DE DÓNDE SURGIÓ LA IDEA DE CRISPR?

istock.com/Panuwach
Los humanos han estado jugando con la genética durante miles de años, incluso cuando no lo sabíamos. Creamos corgis y pomeranios modernos criando parejas de lobos salvajes para la docilidad, seleccionando sin saberlo los genes que controlan el tamaño y el temperamento. Los plátanos se convirtieron en un alimento básico del desayuno ya que continuamente criamos a sus antepasados poco apetitosos para producir fruta con las semillas menos comestibles. Tomó siglos, pero los resultados hablan por sí mismos.
En la actualidad, manipulamos genes individuales en organismos, transformando un proceso que lleva generaciones en algo que lleva una fracción del tiempo. Los científicos podrían criar un ratón negro con un ratón blanco, localizar y eliminar los genes del pelaje blanco en el embrión del ratón, y estar seguros de que el ratón bebé crecería con pelaje negro. Antes del año 2000, los investigadores emplearon muchas tecnologías diferentes para reescribir la genética de organismos como este. Pero eran complejos, caros y específicos de una determinada planta o animal.
¿De dónde surgió la idea de CRISPR?
En la década de 1980, el científico japonés Yoshizumi Ishino y su equipo en la Universidad de Osaka descubrieron grupos de ADN en algunas bacterias que contenían repeticiones extrañas. No se sabía por qué repetían o qué hacían los grupos, si acaso. En 2001, los investigadores Francisco Mojica y Ruud Jansen acuñaron un nombre para estas secciones repetitivas: CRISPR, que significa repeticiones palindrómicas cortas agrupadas regularmente entre espacios. Unos años más tarde, varios grupos independientes de investigadores notaron que estos grupos repetitivos agrupaban el ADN que provenía de virus que habían atacado a la bacteria antes.
Se dieron cuenta de que esta bacteria estaba incorporando segmentos de ADN de los invasores virales en su propio genoma y lo usaba como un sistema de alerta temprana contra los ataques del mismo virus.
Ingrese CRISPR-Cas9. Esta técnica de edición de genes se basa en el mecanismo de defensa natural que se encuentra en algunas bacterias. Utiliza una enzima específica, Cas9, para identificar y eliminar genes predeterminados y secuencias de ADN. Es una forma de manipulación de genes más barata, más efectiva e infinitamente adaptable, y parece funcionar en todos los organismos modelo. Desde su descubrimiento inicial alrededor del cambio de milenio, los científicos no se han dado cuenta del impacto que esta tecnología puede tener en el campo de la genética.
Pero, ¿cómo funciona y qué tipo de tratamientos podemos esperar de CRISPR en el futuro? Le preguntamos a Sean Ryder , profesor de bioquímica y farmacología molecular en la Facultad de Medicina de la Universidad de Massachusetts sobre este revolucionario avance en genética.
Los segmentos CRISPR identifican y señalan el ADN correspondiente en los virus. Pero son enzimas particulares, incluida una llamada Cas9, que sirven como armas contra los invasores. Cas9 lleva consigo una copia de la secuencia CRISPR, buscando ADN coincidente en los virus. Dondequiera que encuentre ese ADN coincidente, Cas9 lo corta y lo rompe. Juntos, forman el sistema CRISPR-Cas9.
CRISPR y Cas9 podrían haber sido un mecanismo de defensa inteligente para las bacterias. Pero en 2012, los investigadores Jennifer Doudna, Emmanuelle Charpentier y un equipo separado dirigido por la bioquímica lituana Virginijus Siksnys descubrieron que Cas9 podría reprogramarse para atacar, destruir o reemplazar secuencias genéticas específicas, y no solo en bacterias y virus. Fue entonces cuando realmente apareció su potencial para editar genes.
¿Cómo funciona la tecnología?
En las bacterias, Cas9 transporta crRNA, la información genética de los virus para identificar dónde realizar sus cortes. Los investigadores descubrieron que podían alimentar la información genética falsa de la enzima, reemplazando los CRISPR naturales con una secuencia de ARN de su elección, y enviando a Cas9 a atacar cualquier gen que quisieran.

