El blog del Dr. Enrique Rubio

Categoría: ANATOMIA (Página 20 de 22)

CUERPO Y ALMA. BIOLOGIA Y ESPIRITUALIDAD

CUERPO Y ALMA. BIOLOGIA Y ESPIRITUALIDAD

Santiago Ramón y Cajal a finales del Siglo XIX postulaba que las neuronas son células discretas (no conectadas para formar un tejido), entidades genética y metabólicamente distintas, que tienen cuerpo celular y expansiones (axón y dendritas), y que la transmisión neuronal es siempre hacia la derecha (desde las dendritas al soma, y luego a las arborizaciones del axón).1 La doctrina de la neurona es la idea, fundamental hoy en día, según la cual las neuronas son la formación básica y funcional del sistema nervioso
Antes de que la doctrina de la neurona, se sostenía que el sistema nervioso era una retícula, o un tejido conectado, más que un sistema compuesto por células discretas.2 Esta teoría, la teoría reticular, sostenía que la función del soma de las neuronas era principalmente proporcionar alimento al sistema.3 Incluso después de que la teoría celular viera la luz alrededor de 1830, la mayoría de científicos no creían que fuera posible aplicar dicha teoría al cerebro o los nervios.
La teoría reticular estaba mantenida por la calidad de los microscopios, que no permitían ver separación entre las células del sistema nervioso
Mediante las técnicas de tinción de células de la época, una sección de tejido neuronal se mostraba bajo el microscopio como una red compleja, y la separación entre las células eran indistinguibles. Dado que las neuronas poseen un gran número de protuberancias neurales. La doctrina de la neurona experimentó un fuerte impulso cuando a finales del Siglo XIX Ramón y Cajal aplicó una técnica para visualizar neuronas desarrollada por Camillo Golgi. La técnica La doctrina de la neurona es la idea, fundamental hoy en día, según la cual las neuronas son la formación básica y funcional del sistema nervioso Y consistía en una solución de plata, que sólo teñía una célula de cada cien; mostrando que las células están separadas y no forman una red continua. Y además teñía todas sus protuberancias. Ramón y Cajal modificó la técnica del teñido y la utilizó en cerebros jóvenes, menos mielinizados, pues la técnica no funcionaba en células mielinizadas.1
Por su técnica y el descubrimiento, respectivamente, Golgi y Ramón y Cajal compartieron el Premio Nobel de Fisiología y Medicina de 1906. Golgi no veía claro que las neuronas no estuviesen conectadas, y en su discurso de entrega defendió la teoría reticular. Ramón y Cajal, en su discurso, contradijo el discurso de Golgi y defendió la doctrina de la neurona actualmente en vigor.
Waldeyer, defensor de Ramón y Cajal, resumió la Doctrina de la Neurona en un escrito de 1891, refutando la teoría reticular.
A pesar de que la doctrina de la neurona continúa siendo el principio central de la neurociencia moderna, ciertos estudios recientes aún cuestionan este punto de vista y han sugerido a los científicos la necesidad de ampliar los estrechos límites de esta doctrina. De entre los más serios desafíos a la doctrina de la neurona destaca el hecho de que las sinapsis eléctricas son más comunes en el sistema nervioso central de lo que antes se pensaba. Esto quiere decir que, más que funcionar como unidades individuales, en algunas partes del cerebro podrían estar activos largos conjuntos de neuronas unidas para procesar información neural. Una segunda crítica surge del hecho de que las dendritas, al igual que los axones, poseen canales iónicos con puertas de voltaje y pueden generar potenciales eléctricos que transmiten la información desde y hacia el soma. Esto cuestiona la visión de las dendritas como simples receptores pasivos de información y de los axones como únicos transmisores. También sugiere que la neurona no funciona únicamente como elemento individual, sino que en el interior de una única neurona pueden ser llevados a cabo cómputos complejos. Por último, el papel de la glía en el procesamiento de información neural comienza a ser más relevante. Neuronas y glías representan los dos tipos principales de célula del sistema nervioso central, pero hay muchas más células gliales que neuronas (se ha estimado que la proporción entre células gliales y neuronas es de 50:1). Recientes estudios experimentales sugieren que las células gliales juegan un papel vital en el procesamiento de información interneuronal, lo cual indica que las neuronas podrían no ser las únicas células procesadoras de información del sistema nervioso].
Referencias
Sabbatini R.M.E. April-July 2003. Neurons and Synapses: The History of Its Discovery. Brain & Mind Magazine, 17. Retrieved on March 19, 2007.
Kandel E.R., Schwartz, J.H., Jessell, T.M. 2000. Principles of Neural Science, 4th ed., Page 23. McGraw-Hill, New York.
DeFelipe J. 1998. Cajal. MIT Encyclopedia of the Cognitive Sciences, MIT Press, Cambridge, Mass.
Bullock, T.H., Bennett, M.V.L., Johnston, D., Josephson, R., Marder, E., Fields R.D. 2005. «The Neuron Doctrine, Redux», Science, Volume 310, Issue 5749, Pages 791-793. PMID 16272104.

