¿CÓMO FUNCIONA EL SISTEMA DE RECOMPENSA DEL CEREBRO?

Para sobrevivir en los distintos entornos y seguir con su evolución, el ser humano ha desarrollado mecanismos cada vez más efectivos, sofisticados y vinculados a las características cambiantes del medio ambiente. En esa circunstancia, es el cerebro el encargado de desarrollar los mecanismos de supervivencia y adaptación a los mencionados hábitats. Cuenta con un sistema denominado sistema de recompensa, el cual responde a las gratificaciones naturales de supervivencia básica como comida, agua y sexo para mantenerse vivo.
Mecanismos del sistema de recompensa del cerebro
Los sistemas de recompensa son centros en el sistema nervioso central que obedecen a estímulos específicos y naturales. Regulados por neurotransmisores, permiten que el individuo desarrolle conductas aprendidas que responden a hechos placenteros o de desagrado.
Este sistema está compuesto por zonas mesolímbicas y mesocorticales del cerebro. La estimulación excesiva de éste conlleva, en las personas predispuestas, a cambios bioquímicos permanentes que median la reacción adictiva, de modo puede cambiar su funcionamiento y su respuesta a los estímulos ambientales.

El sistema de recompensa es el más importante implicado en el desarrollo de la adicción. Las áreas del cerebro que conforman el sistema de recompensa cerebral son: el Área Ventral Tegmental, el Núcleo Accumbens, la Corteza Prefrontal y el Hipotálamo Lateral.
Estos núcleos cerebrales están interconectados entre sí en un circuito llamado Circuito Reforzador Límbico-Motor que está relacionado con funciones de motivación (el Límbico) y locomotoras (el Motor).

¿Cómo se crea una adicción?
Algunas personas tienden a ser más propensas a las adicciones que otras, como asimismo algunos humanos son más susceptibles al ataque por patógenos que las demás.
Las últimas investigaciones implican a diversos neurotransmisores, así como a vías o sistemas cerebrales, tales como el sistema de recompensa mesolímbico, como factores claves en el desarrollo de la sintomatología adictiva.

Las actividades hedonistas y las sustancias de abuso afectan el cerebro a través del acceso provisto por el sistema de la recompensa, el cual está constituido por neuronas que descargan sustancias químicas, o neurotransmisores, cuando son estimuladas.
Así, las sustancias y actividades de abuso, siempre placenteras, a pesar de ser nocivas para el organismo, logran apoderarse de centros del cerebro, por medio del placer, para asegurar el hábito mantenido de las mismas.

Una rata se agazapa en la jaula del laboratorio. De su cabeza emerge un fino alambre. El animal está unido a una fuente de corriente eléctrica a través de ese cable que envía impulsos a su cerebro. Completamente agotado, ya no come ni bebe; también ha dejado hace tiempo de cuidar de su prole. No es víctima de fuerzas externas malintencionadas: el propio roedor se autoadministra los impulsos eléctricos accionando una pequeña palanca.
James Olds y Peter Milner, de la Universidad McGill en Montreal, observaron durante un experimento que ya forma parte de la historia de la neurociencia. A lo largo de la década de los cincuenta del siglo xx, surgieron las primeras pruebas de que el encéfalo albergaba una especie de centro del placer.

En los ensayos iniciales, los neurobiólogos se centraban en provocar movimientos musculares mediante la estimulación eléctrica del cerebro de modelos animales, pero Olds y Milner pretendían ir más allá: querían conocer si se podía influir en las conductas más complejas mediante los impulsos eléctricos.
En efecto, los roedores aprendieron con rapidez a desarrollar ciertas acciones o a inhibirlas según si experimentaban ese estímulo como una recompensa o, por el contrario, como un castigo. La pareja de investigadores había descubierto un área cerebral cuya estimulación directa mediante electrodos provocaba a las ratas una sensación de bienestar más intensa que la que les ocasionaban los estímulos naturales (comida, agua o contactos sociales). Tras aprender a pulsar «la palanca de la felicidad», los múridos dejaban literalmente de lado todo lo demás y se aplicaban por sí mismos los impulsos eléctricos con una persistencia maníaca.

El área tegmental ventral (VTA) es el principal eslabón del denominado “circuito de recompensa cerebral”. Esta área contiene neuronas que se proyectan hacia numerosas regiones del cerebro, desempeñando un papel fundamental en la motivación, el deseo, el placer y la valoración afectiva.
Las neuronas de la VTA también son la diana de acción de los fármacos antipsicóticos y antiparkinsonianos, al igual que de drogas psicoactivas como la cocaína, el éxtasis y el LSD.
En un trabajo reciente, un equipo de investigadores de la Universidad Autónoma de Madrid (UAM) presentó por primera vez una descripción de la anatomía celular de estas neuronas.
“Contrariamente a lo que esperábamos, encontramos varios tipos de neuronas dopaminérgicas en la VTA, cada uno formando circuitos con distintas regiones cerebrales”, señala Lucía Prensa, del departamento de Anatomía, Histología y Neurociencia de la Facultad de Medicina de la UAM.
Cuerpo de una neurona dopaminérgica de la VTA. (UAM)
En el trabajo, los investigadores emplearon una técnica novedosa de transfección in vivo de neuronas individuales que les permitió visualizar y cuantificar el axón completo de una sola célula, sin importar la extensión y complejidad del mismo.
“Los circuitos del cerebro están formados en gran parte por neuronas cuyo axón se extiende y ramifica sobre distancias enormes, de decenas de centímetros en el caso del cerebro humano. Hasta ahora había sido imposible analizar esos circuitos con resolución celular. Es el sueño de Santiago Ramón y Cajal hecho realidad”, subraya Francisco Clascá, del mismo departamento.
El trabajo, publicado en la revista Frontiers in Neuroanatomy, fue liderado por el laboratorio de los profesores Prensa y Clascá. Este laboratorio está aplicando dicha técnica al estudio de varios sistemas clave del cerebro como parte del proyecto multinacional Human Brain Project-EU Flagship, financiado por la Unión Europea a través del programa ‘Horizonte 2020’.
En el trabajo también participaron Ana Aransay y María García-Amado, doctorandas del programa de Neurociencia de la UAM, y Claudia Rodríguez-López, estudiante de Medicina de la misma universidad.