Enriquerubio.net El blog del Dr. Enrique Rubio

23 enero 2020

LA PROTEÍNA TAU, SE EXPRESA EN LOS GLIOMAS

Filed under: DEGENERATIVAS,TUMORES — Enrique Rubio @ 21:49

LA PROTEÍNA TAU, , TAMBIÉN SE EXPRESA EN LOS GLIOMAS
Proteína Tau

Proteína tau asociada a microtúbulos

La proteína tau, abundante en el sistema nervioso central (SNC) y en el sistema nervioso periférico (SNP), radica a nivel neuronal en los axones. Su función está vinculada a la unión de los microtúbulos que a su vez se asocian a la tubulina para estabilizar el citoesqueleto neuronal.1
Las tau son proteínas microtubulares muy poco frecuentes fuera del sistema nervioso central. Su principal función es la estabilización de los microtúbulos axonales a través de la interacción con la tubulina. Sin embargo, cuando la cinesina se adhiere a las tiras de la proteína tau, el motor tiende a desprenderse completamente del microtúbulo. De esta forma, la proteína tau ayuda a regular el equilibrio del tráfico de células nerviosas, lo que puede explicar que las alteraciones de tau se asocien con las patologías neurodegenerativas.2La modulación diferencial de la motilidad de la dineína y de la cinesina sugieren que las proteínas asociadas al microtúbulo pueden regular espacialmente el equilibrio del transporte axonal dependiente del microtúbulo. Dixit ha indicado que el objetivo de estudio ha sido analizar cómo la proteína tau controla el balance del transporte neuronal. Las tau fueron descubiertas en 1975 en la Universidad de Princeton en el laboratorio de Marc Kirschner.
La tau humana contiene seis isoformas que resultan de un proceso de empalme («splicing») alternativo, esto debido a que se originan diferentes especies de ARNm.3
El gen de la proteína tau se encuentra en el (brazo largo) en la banda q21, su transcrito primario consta de 16 exones y origina diferentes isoformas por procesamiento alternativo. En el SNC existen 6 isoformas de los exones 2,3 y 10.El transcrito primario de tau contiene 16 exones de los 2 son específicos de isoformas de tau en el SNP y los otros generan las seis isoformas humanas en el SNC (los exones 1,4,5,7,9,11,12 y 13 son constitutivos).3
La expresión de las distintas isoformas de tau es característica durante el desarrollo del cerebro. Las isoformas que carecen del exón 10 se encuentran en estadios del desarrollo temprano o en determinados tipos celulares.3
La proteína tau experimenta diferentes modificaciones postraduccionales como: fosforilación, glicosilación, ubicuitinación, oxidación y truncaciones.4
Fosforilación
Tau se ha definido como una fosfoproteína desde 1980, esto debido a estudios en la fosforilación de serina/treonina. Existen 79 sitios de fosforilación en la isoformas más larga de tau, dichos sitios se han dividido en 2 grupos: los que se modifican por cinasas dirigidas por prolina (cinasa glucógeno sintasa 3, GSK3) y los que pueden ser modificados por cinasa no dirigidas por prolina (proteína cinasa A, PKA).4
Glicosilación
Cuando Tau se encuentra hiperfosforilada se presenta una N-Glicosilación, mientras que la O-glicosilación se presenta en una tau no modificada.4
Ubiquitinación
La ubiquitinación de tau ocurre principalmente en los agregados aberrantes como los encontrados en la enfermedad de Parkinson, o los filamentos de pares helicoidales en la Enfermedad de Alzheimer.4
Oxidación
En el exón 10 de tau existe la posibilidad de formar enlaces disulfuro intramoleculares que resultan en la agregados aberrantes, lo cual da lugar a la oxidación de tau.4
Truncación
La truncación en tau, se define como la escisión de la misma, causada por una gran variedad proteasas, entre ellas se pueden mencionar algunas como: capasas, calpaínas, catepsinas. Las truncaciones de tau se han reportado en la enfermedad de alzheimer.5
Referencias[editar]
↑ Micheli, F.; Martín, A.N.; Aconapé, J.J.; Pardal, M.; Biller, J. (2003). Tratado de Neurología Clínica. España: Médica Panamericana.
↑ Sobre su relación con el Alzheimer, véase Meredith Wadman, «Alzheimer’s protein may spread like an infection, human brain scans suggest», sciencemag.org, 5-1-18.
↑ Saltar a:a b c Pérez, S.M.I. (2008). Estudios sobre la fosforilación y agregación de la proteína Tau y su posible relación con la enfermedad de Alzheimer. Madrid: Universidad Autónoma de Madrid.
↑ Saltar a:a b c d e AVILA, J; LUCAS, J.J; PÉREZ, M; HERNÁNDEZ, F. (2004). Role of Tau Protein in Both Physiological and Pathological Conditions 84.
↑ Hanger, D.P.; Wray, S. (2010). Tau cleavage and tau aggregation in neurodegenerative disease 38. doi:10.1042/BST0381016.
La proteína tau, abundante en el sistema nervioso central (SNC) y en el sistema nervioso periférico (SNP), radica a nivel neuronal en los axones. Su función está vinculada a la unión de los microtúbulos que a su vez se asocian a la tubulina para estabilizar el citoesqueleto neuronal.1
Las tau son proteínas microtubulares muy poco frecuentes fuera del sistema nervioso central. Su principal función es la estabilización de los microtúbulos axonales a través de la interacción con la tubulina. Sin embargo, cuando la cinesina se adhiere a las tiras de la proteína tau, el motor tiende a desprenderse completamente del microtúbulo. De esta forma, la proteína tau ayuda a regular el equilibrio del tráfico de células nerviosas, lo que puede explicar que las alteraciones de tau se asocien con las patologías neurodegenerativas.2La modulación diferencial de la motilidad de la dineína y de la cinesina sugieren que las proteínas asociadas al microtúbulo pueden regular espacialmente el equilibrio del transporte axonal dependiente del microtúbulo. Dixit ha indicado que el objetivo de estudio ha sido analizar cómo la proteína tau controla el balance del transporte neuronal. Las tau fueron descubiertas en 1975 en la Universidad de Princeton en el laboratorio de Marc Kirschner.
Isoformas de la proteína tau[editar]
La tau humana contiene seis isoformas que resultan de un proceso de empalme («splicing») alternativo, esto debido a que se originan diferentes especies de ARNm.3
El gen de la proteína tau se encuentra en el (brazo largo) en la banda q21, su transcrito primario consta de 16 exones y origina diferentes isoformas por procesamiento alternativo. En el SNC existen 6 isoformas de los exones 2,3 y 10.El transcrito primario de tau contiene 16 exones de los 2 son específicos de isoformas de tau en el SNP y los otros generan las seis isoformas humanas en el SNC (los exones 1,4,5,7,9,11,12 y 13 son constitutivos).3
La expresión de las distintas isoformas de tau es característica durante el desarrollo del cerebro. Las isoformas que carecen del exón 10 se encuentran en estadios del desarrollo temprano o en determinados tipos celulares.3
Modificaciones postraduccionales[editar]
La proteína tau experimenta diferentes modificaciones postraduccionales como: fosforilación, glicosilación, ubicuitinación, oxidación y truncaciones.4
Fosforilación
Tau se ha definido como una fosfoproteína desde 1980, esto debido a estudios en la fosforilación de serina/treonina. Existen 79 sitios de fosforilación en la isoformas más larga de tau, dichos sitios se han dividido en 2 grupos: los que se modifican por cinasas dirigidas por prolina (cinasa glucógeno sintasa 3, GSK3) y los que pueden ser modificados por cinasa no dirigidas por prolina (proteína cinasa A, PKA).4
Glicosilación
Cuando Tau se encuentra hiperfosforilada se presenta una N-Glicosilación, mientras que la O-glicosilación se presenta en una tau no modificada.4
Ubiquitinación
La ubiquitinación de tau ocurre principalmente en los agregados aberrantes como los encontrados en la enfermedad de Parkinson, o los filamentos de pares helicoidales en la Enfermedad de Alzheimer.4
Oxidación
En el exón 10 de tau existe la posibilidad de formar enlaces disulfuro intramoleculares que resultan en la agregados aberrantes, lo cual da lugar a la oxidación de tau.4
Truncación
La truncación en tau, se define como la escisión de la misma, causada por una gran variedad proteasas, entre ellas se pueden mencionar algunas como: capasas, calpaínas, catepsinas. Las truncaciones de tau se han reportado en la enfermedad de alzheimer.5