Sir Charles Scott Sherrington (1857-1952) ocupa un lugar privilegiado en la historia de la neurofisiología. De sus aportaciones es el descubrimiento de la «función integradora del sistema nervioso», en cuyo desarrollo se compendian sus importantes aportaciones al estudio de la diferenciación entre acciones inhibidoras y acciones excitadoras
Sherrington, educado como médico en Londres, Edimburgo y Cambridge, se inclinó por el estudio de la fisiología después de leer las investigaciones de David Ferrier (1843-1928) sobre el córtex cerebral. Sus aficiones filosóficas, añadieron profundidad conceptual al problema mente-cerebro.
Uno de sus profesores en Cambridge, Walter Holbrook Gaskell (1847-1914), le aconsejó que se focalizara primero en el análisis de la médula espinal, a priori más simple y abordable que el examen del córtex cerebral.
René Descartes (1596-1650), en su tratado L’Homme, se había referido a la existencia de acciones reflejas, esto es, de movimientos involuntarios en los que no mediaba un acto consciente. El profesor de Oxford Thomas Willis (1621-1675), autor de la influyente obra Cerebri Anatome cui Accesit Nervorum Descriptio et Usus (1664), en la que sentaba las bases de la neuroanatomía moderna, asumió esta idea cartesiana. La explicó desde la hipótesis de que los espíritus animales (sutiles sustancias de naturaleza material que, tanto para Descartes como para la medicina clásica, recorrerían los nervios para transmitir las órdenes procedentes del cerebro a los órganos periféricos. Sherrington sugirió la existencia de órganos musculares especializados en el procesamiento de acciones reflejas.5 Muchos dudaban de la realidad de estas terminales de un «sexto sentido», pero se había descubierto el sistema propioceptor.
En sus trabajos con monos, Sherrington destinó varios años al examen de los nervios espinales sensoriales y motores, para analizar las distribuciones anatómicas de las raíces espinales.6 En 1895 se trasladó al University College de Liverpool, y durante su período como docente e investigador en esa ciudad inglesa, Sherrington indagó, meticulosamente, en la inervación recíproca (planteada ya por Descartes en su De Homine, y explorada también por autores como Charles Bell –1774-1842–7 y Marshall Hall –1790-1857–8), así como en los mecanismos de coordinación entre los reflejos motores de inhibición y los de excitación. En 1896, tras descerebrar animales anestesiados, Sherrington fue capaz de desconectar el sistema nervioso inferior de los centros de organización cerebrales. Propició un estado de inconsciencia en los especímenes que le permitió estudiar las claves de la inervación recíproca. Comprobó, de esta manera, que al estimular una extremidad se producía coordinación motora, de tal forma que, automáticamente, se generaba movimiento en la extremidad opuesta, sin mediar una acción consciente.9
Los hallazgos de Sherrington sobre las acciones reflejas se condensaron, en gran medida, en su obra The Integrative Action of the Nervous System (1906),10 fruto de las diez conferencias (las «Silliman Lectures») dictadas en 1904 en la Universidad de Yale. Sherrington comprendió que una característica fundamental del sistema nervioso reside en su función integradora (esto es, el propio sistema «integra» la información disponible y la «discrimina» de acuerdo con sus necesidades, para así emitir la respuesta adecuada).11 A juicio de la neurocientífica italiana Rita Levi-Montalcini (1909-…), ganadora del premio Nobel por su descubrimiento (junto con Stanley Cohen) del factor de crecimiento neuronal, la propiedad más importante del sistema nervioso estriba, precisamente, en este papel integrador, discernible ya en los celentéreos (las criaturas más antiguas dotadas de sistema nervioso).12 Sherrington también descubrió que no todas las sinapsis son de naturaleza excitadora, sino que la mayoría exhibe cualidades inhibidoras, de tal manera que una neurona motora puede recibir impulsos excitadores o inhibidores. El adecuado entendimiento de la «inhibición» como proceso activo, y no simplemente como la ausencia de excitación, constituye una de las aportaciones más notables de Sherrington al estudio científico del sistema
El concepto de inhibición no había sido sospechado Cajal, todas sus interpretaciones funcionales sobre la base del flujo continuo de excitación, en que lo importante es ‘la vía de conducción’ . Una actividad que hoy sabemos representa una fracción mucho mayor que la de excitación, especialmente en aquellos centros cerebrales en los que tienen lugar procesos de integración».13 Décadas más tarde, entre los años ’50 y ’60, el neurofisiólogo australiano Sir J. Eccles (1903-1997), alumno de Sherrington, elucidará los mecanismos iónicos mediante los cuales las neuronas motoras generan sus acciones inhibidoras y excitadoras (obtendrá, por ello, el premio Nobel de medicina o fisiología en 1963).14
Sherrington, aseguró que los animales poseedores de un sistema nervioso más desarrollado operan como un todo unificado en virtud de la integración central de la función nerviosa. Por sus contribuciones a la neurofisiología, Sherrington recibió el premio Nobel de medicina o fisiología en 1932, compartido con el también londinense Lord Edgar Adrian.
Sherrington, afirmó que los animales con un sistema nervioso más desarrollado, integran toda la información y sus respuesta como un todo unificado en virtud de la integración central de la función nerviosa. Por sus contribuciones a la neurofisiología, Sherrington recibió el premio Nobel de medicina o fisiología en 1932, compartido con el también londinense Lord Edgar Adrian.
. En palabras suyas, «las señales que entran en el cerebro no son mentales, como tampoco lo son las señales ejecutoras que generan. Pero la señalización que viaja a través de ciertas vías cerebrales […] parece, por así decirlo, obtener energía mental, si bien la pierde de nuevo incluso antes de la penúltima vía de salida».17
En su exposición, Sherrington reconoce que sus frecuentes alusiones a nociones como «energía mental», «experiencia mental» y subyacentes. La dificultad más acuciante estribaría, por tanto, en la «inconmensurabilidad» entre lo físico y lo mental. La negativa de Sherrington a desechar lo mental como un proceso físico de elevada complejidad le lleva al fisicalismo.
Sherrington piensa que esclarecer la relación entre la actividad mental y la nerviosa quizás desborde los límites de la ciencia. A juicio de Pavlov, este comentario abre la puerta, peligrosamente, a una actitud dualista: «¿Cómo puede ser que a día de hoy un fisiólogo dude de la relación entre la actividad nerviosa y la mente?», se interroga, retóricamente, Pavlov.19 Para él, esta posición es subsidiaria de «un concepto puramente dualista», que concibe el cerebro como un instrumento pasivo y el alma como el «agente» que pilota el cuerpo. Es preciso advertir, sin embargo, que de las palabras de Sherrington no se colige necesariamente una óptica dualista de esta clase. El dualismo de Sherrington posee, como veremos a continuación, un mayor refinamiento teórico. Se asemeja más a un interaccionismo (como el que exhibirán, décadas más tarde, Sir John Eccles y Sir Karl Popper20). No conjetura la existencia
Para Sherrington, la mente no es susceptible de reducción a ninguna forma de energía (en la acepción «física» que subyace al concepto de «energía»; por tanto, toda apelación a una «energía mental» resultaría improcedente, si la noción de «energía» aquí empleada traspusiera la barajada por las ciencias naturales). La razón reside en la ausencia de espacio-temporalidad en los eventos mentales. La ciencia no logra comprender lo mental desde los parámetros fijados por la noción de energía. Según Sherrington, en la cosmovisión científica, la mente parece proceder de la nada y retornar a la nada,27 en el sentido de que se antoja inasequible para una explicación puramente energética y evolucionista. Emerge misteriosamente desde lo no-mental, y cuando fallecen los individuos provistos de capacidades mentales, se sumerge en un enigmático y oscuro océano de nihilidad.
Platon concibe la mente como una entidad infinita aprisionada en un cuerpo finito, encerrada en una estructura como la del cerebro. Sherrington, cree que la mente no pudo irrumpir de novo en la dinámica evolutiva de la vida: «la mente humana constituye un producto reciente por parte de nuestro planeta, generado por una mente que se encontraba allí desde mucho antes, y que suscitó la mente humana a través de transformaciones graduales de la mente previa».
Los patrones de energía acaecen en el espacio y en el tiempo. Son dimensionales; por tanto, se «localizan» en un punto y en un instante. La mente no exhibe esta naturaleza dimensional. No se «encuentra» en ubicación alguna ni se palpa en un momento concreto. Los acontecimientos físicos y los eventos mentales no son, por tanto, reductibles los unos a los otros, porque el «yo» jamás se aprehende en una localización espacio-temporal específica. Este hecho, que a no pocos autores induciría a desdeñar la existencia de algo. La mente no puede proceder de la vasta evolución de la materia. No puede brotar de la no-mente.
Los observadores críticos creen que Sherrington llega a estas conclusiones como consecuencia de haber adoptado una distinción demasiado rígida entre lo mental y lo no-mental. Lo mental bien pudiera provenir de la paulatina evolución de la materia hacia manifestaciones más complejas.
El dualismo de Sherrington establece una profunda fisura en el seno de la realidad. Su fragmentación irreconciliable entre la materia y la mente dificulta en extremo (o más bien imposibilita) vislumbrar una explicación científica de la conciencia. Lo cierto es que el hecho de que un científico de la talla de Sherrington, una de las cimas de la fisiología del siglo XX, se haya adherido a un planteamiento dualista muestra, de manera suficientemente expresiva, la gravedad del problema que afronta la ciencia a la hora de elucidar la naturaleza de lo mental. Aunque el argumento de autoridad quizás sea el menos autoritativo de los argumentos, resulta innegable que, cuando neurocientíficos de la altura de Sherrington, Penfield y Eccles adoptan un posicionamiento dualista, su actitud se debe a la persistencia de un misterio hondo y aparentemente inabordable: cómo puedo yo «percatarme de mí mismo», es decir, poseer conciencia. Los trabajos realizados en las últimas décadas han desvelado, gracias a avances técnicos como, por ejemplo, la neuroimagen, la funcionalidad de las distintas áreas cerebrales. El estudio de la relación entre conciencia y lenguaje ha puesto de relieve la estrecha conexión que existe entre ambos. La fisiología, por su parte, ha avanzado considerablemente en el estudio de distintos sistemas sensoriales (aunque subsista el denominado «binding problem»). Sin embargo, descifrar las claves de la conciencia constituye, aún hoy, el mayor desafío para la
Referencias
Sir Charles Sherrington and the nature of mind
CARLOS BLANCO Universidad de Navarra:: 15/05/2013

