CÉLULAS GLIALES.

Las células gliales o “glia”, son distintos tipos de células con formas diversas que se encuentran repartidas por nuestro sistema nervioso, nuestro sistema nervioso central (que está formado por el encéfalo y la médula espinal), como nuestro sistema nervioso periférico (formado por neuronas y nervios que se reparten por el resto del cuerpo).

No obstante, a pesar de que las células gliales formen parte de nuestro sistema nervioso, no transmiten impulsos eléctricos como hacen las neuronas.

En su lugar, la función de estas células es actuar como un equipo de soporte de nuestras neuronas: participan en su desarrollo, les proporcionan alimento e incluso les ayudan a recuperarse tras una lesión.

CÉLULAS GLIALES.

Este nombre para empezar ya es un poco insultante: el término “GLIA” vendría de la palabra griega para “GLUE” o “pegamento” en inglés, ya que cuando se descubrieron dos siglos atrás se pensaba que las células gliales actuaban como un mero “pegamento” que unía la masa de neuronas y las mantenía en su sitio, sin más.

Con los años fuimos descubriendo muchas de sus funciones.

Que harian las Neuronas, sin aportes de nutrientes

Pues obviamente poca cosa.

ASTROCITOS.

Astro-citos significa literalmente“ células estrella”, y si observamos la imagen de un astrocito, entenderemos rápidamente por qué. Los astrocitos se encuentran en el sistema nervioso central, concretamente en nuestro cerebro y médula espinal, y una de sus funciones más importantes es la de intervenir en la transmisión del impulso nervioso entre neuronas.

La transmisión del impulso eléctrico del siguiente modo: tenemos el extremo de una neurona, un espacio llamado sinapsis y el extremo de otra neurona.

Y esa señal eléctrica se transmite de una neurona a otra a través de los neurotransmisores.

Un neurotransmisor es una molécula que permite la comunicación entre neuronas, es decir, la transmisión de información de una neurona a otra. Una neurona libera un tipo de neurotransmisor (como por ejemplo serotonina) que viajará por la sinapsis y será captado por los receptores de la siguiente, transmitiéndose así la señal. Pero la cosa es que esto no tiene por qué ser siempre así. Hasta ahora habíamos definido la sinapsis como el extremo de una neurona conectado al extremo de la otra, pero lo cierto es que muchas sinapsis están formadas por un tercer elemento: el extremo de un astrocito conectado a esta sinapsis, ayudando a regular ese impulso nervioso

Pues por ejemplo, los astrocitos participan en un proceso llamado “recaptación de neurotransmisores” .Es decir, cuando un neurotransmisor se ha liberado a la sinapsis y ya ha producido su efecto, es necesario cesar la señal quitándolo de en medio. Para ello, los astrocitos recaptan de nuevo esos neurotransmisores gracias a unas proteínas especializadas para poder reciclarlos en su interior. Ademas los astrocitos son capaces de liberar moléculas que amplifican o disminuyen el impulso nervioso y por tanto la actividad de las neuronas,

Un solo astrocito puede estar conectado a miles de sinapsis entre muchas neuronas distintas .

Los astrocitos hacen muchas más cosas.

La glucosa es la principal fuente de energía del cerebro. Pues los astrocitos son una reserva muy importante de glucosa en el cerebro: esto permite que, cuando las neuronas necesitan energía por ejemplo porque están muy activas, los astrocitos puedan utilizar esa glucosa que contienen en su interior para aportar combustible a las neuronas. Pero evidentemente esta fuente de energía es limitada, al final se trata de una reserva finita de glucosa. Es por eso que el cerebro, al igual que cualquier tejido de nuestro cuerpo, necesita un aporte constante de nutrientes y oxígeno a través de la sangre. Los astrocitos también son capaces de regular el flujo de sangre que llega al cerebro. Porque si hay una zona del cerebro que de repente tiene mucha actividad, los astrocitos pueden aumentar el aporte de sangre de esa zona.

Los astrocitos son como una especie de súper-célula con un poder increíble para influir sobre la actividad de las neuronas, ya sea aportándoles más o menos glucosa, regulando la intensidad del impulso nervioso o controlando la sangre que les llega.

Por mucho nutriente y oxígeno que les llegue a las neuronas, el sistema nervioso tal y como lo conocemos hoy en día no sería posible sin una estructura perfectamente diseñada para transmitir el impulso nervioso a una velocidad increíblemente rápida.

Las neuronas son probablemente de las células más reconocibles que existen ya que tienen una forma muy característica: están formadas por el cuerpo de la neurona, y por las dendritas, que son las prolongaciones a través de las cuales la neurona recibe el impulso nervioso; y el axón, que transmite ese impulso nervioso hacia la siguiente neurona.