Un estudio, publicado en Science Translational Medicine, demuestra que la proteína tau, que tradicionalmente se ha relacionado con diversas patologías degenerativas en el cerebro, está presente en las células de los gliomas. La proteína TAU bloquea la capacidad de las células cancerosas para formar nuevos vasos sanguíneos tumorales y dificultar así su progresión.
Investigadores de la Unidad Funcional de Investigación de Enfermedades Crónicas del Instituto de Salud Carlos III (ISCIII), en colaboración con investigadores de la Asociación Española de Lucha contra el Cáncer (AECC), del CiberNED y del Centro de Biología Molecular del CSIC y con médicos del Hospital 12 de Octubre, integrados en el Instituto de Investigación Sanitaria i+12, han descubierto una conexión entre los gliomas y las enfermedades neurodegenerativas. Entre sus conclusiones, los investigadores destacan que el hallazgo supone un punto de partida muy importante para el diseño de nuevas estrategias terapéuticas en esta patología que, además, es resistente a quimioterapia y radioterapia.
El estudio, publicado en Science Translational Medicine, demuestra que la proteína tau, que tradicionalmente se ha relacionado con diversas patologías degenerativas en el cerebro, está presente en las células de los gliomas. En dichos tumores tau estaría regulando la capacidad que tienen las células tumorales para promover la formación de nuevos vasos sanguíneos, que son fundamentales para el crecimiento de este tipo de cáncer.
La investigación permite conocer mejor los gliomas, que suponen el 2% de los tumores cerebrales primarios y que son los causantes del 7 % de las muertes por cáncer. Estos tumores deben su nombre a su similitud con las células de glía, que están presentes en el sistema nervioso central y que dan soporte a las neuronas. Este tipo de cáncer representa alrededor del 60 % de las neoplasias cerebrales y se clasifican según su grado de malignidad. Los pacientes que son diagnosticados con los gliomas más agresivos tienen un índice de supervivencia muy bajo, de en torno a 15 meses. La investigación abre una nueva vía para la búsqueda de tratamientos que pudieran ser utilizados para controlar esta patología, la más agresiva dentro de los tumores cerebrales.
Marcador de buen pronóstico
La caracterización de muestras tumorales de pacientes con gliomas, así como en el estudio de diversos modelos preclínicos, tanto con cultivo de células tumorales como con modelos animales ha permitido obtener estos resultados en los que se muestra que la proteína tau está presente en los gliomas menos agresivos y que su expresión se pierde a medida que aumenta el grado de malignidad del tumor. Por ello, los datos sugieren que TAU podría servir también como un marcador de buen pronóstico para los pacientes.
TAU también parece regular la capacidad que tienen las células de glioma de promover la formación de nuevos vasos sanguíneos. Estos vasos sanguíneos tumorales son diferentes de los vasos normales en el cerebro y son fundamentales para proveer de nutrientes a las células del glioma, favoreciendo un crecimiento más agresivo de los mismos. De hecho, los resultados demuestran que existe una correlación inversa entre la presencia de TAU en los tumores, y la cantidad de vasos “aberrantes” de los tumores.
Otra conclusión relevante del estudio es que la función de la proteína TAU en los gliomas se puede imitar con compuestos derivados del taxol, que ya se utilizan como agentes antitumorales en otros tumores y que producen un efecto aditivo con la quimioterapia convencional de los gliomas.
Perspectivas de futuro
Este hallazgo podría abrir la puerta a nuevas terapias basadas en el empleo de compuestos que ya estén aprobados para su uso en otros pacientes con cáncer, o incluso en el uso de fármacos que hubieran sido inicialmente diseñados para pacientes con enfermedades neurodegenerativas. En este sentido, el trabajo también podría tener importantes implicaciones para caracterizar nuevas funciones de la proteína TAU en dichas patologías degenerativas, donde ya existen evidencias de la relevancia que podría tener la vasculatura cerebral de los pacientes en la evolución de la enfermedad.