ECCLES, J.C. The Neurophysiological Basis of Mind. The Principles of Neurophysiology, Clarendon Press, Oxford 1953.
LEVI-MONTALCINI, R. La Galaxia Mente, Crítica, Barcelona 2000.
LEVINE, D.N. «Sherrington’s The Integrative Action of the Nervous System: A centennial appraisal», Journal of the Neurological Sciences 253 (2007), 1-6.
PENFIELD, W. The Mystery of the Mind: A Critical Study of Consciousness and the Human Brain, Princeton University Press, Princeton NJ 1975.
POPPER, K.R. Objective Knowledge, Clarendon Press, Oxford 1972.
SHERRINGTON, Ch. S. «Note on the knee-jerk», St. Thomas’ Hospital Reports 21 (1891), 145-147.
Fernel, Cambridge University Press, Cambridge 1946.
SWAZEY, J.P. «Sherrington’s concept of integrative action», Journal of the History of Biology 1 (1968), 57-89.
TEILHARD DE CHARDIN, P. El Fenómeno Humano, Taurus, Madrid 1967.
VOLICER, L. «Relationship between physiological research and philosophy in the work of Pavlov and Sherrington», Perspectives in Biology and Medicine 16/3 (1973), 381-392.
WALLACE, A.R. Natural Selection and Tropical Nature, Macmillan, Londres 1870.

REDUCCIONISMO

REDUCCIONISMO
Das lernen verwandelt uns… (El aprender nos transforma…) Friedrich Nietzsche

El reduccionismo es el enfoque filosófico según el cual la reducción es necesaria y suficiente para resolver diversos problemas del conocimiento.1
Un conjunto de tesis ontológicas, gnoseológicas y metodológicas acerca de la relación entre diferentes ideas o campos científicos.
El problema del reduccionismo o, mejor dicho, el problema de la reducción, es pertinente respecto de otros problemas básicos de la filosofía y, en particular, de la filosofía de la ciencia, entre ellos los de la estructura de las teorías científicas, las relaciones interdisciplinarias, la naturaleza de la explicación, la unidad del método científico y de la ciencia en general, así como con respecto a problemas metafísicos tales como el de la emergencia.23
Se puede sostener que los procesos mentales son reducibles a procesos cerebrales (hipótesis de la identidad mente-cerebro), lo que constituye una reducción ontológica, y a la vez rechazar la reducción (total) de la psicología a la neurofisiología. Aun en sus casos más exitosos, lo más habitual es que las reducciones solo sean parciales, no totales.2
Desde Aristoteles sabemos que lo reduccionista seria un carácter fundado solo en el raciocinio , Y que un carácter virtuoso se acompaña de emociones
Pretendo en este artículo, revisasr y tratar de entender, sí puede separarse el cerebro de la mente
Empezaré por estudiar la anatomía del sistema nervioso que hace Cajal, que compuso la teoría de la neurona, y el pilar de la estructura del sistema nervioso. Pero llamaba la atención lo poco interesado que estuvo Cajal de relacionar lo biológico con lo espiritual y como nunca se acercó a la funcionalidad del sistema nervioso. Golgi no veía claro que las neuronas no estuviesen conectadas, y en su discurso de entrega defendió la teoría reticular. Ramón y Cajal, en su discurso, contradijo el discurso de Golgi y defendió la doctrina de la neurona actualmente en vigor.
Sir Charles Scott Sherrington (1857-1952) ocupa un lugar privilegiado en la historia de la neurofisiología. De sus aportaciones es el descubrimiento de la «función integradora del sistema nervioso», en cuyo desarrollo se compendian sus importantes aportaciones al estudio de la diferenciación entre acciones inhibidoras y acciones excitadoras. Sherrinthon , coqueteo con lo físico y lo psíquico, pero con claro descubrimiento de las funciones de inhibición del sistema nervioso. En algún momento de estos estudios este lector se debate entre lo biológico y espiritual, y el reduccionismo. Y gana la teoría de cuerpo y mente phn,
No es hasta recientemente, cuando se descubre, que determinadas lesiones cerebrales, cursan con deterioro de lo físico y de lo psíquico. El neurólogo Antonio Damasio en colaboración con su esposa Hanna también neurologa, en el cráneo de Pineas Gage, atravesado por una barra de hierro durante la construcción del ferrocarril. Encontraron en el registro del Medico quer atendio a Pineas gage y que lo siguió durante años, que este señor, pasó de ser ordenado , muy capacitado, elegante y buen ejecutor, pasa a ser mentiroso, bebedor, inestable y en general emocionalmente destruido y fue un inadaptado durante el resto de su vida. Las lesiones bifrontales medio-basales, son responsables de la alteración de la conducta y de las emociones, sin afectar a funciones motoras ni sensitivas.
Se terminaba asi el problema de cuerpo y alma, el reduccionismo está establecido.
El estudio de otros enfermos con lesiones bifrontales, nos han aportado, alteraciones de las emociones sin que se afecte el resto, y llama la atención PcpvEl profundamente que algunos de estois enfermos tenia “el síndrome de Diosgenes” que detallare, cuando hable de Antonio Damasio.
Por lo pronto escribiré, sobre las aportaciones de Cajal como histologo y Sherrinton descubridor de la inhibición como fundamental en el funcionamientro del sistema nervioso y terminaré intentando solucionar el problema de biología y espiritualidad.
Bunge, M. (2001) Diccionario de filosofía. México, Siglo XXI.
Bunge, M. 2003 Emergencia y convergencia. Novedad cualitativa y unidad del conocimiento. Barcelona, Gedisa.
Brigandt, I. y A. Love (2008) Reductionism in Biology, The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.)
Damasio. El error de descartes. La razón de las emociones.

EL CEREBRO TRIUNO DE MACLEAN

EL CEREBRO TRIUNO DE MACLEAN
Paul D. MacLean (1 de mayo de 1913 – 26 de diciembre de 2007) fue un médico norteamericano y neurocientífico que hizo importantes avances en en los campos de la psicología y la psiquiatría : Su teoría evolutiva del cerebro triúnico propone que el cerebro humano es en realidad tres cerebros en uno: el reptiliano, el sistema límbico y la neocorteza. Amplió la teoría de James Papez que habría desaparecido y hubiera pasado a la historia si no hubiera constituido la principal fuente de inspiración en la teoría de MacLean

El Neurólogo Paul MacLean fue el primero en proponer que el cerebro humano tiene tres porciones que son la suma de los cerebros que han pertenecido a otros animales en la evolución y cada una de ella creció encima de la otra. A lo largo de su evolución, el cerebro humano adquirió tres componentes que fueron surgiendo y superponiéndose.
1. Cerebro primitivo (arquipálio), constituido por la estructuras del tronco cerebral: Bulbo, cerebelo, puente y mesencéfalo, con el más antiguo núcleo en la base, el globo pálido y bulbos olfatorios. Se dice que corresponde al cerebro reptiliano, también llamado complejo-R por el neurofisiologo Paul MacLean.
2. Cerebro intermedio (paleopálio), formado por las estructuras del sistema límbico. Y se corresponde al cerebro de los mamíferos inferiores.
3. Cerebro superior o racional (neopálio situado en la capa superior), que comprende la mayor parte de los dos hemisferios cerebrales (formado por el neocórtex) y algunos grupos neuronales subcorticales. Este último solo es compartido por los mamíferos superiores, incluyendo a los primates y el hombre.

