14 . Es de destacar la acción protectora de la nucleasa FAN1 frente a las reparaciones erróneas generadas por el complejo MSH3 / MSH2, MutSβ, reportado recientemente por Goold et al. 11 . Se están realizando investigaciones dentro de la industria farmacéutica para desarrollar moléculas pequeñas para modular estas proteínas reparadoras de desajustes, pero en el momento de redactar este artículo no hay ninguna disponible. Además, histonas desacetilasas(HDAC) se ha informado que reducen la inestabilidad somática en modelos de investigación, con el primer inhibidor de HDAC6 desarrollado en este contexto, CKD 504 de la compañía farmacéutica surcoreana Chong Kun Dang, que alcanzó los ensayos clínicos de fase I en 2018. Además, los informes iniciales de en Los modelos in vitro de la enfermedad de Huntington respaldarían una mayor investigación sobre el uso de inhibidores de la topoisomerasa 1 y de la tirosil-ADN fosfodiesterasa para ralentizar las tasas de expansión de la repetición CAG. Los inhibidores de la topoisomerasa ya han llegado a la clínica en terapias combinadas en oncología, pero su eficacia y tolerancia en la enfermedad de Huntington requieren más investigación 12 .


Las terapias usadas para la enfermedad de Huntington y otros trastornos de repetición de CAG

Figura 1: Esquema que resume la expansión e inestabilidad de la repetición CAG en el gen mHTT y un posible enfoque terapéutico dirigido a la maquinaria de reparación del ADN. Adaptado de Nakamori y Mochizuki (2021) Dirigido a repeticiones expandidas por moléculas pequeñas en trastornos de expansión repetida.  36  298.


Hay alrededor de 50 enfermedades hereditarias conocidas causadas por expansiones de repetición de trinucleótidos y la enfermedad de Huntington es uno de al menos nueve trastornos de repetición CAG 15 . Aunque estas enfermedades van desde las que afectan la integridad muscular (distrofia miotónica), el control motor (esclerosis lateral amiotrófica) y la cognición (síndrome del X frágil), la inestabilidad somática es una característica compartida por todos. Las herramientas de investigación en esta área podrían tener un impacto significativo en el campo y acercarnos a una terapia común de modificación de la enfermedad.

Referencias

Pringsheim y col. (2012). La incidencia y prevalencia de la enfermedad de Huntington: una revisión sistemática y un metanálisis. Mov. Desorden. 27  1083.

Tabrizi y col. (2020). Enfermedad de Huntington: nuevos conocimientos sobre la patogénesis molecular y las oportunidades terapéuticas. Nat. Rev. Neurol. 16  529.

Bergonzoni y col. (2021). Diversidad de neuronas espinosas de tamaño mediano D1R y D2R: información sobre la vulnerabilidad estriatal a la mutación de la enfermedad de Huntington. Parte delantera. Celda. Neurosci. 15 628010

Bañez-Coronel et al. (2015). Traducción de RAN en la enfermedad de Huntington. Neuron  88  667.

Grima y col. (2017). La huntingtina mutante altera el complejo de poros nucleares. Neuron  94  93 e6.

Yin y col. (2016). Las moléculas dirigidas a las mitocondrias MitoQ y SS31 reducen la toxicidad mitocondrial y el daño sináptico inducidos por la huntingtina mutante en la enfermedad de Huntington. Tararear. Mol. Gineta. 25 de  1739. 

Squitieri y col. (2003). La homocigosidad para la mutación CAG en la enfermedad de Huntington se asocia con un curso clínico más grave. Cerebro, 126  946. 

Lee y col.  (2015). Identificación de factores genéticos que modifican el inicio clínico de la enfermedad de Huntington. Cell 162  516. 

Flower y col.  (2019). MSH3 modifica la inestabilidad somática y la gravedad de la enfermedad en la distrofia miotónica y de Huntington tipo 1. Cerebro  142  1876. 

Goold y col. (2019). FAN1 modifica la progresión de la enfermedad de Huntington estabilizando la repetición expandida HTT CAG. Tararear. Mol. Gineta. 28 . 650. 

Goold y col. (2021). FAN1 controla el ensamblaje del complejo de reparación de desajustes mediante la retención de MLH1 para estabilizar la expansión de la repetición CAG en la enfermedad de Huntington. Rep. Celular  36  109649.

Nakatani y col. (2015). La gran expansión de las repeticiones CTG • CAG se ve agravada por MutSβ en las células humanas. Sci. Rep. 5  11020. 

Gomes-Pereira, M. (2004). Pms2 es un potenciador genético del mosaicismo somático de repetición de trinucleótidos CAG-CTG: implicaciones para el mecanismo de expansión de repetición de tripletes. Tararear. Mol. Gineta. 13 1815.

Benn y col.  (2021. Vías de reparación de daños en el ADN por fármacos para enfermedades de expansión de repetición de trinucleótidos.  J. Huntingtons Dis.  10  203. 

Malik y col. (2021). Mecanismos moleculares subyacentes a los trastornos de expansión de repetición de nucleótidos. Nat. Rev. Mol. Cell Biol. 22  589.