Es decir, el impulso nervioso viaja a través de los axones de las neuronas, y no precisamente de forma lenta: se estima que la velocidad a la que se transmite puede alcanzar los 120m/s.

Para hacer que ese impulso nervioso sea lo más rápido posible, y es algo parecido a la estructura que tiene un cable.

Un cable se trata de un filamento de cobre por el que pasa la electricidad, recubierto por una superficie aislante de plástico .

Con las neuronas pasa algo parecido: sus axones vendrían a ser ese cobre por el que se transmite el impulso eléctrico. Solo que en lugar de plástico, nuestros axones están recubiertos por fragmentos de mielina ,una sustancia grasa que actúa como una capa aislante de la electricidad y que permite que el impulso nervioso viaje de manera más rápida y eficiente (tape rewind).

Esta mielina de dónde sale de las CÉLULAS GLIALES, concretamente de dos tipos: en nuestro sistema nervioso central, son los llamados OLIGODENDROCITOS los que forman la mielina; se tratan de células con forma de “bolita” con prolongaciones que envuelven los axones, formando la capa protectora de mielina.

En cambio, en nuestro sistema nervioso periférico, son las llamadas CÉLULAS DE SCHWANN las que realizan esta función.

No obstante, a pesar de que tienen una forma algo más basico que la de los oligodendrocitos, las células de Schwann tienen otras funciones muy interesantes: por ejemplo, cuando se produce un daño en nuestros nervios, estas intervienen en su curación, produciendo sustancias que les ayuden a regenerarse y generando nueva mielina que los recubra y proteja. Y esto es importante, porque sin mielina que aísle nuestros nervios correctamente, nuestro sistema nervioso puede sufrir graves problemas para funcionar. De hecho, esto es algo que ocurre en algunas enfermedades como la esclerosis múltiple, en la que se cree que el sistema inmunológico del propio cuerpo ataca por error a las vainas de mielina, lo que hace que los impulsos eléctricos entre el cerebro y el resto del cuerpo sean más lentos . Esto, por supuesto, conlleva consecuencias como alteraciones de la visión, debilidad de los músculos, problemas con la coordinación y el equilibrio y hasta problemas de memoria y depresión.

Las células gliales que son totalmente indispensables para nuestras neuronas: les aportan nutrientes, regulan sus sinapsis y permiten que el impulso nervioso viaje más rápido. Pero todo esto no sería posible sin otro factor de la ecuación. Nuestro cuerpo está constantemente expuesto a todo tipo de sustancias y microorganismos que lo ponen en peligro. Es por eso que no estaríamos donde estamos si no contásemos con un buen sistema de defensa, listo para contraatacar ante cualquier amenaza que nos aceche en este mundo hostil, más aún si lo que necesitamos es defender algo tan importante como el cerebro.

Nuestro sistema nervioso cuenta con sus propias células de defensa: la llamada microglía .La microglía son células algo más pequeñas que el resto que hemos ido viendo (de ahí que se llamen micro-glia), pero no por ello menos impresionantes.

Las células microgliales se encargan de deambular por el cerebro en busca de posibles daños, lesiones o microorganismos peligrosos .Si la microglia detecta un peligro, esta se activa y desencadena una respuesta de defensa que reclutará más células inmunitarias para intentar destruir a lo que esté causando daño.

Para poder combatir las infecciones, las células microgliales son capaces, por un lado, de “engullir” células muertas, toxinas o patógenos que puedan estar implicados enla lesión; o sea, son como una especie de ASPIRADORA CEREBRAL; pero por otra parte, también son capaces de liberar toda una serie de sustancias que activan la inflamación.

La inflamación es un proceso natural del organismo que favorece la respuesta inmunitaria y por tanto la curación de una lesión. No obstante, una inflamación excesiva y prolongada en el tiempo puede ser perjudicial. Es por eso que la microglía ha recibido bastante atención por parte de la comunidad científica debido a su posible implicación en enfermedades neurodegenerativas tan conocidas como la enfermedad de Alzhéimer. Se sabe que las células de la microglía se activan en muchas enfermedades neurodegenerativas, desencadenando procesos de inflamación que podrían estar implicados en estas enfermedades .

En el cerebro posiblemente no hay unas células mas importante que otras.

Unas son las neuronas, que tienen el poder y el ingenio

Otras la Neuroglia, que mantienen a las demas

Pero es la conjunción de todas, las que mantienen el equilibrio imprescindible para su funcionamiento.

Bibliografia

Optenidas de Internet en su totalidad