Los tres cerebros están interconectados como computadoras biológicas y cada uno tiene su propia inteligencia especial, su propia subjetividad, su propio sentido del tiempo y del espacio y su propia memoria
Esta hipótesis se convirtió en paradigma e interpretó primero que el neocortex dominaba los otros niveles mas bajos. MacLean cree que esto no es asi y que el cerebro o lóbulo limbico de situación inferior y que controla las emociones, puede controlar las funciones del neocortex cuando lo necesita
El Complejo Reptiliano
El Complejo-R se compone del tronco cerebral y del cerebellum. Su objetivo está estrechamente relacionado con la supervivencia física real y el mantenimiento del cuerpo.
Los tres cerebros se desarrollan superponiéndose durante la evolución embrionaria del feto. Y también cronológicamente en la evolución de las especies (filogenia), desde el lagarto hasta el homo sapiens. En palabras de MacLean, son como tres computadoras biológicas que, aunque íntimamente interconectadas, conservan cada una sus propias formas peculiares de inteligencia, subjetividad, sentido del tiempo y del espacio, memoria, motricidad y otras funciones menos específicas.
La parte más primitiva del cerebro básico, es el cerebro instintivo y reptiliano. Esta parte del cerebro está formada por los ganglios basales, el tallo cerebral y el sistema reticular. Es esa parte la que se ocupa de las actividades intuitivas. Alojado en el tronco cerebral, es la parte más antigua del cerebro y se calcula que se desarrolló hace unos 500 millones de años. Se encuentra presente primordialmente en los reptiles.

Los reptiles son las especies animales con un menor desarrollo cerebral. El suyo, está diseñado para manejar la supervivencia desde un sistema binario: huir o pelear, con muy poco o ningún proceso sentimental. Tiene un papel muy importante en el control de la vida instintiva y se encarga de autorregular el organismo. Por lo tanto este cerebro no está capacitado para pensar, ni sentir. Su función es la de actuar, cuando el estado del organismo así lo demanda. El complejo reptiliano, en los seres humanos, incluye conductas que se asemejan a los rituales animales como el de aparearse. La conducta animal e instintiva está en gran medida controlada por esta área del cerebro.
Se trata de un tipo de conducta instintiva programada y poderosa y, por lo tanto, es muy resistente al cambio. Es el impulso por la supervivencia: comer, beber, mantener la temperatura corporal, sexo, territorialidad, necesidad de cobijo y de protección. Es un cerebro funcional, territorial, responsable de conservar la vida y el responsable de las mayores atrocidades. Nos sitúa en el presente, sin pasado ni futuro y por tanto es incapaz de aprender o preveer. No piensa ni siente emociones y es pura impulsividad. En el cerebro reptiliano se procesan las experiencias primarias, no verbales, de aceptación o rechazo.

Aquí se organizan y procesan las funciones que tienen que ver con el hacer y el actuar, lo cual incluye: las rutinas, los hábitos, la territorialidad, el espacio vital, las adicciones, los rituales, los ritmos, las imitaciones, las inhibiciones y la seguridad. Es el responsable de las conductas automáticas, tales como las que se refieren a la preservación de la especie y a los cambios fisiológicos necesarios para la sobrevivencia.

En síntesis: este cerebro se caracteriza por la acción: El sistema básico o reptiliano controla la respiración, el ritmo cardíaco, la presión sanguínea e incluso colabora en la continua expansión-contracción de nuestros músculos. Este primer cerebro es sobre todo como un guardián de la vida, pues en él están los mayores sentidos de supervivencia y lucha. Y además, mantiene la interrelación con los poros de la piel, los cuales son como una especie de interfase que poseemos con el mundo externo. Este primer cerebro es nuestro agente avisador de peligros para todo el cuerpo. Permite la adaptación con rapidez por medio de respuestas elementales poco complicadas emocional o intelectualmente. Esta conducta no está basada en consideraciones basadas en las experiencias previas ni en los efectos a medio o largo plazo.
Las conductas de las personas calificadas como de psicópatas (las que carecen de sentimientos de culpa) y de paranoicos se ajustan a este patrón de conducta. En la psicopatía se juega el papel de depredador y en la paranoia el de presa. Es en este primer cerebro donde las adicciones son muy poderosas, tanto a algo como a alguien o a una forma de actuar. Por decirlo de alguna forma rápida, este primer cerebro es una herencia de los períodos cavernarios, donde la supervivencia era lo esencial.
El Complejo-R está formado por el tronco cerebral y el cerebelo. Su objetivo está estrechamente relacionado con la supervivencia física real y el mantenimiento del cuerpo. El cerebelo dirige el movimiento. La digestión, reproducción, circulación, respiración, y la ejecución de la respuesta «lucha o huida» al estrés se alojan en el tronco encefálico. Dado que el cerebro reptiliano se refiere principalmente a la supervivencia física, las conductas que regula tienen mucho en común con los comportamientos de supervivencia de los animales.Desempeña un papel crucial en el establecimiento de territorio, la reproducción y la dominación social. Las características primordiales de los comportamientos del Complejo-R es que son automáticos, tienen una cualidad ritual, y son muy resistentes al cambio.
SISTEMA LÍMBICO
La parte media del cerebro es llamada “sistema limbico ” Puede también ser llamado el paleopallium o el cerebro intermedio o cerebro de los viejos mamífero. Aquí se asientan las emociones y los instintos, alimentación, lucha y huida, y comportamiento sexual. . En este sistema se acumula lo agradable o desagradable y la supervivencia depende de evitar el dolor y obtener el placer.
Cuando se estimula este cerebro con descargas eléctricas suaves se obtienen respuestas emocionales: miedo, alegría, rabia, placer y dolor etc. Estas emociones no son perdurables es decir no residen mucho tiempo en el mismo lugar. En general el sistema Limbico en su totalidad parece ser el asiento primario de la emoción, de la atención, y de las memorias afectivas. Anatómicamente incluye el hipotálamo, el hipocampo, la amigdala., Según los Budistas aquí se alojan la determinación de la valencia positiva o negativa hacia algo y el comportamiento creativo. Las conexiones de este cerebro con el neocórtex son amplias en ambos sentidos de forma que las reacciones son una mezcla en sus respuestas de lóbulo limbico y telencefalo
Según MacLean el sistema de Limbico tienen una tendencia dogmática y paranoica y la base biológica para la tendencia del pensamiento como sensación subordinada a racionalizar deseos. En opinión de McClean este cerebro intermedio aloja juicios de valor en vez de alojarse en el neocortex, motivando o produciendo con frecuencia confusiones .
EL NEOCORTEX

Neocortex es la corteza del cerebro tambien conocido como el cerebro neo mamimero (neo mamalian) y aloja lo racional y superior y se extiende a practicamente los hemisferilos cerebrales y algunos grupos neuronales subcorticales. Es la ultima adquisición de los homínidos y ocupa dos tercios de la masa total del cerebro. Todos los animales también tienen un neocortex, es relativamente pequeño, con escasos pliegues y menor complejidad y desarrollo, de forma que anatómicamente los tres modelos no estan perfilados de forma que a nivel de anécdota, se puede explicar como los mamíferos pueden aprender aunque con dificultad.
El cerebro de los primates y, por lo tanto, de la especie humana, aloja las funciones cognoscitivas más altas que distinguen a hombre de los animales. MacLean llama a la corteza del cerebro “la madre de la invención y el padre del pensamiento abstracto «. La corteza se divide en los hemisferios izquierdos y derechos. La mitad izquierda de la corteza controla la parte derecha del cuerpo y el cerebro derecho, el lado izquierdo del cuerpo. También, el cerebro derecho es más espacial, abstracto, musical y artístico, mientras que el cerebro izquierdo más linear, racional, y verbal.