istock.com/traffic_analyzer
Si a Cas9 se le asigna una secuencia de ARN específica y se entrega a las células, buscará las secuencias correspondientes en el ADN celular alojado en los núcleos y realizará un corte de doble cadena, cortando la hélice completa en un punto predeterminado. El ADN cortado es una emergencia para la célula, por lo que inmediatamente intentará repararlo. La forma más sencilla de hacerlo es volviendo a colocar los hilos cortados en su lugar y pegándolos. Es eficiente, pero también es propenso a errores. Y si la cadena no se vuelve a unir perfectamente, puede cambiar el marco del código genético, lo que podría eliminar el gen que se ha cortado o inutilizarlo. Cas9 también puede cortar genes completos de manera efectiva mediante el uso de dos guías que cortan en dos lugares, eliminando la secuencia intermedia, y las hebras en cada extremo se unirán sin la secuencia de corte.
Es posible usar una secuencia de ADN diseñada en el laboratorio para reparar un gen que ha sido cortado por Cas9. Esto puede usarse para reparar un gen roto o para modificar su función. Sin embargo, esta tecnología es menos eficiente que simplemente eliminar un gen.
¿Para qué se utiliza CRISPR actualmente?
En el laboratorio, los investigadores usan CRISPR regularmente para alterar genes en plantas, bacterias y modelos animales. Si elimina un gen particular en ratones de laboratorio, puede observar directamente qué rasgos o comportamientos se ven afectados. Así es como se ha realizado mucha investigación genética durante décadas, pero CRISPR hace que estos estudios sean más baratos, más rápidos y más confiables.
También hay ensayos clínicos que utilizan CRISPR para tratar varios tipos de enfermedades y trastornos. Por ejemplo, en la Universidad de Pensilvania, los investigadores están utilizando CRISPR para tratar potencialmente el mieloma múltiple, un cáncer de la sangre y la médula ósea. Han recolectado células de la médula ósea y editado las células T, parte del sistema inmunitario, para atacar con mayor precisión las células cancerosas antes de volver a colocarlas en el cuerpo. La misma técnica se ha utilizado para el sarcoma, un cáncer similar. Todavía no tenemos resultados, pero hay mucho interés en este enfoque.
CRISPR-Cas9 también se está utilizando para desarrollar tratamientos para enfermedades como la anemia falciforme. En la anemia de células falciformes, tener dos copias malas de la beta-globina causa síntomas graves, mientras que tener solo una copia mala produce muchos menos síntomas. Por lo tanto, los investigadores han recolectado células sanguíneas, ejecutan el sistema CRISPR para reparar la copia incorrecta y reintrodujeron las células fijas nuevamente en el torrente sanguíneo. Estas técnicas son inteligentes y podrían tener ramificaciones sorprendentes para los pacientes.
¿Qué enfermedades y trastornos cerebrales podría tratar CRISPR en el futuro?
CRISPR probablemente será más útil para afecciones hereditarias, como la enfermedad de Huntington. En Huntington’s, los genes de uno de los padres siempre causarán problemas porque es un gen dominante y actualmente no hay tratamientos confiables disponibles. Si puede eliminar ese gen dominante, el cuerpo recurrirá al gen recesivo y saludable para obtener instrucciones. En este caso, podemos identificar inmediatamente un problema desde el punto de vista de la concepción e intentar actuar rápidamente para eliminar ese gen dominante.
Las condiciones hereditarias son los objetivos más probables para la terapia génica porque CRISPR, aunque es más eficaz que las tecnologías anteriores, todavía no tiene una tasa de éxito del 100 por ciento. La tecnología siempre es más efectiva in vitro porque cada célula de su cuerpo contiene ADN, y un tratamiento puede requerir la alteración de la gran mayoría de esas cadenas de ADN. Cuantas menos celdas se editen, más probable es que CRISPR pueda eliminarlas de manera efectiva. Si sabemos que es probable que haya un problema genético temprano, es más probable que haya un tratamiento efectivo.
Todavía hay muchas preguntas y obstáculos que deben superarse antes de que podamos editar genomas humanos completos. Por ejemplo, un grupo de científicos chinos utilizó CRISPR para editar los genomas de las gemelas para tener inmunidad contra una determinada cepa del VIH. La edición se realizó durante la ICSI, la inyección intracitoplasmática de espermatozoides y la fertilización in vitro. Una vez que se determinó que los embriones fertilizados en este enfoque fueron modificados, se implantaron en la madre y se llevaron a término. Eso los convirtió en los primeros niños editados genéticamente de la historia. Desafortunadamente, el trabajo se realizó en secreto, con poca supervisión o justificación médica. CRISPR-Cas9 se usó para destruir un gen normal con la esperanza de prevenir la posibilidad de infección por VIH. Si bien no se han publicado datos,
Pero incluso si CRISPR-Cas9 funcionó según lo planeado, simplemente no sabemos las consecuencias involuntarias de alterar este gen en humanos. No sabemos todo sobre el genoma humano. Hay evidencia de que el gen que fue editado para prevenir esta cepa particular del VIH también juega un papel en la inteligencia y la memoria en los animales. Es posible que estas chicas hayan visto alteradas sus habilidades cognitivas de alguna manera. Y hay evidencia de que el gen noqueado ayudó a proteger contra el virus del Nilo Occidental, por lo que es más probable que contraigan esa terrible enfermedad en el futuro. Por último, y quizás lo más inquietante, las modificaciones podrían tener consecuencias no deseadas, ya que un informe reciente ha demostrado que una mutación particular de CCR5 en humanos es perjudicial.
Me resulta extraordinariamente arriesgado y peligroso crear mutaciones en genes que no entendemos completamente, sin conocer las consecuencias completas de cualquier cambio. Y cuando estas niñas crezcan, podrían transmitir sus genes editados. Por lo tanto, no solo afecta al paciente, sino que afecta a su progenie y a su progenie, en toda la línea familiar. Para que me sienta cómodo con este tipo de edición de genes, la tecnología tendrá que ser más precisa, más fácil de aplicar y capaz de editar con precisión los genes, no solo cortarlos o eliminarlos. Y no creo que estemos allí todavía.

Michael W. Richardson
Michael W. Richardson es escritor y editor con sede en Brooklyn, Nueva York, y abarca temas que van desde el cerebro y el comportamiento hasta el medio ambiente.