Referencias
↑ Micheli, F.; Martín, A.N
.; Aconapé, J.J.; Pardal, M.; Biller, J. (2003). Tratado de Neurología Clínica. España: Médica Panamericana.
↑ Sobre su relación con el Alzheimer, véase Meredith Wadman, «Alzheimer’s protein may spread like an infection, human brain scans suggest», sciencemag.org, 5-1-18.
Pérez, S.M.I. (2008). Estudios sobre la fosforilación y agregación de la proteína Tau y su posible relación con la enfermedad de Alzheimer. Madrid: Universidad Autónoma de Madrid.
↑ Saltar a:a b c d e AVILA, J; LUCAS, J.J; PÉREZ, M; HERNÁNDEZ, F. (2004). Role of Tau Protein in Both Physiological and Pathological Conditions 84.
↑ Hanger, D.P.; Wray, S. (2010). Tau cleavage and tau aggregation in neurodegenerative disease 38. doi:10.1042/BST0381016.
El proyecto ha contado con financiación del Ministerio de Economía y Competitividad, de la Asociación Española contra el Cáncer y del NIH (National Institutes of Health).

1 comentario »

  1. Importante y reciente ampliación
    del significado
    de esta preocupante proteina Tau

    Comentario por Manuel Cruz — 24 enero 2020 @ 19:43

RSS feed for comments on this post. TrackBack URL

Leave a comment

Powered by WordPress