Para MacLean, el neocórtex era el hito evolutivo más reciente del desarrollo de nuestro cerebro. En esta estructura tan compleja reside la capacidad de aprender, razonar y tomar decisiones, asi como las estrategias más complicadas y originales.
Para este neurocientífico, la neocorteza podía considerarse la sede de la racionalidad en nuestro sistema nervioso, ya que nos permite la aparición del pensamiento sistemático y lógico, que existe independientemente de las emociones y de las conductas programadas por nuestra genética.
Hoy en día se cree: que en el funcionamiento del cerebro no importa tanto la función que realizan las partes del cerebro por sí solas como el modo en el que se conectan entre sí para trabajar en conjunto y en tiempo real.
Además, por lo que se sabe la evolución no va haciendo que componentes nuevos vayan integrándose sobre los antiguos, tal cual, sin alterarlos. Cada vez que una mutación hace que un rasgo se generalice, altera el funcionamiento del organismo en su totalidad y el modo en el que funcionan las partes que habían evolucionado antes, no se limita a «expandir» capacidades. Es por eso que la idea de que órganos cerebrales «encargados de lo racional» se acoplan sobre los anteriores no ha sido bien aceptada.
Las funciones que supuestamente realizaban cada uno de los tres cerebros definen bien el comportamiento característico de los grupos de animales que, según él, representan el momento de la evolución en el que aparecieron estas estructuras.
Posiblemente, cada uno de estos cerebros tiene funciones del cerebro anterior y del posterior en forma de excitación o inhibición de los cerebro que están encima o bajo el.-anterior y la alteración de cada uno libera al inferior como estableció e Sherrington. La visión actual de los ganglios basales (que formarían parte del cerebro reptiliano) es que no se activan por acciones programadas genéticamente, sino que están asociados a la realización reiterada de movimientos voluntarios que después de haber sido muy practicados, se han vuelto automáticos, como el tan cacareado ejemplo de ir en bicicleta.
Para Paul MacLean, el concepto de complejo reptiliano servía para definir la zona más baja del prosencéfalo, donde están los llamados ganglios basales, y también zonas del tronco del encéfalo y el cerebelo responsables del mantenimiento de las funciones necesarias para la supervivencia inmediata. Según MacLean, estas zonas estaban relacionadas con los comportamientos estereotipados y predecibles que según él definen a los animales vertebrados poco evolucionados, como los reptiles. sta estructura se limitaría a hacer que aparezcan conductas simples e impulsivas, parecidas a rituales que siempre se repiten del mismo modo, dependiendo de los estados fisiológicos del organismo: miedo, hambre, enfado, etc. Puede entenderse como una parte del sistema nervioso que se limita a ejecutar códigos programados genéticamente cuando se dan las condiciones adecuadas.
El cerebro reptil sustenta una parte de la mente inconsciente, o subconsciente, donde se graba, se aloja y se desarrolla el Trauma Psicológico, aquello que determina la mayoría de miedos y fobias que conforman la mente reactiva, la cual, en algunas ocasiones, lleva al ser humano a comportarse como un animal salvaje. El cerebro de los reptiles repetía los procesos de una manera absolutamente biológica mientras que la corteza cerebral se influencia de los estilos ambientales y nuestro medio interno

Todos los pares craneales nacen de esta parte del cerebro a excepción del a olfatorio que invade directamente el cerebro.
El sistema límbico, el segundo cerebro en evolucionar, alberga los centros primarios de la emoción. Incluye la amígdala, que es importante en la asociación de los acontecimientos con las emociones, y el hipocampo, que se activa para convertir la información en la memoria a largo plazo y en la recuperación de la memoria. El uso repetido de las redes nerviosas especializadas en el hipocampo aumenta la memoria de almacenamiento, por lo que esta estructura está involucrada en el aprendizaje tanto a través de experiencias comunes como del estudio deliberado. Sin embargo, no es necesario conservar cada bit de información que se aprende. Algunos neurocientíficos creen que el hipocampo ayuda a seleccionar la que la memoria ha almacenado, tal vez por la fijación de un «marcador emocional» hacia algunos eventos para que tengan la posibilidad de ser recuperados. La amígdala entra en juego en situaciones que despiertan sentimientos como el miedo, la piedad, la ira o la indignación. El daño a la amígdala puede suprimir un recuerdo cargado de emoción. Dado que el sistema límbico establece vínculos entre emociones y el comportamiento, sirve para inhibir el complejo R y su preferencia por formas rituales, sus formas habituales de responder.

El sistema límbico también está implicado en actividades primarias relacionadas con la alimentación y el sexo, especialmente si se tiene que ver con nuestro sentido del olfato y las necesidades de unión, y las actividades relacionadas a la expresión y a la mediación de las emociones y sentimientos, incluyendo emociones vinculadas de forma conexa. Estos sentimientos protectores y de amor son cada vez más complejos como el sistema límbico y el neocórtex con el que enlaza por arriba.

El Neocortex denominado tambien como corteza cerebral, constituye las cinco sextas partes del cerebro humano. Es la parte externa de nuestro cerebro, y tiene aproximadamente del tamaño de una página de periódico arrugada. La neocorteza fabrica el lenguaje, incluyendo posible el habla y la escritura . Hace el pensamiento posible y lo hace lógico y formal y nos permite mirar hacia adelante y planear para el futuro. La neocorteza también contiene dos regiones especializadas, una dedicada al movimiento voluntario y la otra al procesamiento de la información sensorial.

ARQUITECTURA DEL CEREBRO

El cerebro pese a su complejidad, tiene una arquitecturas repetitiva que es posible analizar . Su configuración en general es similar en todos los cerebros que observamos y su anatomía es muy coincidente también, y tiene una disposición y forma repetitiva, los ojos, las orejas, la boca y la nariz, son todas similares y solamente son algo diferente en cada individuo. Pero a pesar de la gran similitud en la forma de todos los cerebros, estos son muy individuales.
La arquitectura básica del cerebro está compuesta por células en cantidades de 10 elevado a 11 neuronas masivamente interconectada por conexiones llamadas axones. Estas conexiones que se cuentan por billones y es frecuente oír que todas las neurona están conectadas entre sí, y parece cierto que se conectan las neuronas, pero no todas con todas, sino algunas con algunas , lo cual fabrica unos patrones de una dificultad extraordinaria, que hacen que no todas las neuronas se conecten con todas las demás neuronas. Esta conexión es muy selectiva y depende de la parte del encéfalo que estemos estudiando.
Cuando nacemos los patrones de conexión neuronal que han sido dispuestos según las instrucciones de nuestros genes. Desde el momento de la concepción y durante su estancia en el útero, los cerebros están expuestos a estímulos medioambientales que modifican su arquitectura. Cuando nacemos la exposición a factores medioambientales aumenta y además se perciben de manera individual de forma que las conexiones se fortalecen o debilitan y se hacen más gruesas o delgadas, influenciadas por nuestra actividad. De forma que aprender y generar memoria es un proceso de modulación, y de dar forma individual a nuestro cerebro. El proceso que empezó al nacer se continua hasta el final y con frecuencia es modificado por la enfermedad.
Los procedimientos de investigación anatómica y funcional del cerebro evolucionan de manera notable. Y desde los estudios histológicos primitivos con tinciones específicas de las distintas estructuras cerebrales y su estudio microscópico, está utilizando procedimientos sofisticados tales como la resonancia magnética que nos permite conocer no solo su anatomía, sino también su función. Estos procedimientos no invasivos están permitiendo conocer las redes de conexión humana entendiendo que nos queda mucho por conocer.
La gran complejidad de la comunicación de las neuronas con el resto del cerebro, permite conocer el mundo que nos rodea y formar así la cultura.
Interpretar las cualidades del cerebro, sólo por las muchas neuronas y sinapsis que se establecen, en una palabra por la complejidad de su anatomía es una simpleza . Estas conexiones son imprescindible siempre que tengan el diseño adecuado, que permitan la configuración de circuitos y de la multiplicidad que éstos tienen en las distintas regiones que les permite asociarse y formar sistemas. La forma en que se asocian determina su función, así como la posición que ocupa una determinada arquitectura es de importancia vital.
El cerebro elabora la mente y esto se produce porque existe un tejido neural que al igual que cualquier otro tejido de nuestro organismo está formado por células. La célula fundamental del sistema nervioso es la neurona con características distintas en el mundo de la biología. La neurona es la célula fundamental del sistema nervioso pero necesitan de una red compleja de células nerviosas llamadas neuroglias que la soportan y mantienen . Estas aportan a las neuronas parte de los nutrientes que necesitan. Aunque las neuronas son la unidad fundamental del cerebro en cuanto a comportamientos y mente su función no sería posible sin la ayuda de la neuroglia.
Cuando las neuronas envían mensajes a través de sus axones, y estos llegan al músculo, y estos se contraen y producen movimiento. Pero las neuronas que se disponen en el interior de las redes complejas del cerebro , al ser activadas, elaboran mapas y el resultado son imágenes, que es la forma en que actúa la actividad mental, una frase útil es “el cerebro piensa en imágenes”. Las células gliales no saben hacer esto si bien participan en el funcionamiento de las células nobles.
Cada neurona tiene tres elementos anatómicos principales.
1. El cuerpo de la célula o soma celular, que es el centro de energía de la célula e incluye el núcleo de la celula y órganulos, el núcleo contiene el conjunto de genes que la gobiernan y las mitocondrias almacen de energía y contiene también ADN.
2. El axón que nace en el soma celular y es la principal aferencia.
3. Las dendritas, prolongaciones cortas que recuerdan un árbol que son también
Aferentes

Las neurona están conectadas entre sí por medio de una región mas amplia llamada sinapsis. En la mayoría de sinapsis, el axon de una neurona establece contacto químico con las dendritas de otra.
La neurona pueden estar activas (descargan impulso) o inactivas (cargadas y no producen impulsos). La descarga de impulso consiste en la producción de una señal electroquímica que cruza la frontera en dirección a otra neurona, esta frontera la marca la hendidura que existe entre la neurona presináptica y la postsinapticas, y esta señal estimula a la neurona postsináptica o ” neurona de descargué” y esta emite un impulso a su vez. Esto ocurre, siempre que la señal cumpla unos requisitos, por los que se rige la activación de la otra neurona. La señal electroquímica viaja del soma de la neurona al axón. La hendidura sináptica se halla situada entre el extremo de un axón y el comienzo de otra neurona, por lo general en la dendrita. Existe varias clases de neuronas en cuanto a su forma y tamaño, existen unas pocas excepciones así como ciertas variaciones menores. Las neuronas son todas microscopícas que necesitan de microscopios potentes, para estudiarlas , y cuando se trata de observar una sinapsis se requieren microscopios más potente.
Cuando la neurona descarga, la corriente eléctrica llamada potencial de acción se propaga alejándose del soma celular por el axon. El proceso dura milisegundos y al observar una imagen necesitamos unos fragmentos de segundo y de igual forma experimentamos los sentimientos en una escala de tiempo pequeñísima.
En una sinapsis se liberan sustancias químicas llamadas neurotransmisores, el más frecuente es el glutamato, el vertido del neurotransmisor se hace en la llamada hendidura sináptica. En una neurona excitadora, la interacción coopera con otras muchas neuronas cuyas sinapsis son contiguas y liberan o no su propia señal, esta emisión de neurotransmisor, determina que la siguiente neurona se activará y en consecuencia descargara, es decir producirá su propio potencial de acción que conducirá a la liberación de su propio neurotransmisor y así sucesivamente .
Las sinapsis pueden ser fuertes o débiles y la fuerza de la sinapsis determina que los impulsos sigan viajando hasta las siguientes neuronas, y de qué forma lo harán. En una neurona excitadora, una sinapsis fuerte facilita que el impulso viaje, en tanto que algunas de las débiles, lo impiden o lo bloquean.
Un aspecto fundamental del aprendizaje es el fortalecimiento de una sinapsis. La fuerza se traduce en el facilitar la descarga, y de este modo facilita la activación de las neuronas corriente abajo. La memoria depende de esta operación.
Donald Hebb a mediados del siglo XX pensó en la posibilidad de que el aprendizaje dependiera del fortalecimiento de la sinapsis que posteriormente activaría a otras neuronas.. En los últimos tiempos la compresión del aprendizaje ha abundado sobre todo en los mecanismos moleculares y en la genética.
Por término medio cada neurona se comunica con relativamente pocas neuronas, no se comunica con la mayoría y nunca se comunica con todas a la vez. Mucha neuronas se comunican solo con neuronas cercanas, dentro de circuitos relativamente locales; otras, aunque su axones pueden proyectarse como una longitud del varios centímetros, sólo establecen contacto con un pequeño número de otras neuronas. El lugar que ocupaba cada neurona en la arquitectura General le va a permitir tener más o menos interlocutores.
Los millones de neuronas se organizan en forma de circuitos. Algunos son diminutos microcircuitos, operadores de orden local e invisible a simple vista. Cuando mucho microcircuitos se colocan juntos, forman una región que se caracteriza por tener cierta arquitectura.

Las estructuras elementales regionales se presentan en dos variedades: la variedad núcleo y la variedad micro de la corteza cerebral. En unas micro área de la corteza cerebral, las neuronas se despliegan apiladas en capas. Muchas de estas capas tienen una delicada organización topográfica. Esta cualidad las hace ideales para acotar en mapas la información de manera detallada. En un número de neuronas, es facil confundir con el núcleo de la neurona, las neuronas se disponen como las uvas en el interior de un plato, aunque existen algunas parciales excepciones: los núcleos geniculados y los núcleos coliculares tienen por ejemplo brazos de dos dimensiones; varios núcleos tienen también una organización topográfica, lo que supone que pueden generar mapas no muy refinados.
Los núcleos contienen “saber hacer ”y los circuitos incorporan físicamente el conocimiento sobre de qué manera actuar o qué hacer cuando determinados mensajes hacen que el núcleo se active. Debido a este “saber hacer”, la actividad de los núcleos de neuronas resulta indispensable para la gestión de la vida en el caso de especies cuyos cerebros son más pequeños, con corteza cerebral o sin ella, y con capacidad limitada para acotar la información en mapas. Pero los núcleos son también indispensable para gestionar la vida en cerebros como los nuestros, en los cuales pasan a ser los responsables de la gestión básica de la vida, por el, el metabolismo, la respuesta visceral, las emociones, la actividad sexual, los sentimientos y aspectos de la conciencia. La manera de gobernar sistemas como el endocrino y el inmunológico depende de los núcleos, y también depende de ellos la vida afectiva. En los seres humanos, una buena parte del funcionamiento de los núcleos y las operaciones que llevan a cabo se hallan bajo la influencia de la mente, y eso significa, que en una amplia medida, aunque no por completo, se hallan bajo la influencia de la corteza cerebral.
Un hecho importante es que en las regiones particulares que los núcleos y las micro áreas corticales (patches) definen, se hallan interconectadas. Núcleos y micro áreas, a su vez, forman circuitos más grandes y lo hacen a una escalada cada vez mayor. Numerosas micro áreas de la corteza cerebral llegan a estar interconectadas, de forma interactiva, pero cada micro variedad está también conectada con los núcleos subcorticales. A veces una microárea cortical es receptora de las señales que provienen de un núcleo, otras veces es una emisora de señales; y algunas otras es tanto emisora como receptora. Las interacciones son especialmente significativas en relación con la miríada de núcleos del tálamo (en cuyo caso las conexiones con la corteza cerebral suelen hacerse en doble sentido) y en relación con los ganglios basales (en que las conexiones tienden a descender de la corteza o a dirigirse hacia ella, pero no ambas cosas).
En resumen, los circuitos de neuronas constituyen regiones corticales, cuando se configuran formando vainas dispuestas en capas paralelas, como un pastel; o constituyen núcleos cuando se agrupan en configuraciones no estratificadas (sin olvidar las excepciones antes mencionadas). Tanto a nivel de regiones corticales como en los núcleos se hayan interconectados con las proyecciones de los axones, y de este modo forman sistemas, con un nivel cada vez más elevado de complejidad, forman sistemas de sistemas. Cuando los racimos de proyección axonales son lo suficientemente grande para ser apreciados a simple vista, reciben el nombre del vías neurales. Toda las neuronas y circuitos locales son microscópicos, mientras que todas las regiones corticales, la mayoría de los núcleos y todos los sistemas de sistemas son macroscópicos.
Un gran número de células gliales forman el andamio que sustenta las neuronas de cualquier lugar del cerebro. Los axones se recubren de una vaina de mielina que los convierte en buenos conductores. La mielina están producidas por células gliales y son protectora de los axones. Las células gliales se diferencian de las neuronas porque no son excitables y no tienen axones ni dendritas y por tanto no tramiten señales a larga distancia. Las células gliales intervienen en la nutrición, aportando elementos que necesita la neurona. Posiblemente tienen más influencia de la que estamos escribiendo.
El sistema nervioso tiene dos grandes divisiones:
El principal componente del sistema nervioso es el cerebro, formado por dos hemisferios, izquierdo y derecho y unidos por el cuerpo calloso. Que desempeña un importante papel integrador.
Los hemisferios cerebrales están cubierto por la corteza cerebral, que se organiza en lóbulos (occipital, parietal, temporal y frontal) e incluye una región conocida como la corteza cingulada, sólo visible en la superficie interna en (medial). Cuando se examina la corteza cerebral hay dos regiones que no son visibles; se trata de la corteza insular, escondidas bajo la región frontal y parietal, y el hipocampo, una estructura cortical de carácter especial oculta en el lóbulo temporal.
Por debajo de la corteza cerebral del sistema nervioso central existen profundos conglomerados de núcleos como los ganglios basales, el cerebro anterior basal, la amígdala y el diencéfalo (que es la combinación de tálamo e hipotálamo). El encéfalo se haya unido a la médula espinal por el tronco del encéfalo, detrás del que se halla situado el cerebelo, con sus dos hemisferios. Si bien se suele mencionar conjuntamente el tálamo y el hipotálamo como componentes del diencéfalo, en realidad el hipotálamo ésta, desde el punto de vista funcional, más cerca del tronco del encéfalo, con el cual comparte la mayor parte de los aspectos decisivos de la regulación de la vida del organismo.
El sistema nervioso central se conecta con todo los puntos del cuerpo por medio de haces de axones que se originan en las neuronas y estos haces se llaman nervios. La suma total de todos los nervios que conectan el sistema nervioso central con la periferia, y viceversa, constituye el sistema nervioso periférico. Los nervios transmiten impulsos del cerebro al cuerpo y del cuerpo al cerebro. Una de las partes más antiguas e importantes del sistema nervioso periférico es el sistema nervioso autónomo, llamado así porque su funcionamiento es ajeno a nuestro control voluntario consciente. El sistema nervioso autónomo está formado por el sistema simpático, el sistema parasimpático y el sistema nervioso entérico. El sistema autónomo desempeña un papel decisivo en la regulación de la vida, así como la emociones y sentimientos. El cerebro y el cuerpo se hayan asimismo interrelacionado por moléculas químicas, por ejemplo, las hormonas que viajan por el torrente sanguíneo. Las que van del cerebro al cuerpo se originan en núcleos como los situados en el hipotálamo. Pero moléculas químicas también viajan en la dirección opuesta, e influyen directamente sobre las neuronas en determinadas zonas como el área postre más, donde desaparece la barrera hematoencefálica, que es el mecanismo de protección que se opone selectivamente al tránsito de la mayoría de los compuestos moleculares grandes presentes en la sangre,. El área postrema se sitúa en el tronco encefálico, muy cerca de estructuras como los núcleos parabraquiales y la sustancia gris periacueductal, que tan importante son para la regulación de la vida.
Sé si cortamos las láminas del sistema nervioso central en cualquier dirección y examinamos la sesión transversal, apreciamos una diferencia entre los sectores oscuros y pálidos de la muestra. Los sectores oscuro recibe el nombre de sustancia gris (aunque en realidad es una mezcla de marrón i lis), y los receptores para ellos reciben el nombre de sustancia blanca (aunque más bien café con leche) la tonalidad oscura del acto de dix se debe a los paquetes que han formado un gran número dos del soma celular entre las neuronas; la apariencia más claras de la sustancia blanca se debe a las vainas aislantes de los axones que brotan de los soma celular de situados en la materia gris. Tal como ya hemos señalado la mielina aporta la capa aislante que acelera la conducción eléctrica en los axones. El aislamiento míelinico y la rápida conducción de las señales son las características que distinguen a los axones, evolutivamente modernos. Las fibras no mielinizadas son bastante más lentas y su origen es más antiguo en términos evolutivos.
La sustancia gris presenta dos variedades. La variedad estratificada se encuentra en la corteza cerebral, que envuelve los hemisferios, y en la corteza cerebelosa que envuelve el cerebelo.
La variedad no estratificadas está formada por núcleos, uno de cuyos máximos exponentes, son los ganglios basales (situados en el interior de cada uno de los hemisferios cerebrales y constituido por tres grandes núcleos; el caudado, el putamen y el pálido); la amígdala, es un acúmulo de dimensiones considerables en el interior de cada lóbulo temporal; y de varios núcleos más pequeños que forman el tálamo, el hipotálamo y los sectores de sustancia gris del tronco encefálico.
La corteza cerebral recubre el encéfalo, de cada hemisferio cerebral, incluidas aquellas que se hallan situada en el fondo de las fisuras y surcos – grietas que dan al encéfalo su apariencia única de volumen llena de pliegues-. La corteza tiene desde los tres mm y las capas son paralelas unas a otras y a la superficie del cerebro. La neo corteza de la parte es la corteza cerebral evolutivamente más moderna. Las principales divisiones de la corteza cerebral se designan de la misma manera que los lóbulos (frontal, temporal, parietal y occipital). Toda las demás estructura grises (los diversos núcleos antes mencionados y el cerebelo) son subcorticales.
Las cortezas sensoriales y la corteza de asociación sólo se refieren al espacio que ocupan a lo largo de una cadena de procesamiento sensorial. Se llaman corteza sensoriales aquellas situadas a su alrededor. Por el cual las vías sensoriales periféricas entran en la corteza cerebral (por ejemplo, el punto de entrada para señales visuales, auditivas o táctiles). La región focal se extiende a presentar una reelección concéntrica y desempeña un papel muy importante en la elaboración de mapas detallados utilizando las señales de las que son portadoras las vías sensoriales.
La corteza de asociación, interrelaciona las señales que provienen de las cortezas iniciales. Están diseminada por todas partes de la corteza cerebral donde no hay corteza sensoriales iniciales o corteza motora. Se organizan de forma jerárquica, y las que se hayan más arriba en la cadena de suelen designar como el nombre de cortezas de asociación superiores, como son, por ejemplo, la corteza prefrontal y la cortezas temporales anteriores.
El mejor sistema para nombrar las regiones cerebrales lo propuso el neurólogo alemán Brodmann hace un siglo y siguen teniendo utilidad, aunque los números de las áreas no tienen nada que ver con su tamaño o con su importancia funcional.
La importancia de la posición
La estructura anatómica interna de una región cerebral es un factor determinante de la función que desempeña cuando hay en lugar en que se área de situada una determinada región en el interior del espacio tridimensional del cerebro es otro factor de importancia. Tanto el emplazamiento en el interior de la estructura global del encéfalo, como lectura anatómica interna, son en gran medida es consecuencia de la evolución, aunque en ella se incluye también el desarrollo individual. La experiencia individual da forma, moldea los circuitos cerebrales, y aunque la influencia resulta más marcada en los microcircuitos, se deja sentir inevitablemente también en el plano macroanatómico.
Los núcleos son estructuras de una gran antigüedad evolutiva y nos transportan una época de la historia de la evolución de la vida en la que los cerebros, era una cadena de ganglios unidos como las cuentas de un rosario. El ganglio es esencialmente un núcleo individual antes de ser incorporado en el transcurso de la evolución de la masa cerebral. Es el caso más claro es el cerebro de los nematodos.
La posición que ocupan los núcleos en el interior del conjunto del volumen encefálico es baja, ya que siempre están situados bajo el recubrimiento que proporciona la corteza cerebral. Se asientan en el tronco del encéfalo, hipotálamo y tálamo, ganglios basales y cerebro anterior basal (cuya extensión incluye la colección de núcleos que denominamos amígdala). Estos núcleos están enterrados en la capa principal de la corteza, y presentan todavía una jerarquía evolutiva. Cuanto más antiguos son, en términos históricos, más próximo se hallan a la línea media del encéfalo. Y dado que todo el cerebro consta de dos mitades, izquierda y derecha y en medio una línea que los divide, sucede también que los núcleo más antiguos se hallan situados mirando de frente a la parte situada al otro lado de la línea media, así sucede por ejemplo, en el caso de los núcleos del tronco del encéfalo, tan esenciales para regulación de la vida y para la conciencia. En el caso de los núcleos algo más modernos, la amígdala, derecha e izquierda, son más independientes y se hayan claramente separados uno del otro.
Las cortezas cerebrales son más recientes en términos evolutivos, que los núcleos, y se caracterizan por tener una estructura en forma de vaina bidimensional, que confieren a alguna de estas cortezas capacidades para la elaboración de mapas muy detallados. El número de capas presentes en una corteza varía no obstante, de sólo tres en el caso de la corteza más antigua en términos evolutivo, hasta seis capas en el caso de la corteza más reciente. La complejidad del conjunto de circuitos, en el interior de estas capas, así como entre ellas, también varía. La posición que ocupa el conjunto de circuitos en el interior del volumen encefálico es reveladora también desde el punto de vista funcional. Los circuitos más modernos, en General, se hallan situados alrededor o en el punto en que las principales vías sensoriales – auditiva, visual, somatosensorial – entran en el manto de la corteza cerebral, y de este modo quedan conectados con el procesamiento sensorial y el proceso de acotación de la información en mapas neuronales. Dicho de otro modo pertenecen al club de las cortezas sensoriales iniciales.
También existen diversas edades evolutivas en las cortezas motoras. Algunas cortezas motoras son bastante antiguas y pequeñas, y se hallan situadas también junto a la línea media de la corteza anterior el cíngulo y otras regiones motoras suplementarias, claramente visible en la superficie interna y medial de cada hemisferio cerebral. Otras cortezas motoras son modernas y sofisticadas en términos estructurales, y ocupan un considerable territorio en la superficie el exterior del cerebro (la superficie lateral).
Una determinada región acaba aportando al funcionamiento General del cerebro algo que está en dependencia muy notable, con las regiones con las que colabora, esto es, depende de que regiones se comuniquen con ella, y concreción en esta región reticular se comunica, o dicho de una manera más concreta, depende de que regiones proyectan sus neuronas a la región X (y de este modo son modificadas por su resultado) del lugar en que estaba situada la región X en el interior de la red dependen muchas cosas, y otro factor importante en el papel funcional que acabe por desempeñar en si la región X tiene o no capacidades para elaborar mapas.
La mente y el comportamiento son el resultado en cada momento del funcionamiento de ganancias de núcleos y paquetes corticales articulado por proyecciones neuronales convergentes y divergentes. Si estas grupos neuronales están bien organizadas y funcionan de manera armoniosa, el individuo sueña o hace poesías. Si no, el resultado es la demencia.
El contacto del cerebro con el mundo.
Dos tipos de estructuras neurales se hallan situadas en la frontera entre cerebro y el mundo. Una apunta hacia dentro, la otra lo hace hacia fuera. La primera estructura neural está formada por los receptores sensoriales situados en la periferia del cuerpo, esto es, la retina en el ojo, la coclea en el oído interno, las terminaciones nerviosas de la piel, y demás. Estos receptores no reciben proyecciones neuronales del exterior, al menos no de una manera natural si bien los inputs eléctricos parecidos a los neuronales que producen los implantes prostéticos actualmente están cambiando esta situación. Los receptores reciben, en cambio, estímulos físicos como la luz, vibraciones o contactos mecánicos. Los receptores sensoriales inician una cadena de señales que se extienden desde la frontera del cuerpo con el medio físico exterior, hasta el interior del encéfalo, la cual pasa a través de múltiples jerarquías de circuitos neuronales situados en el interior profundo de los territorios cerebrales. Pero las señales no se mueven en sentido ascendente como lo haría el agua al pasar por un sistema de cañerías. Las señales son objeto de un procesamiento y experimentado una transformación en cada nueva estación por la que pasan. Además tienden a enviar señales de vuelta hacia el lugar en el que se habían iniciado las cadenas de proyecciones entrantes. Este rasgo de la arquitectura del cerebro, escasamente estudiado, es muy posible que tenga una gran importancia para determinados aspectos de la conciencia.
El otro tipo fronterizo se sitúa allí donde terminan las proyecciones eferentes, hacia el exterior y dónde empieza el medio ambiente. La cadena de señales surge en el interior del cerebro, pero termina o bien liberando moléculas químicas o conectándose a fibras musculares del cuerpo. Esta última opción nos permiten movernos y hablar, y es en este extremo donde finalizan las principales cadenas eferentes, en en las que las señales se tramiten hacia la periferia y el exterior. Después de los músculo ya sólo queda realizar el movimiento directo en el espacio. En estadios anteriores de la evolución, la liberación de moléculas químicas en la membrana o el límite de la dermis desempeñó una importante función en la vida de un organismo. Se trataba de un importante medio de acción y, que aunque no hay duda de que liberamos feromonas, esta faceta está muy poco estudiada en los seres humanos.
Podemos considerar que el cerebro es una elaboración progresiva de algo que empezó siendo tan sencillo como un simple acto reflejo: una neurona NEU detecta el objeto OB y envía señales a la neurona ZADIG en, que se proyecta hacia la fibra muscular MUSC, y causa el movimiento. En una época posterior de la historia evolutiva, el circuito reflejo entre NEU y ZADIG se le añadió otra neurona, a la que llamamos INT.INT eran una interneurona y se comportaba de tal modo que las respuestas de la neurona ZADIG ya no era automática. La neurona ZADIG sólo responde, por ejemplo, si la neurona NEU se activa y descarga todo su arsenal sobre ella, pero no cuando recibe un mensaje más débil; una parte fundamental de la toma de decisiones se dejan en manos de la interneurona INT.
Un aspecto importante de la evolución del cerebro ha consistido precisamente en añadir neuronas equivalentes a interneuronas en cada nivel del conjunto de circuitos cerebrales (de hecho hay montones de esta índole de equivalente). A las células mayores de esta índole de equivalentes, situadas en la corteza cerebral, la podríamos denominar “ Interregiones”, ya que se hayan intercaladas entre otras regiones, con el evidente y sano propósito de modular la respuesta simple a los diversos estímulos, y con ello hace que la respuesta sean menos simples, menos automatizadas.
En el camino de hacer la modulación más sutil y sofisticada, el cerebro desarrolló sistemas que aportaban los estímulos en mapas tan detallados que tuvieron como consecuencia última la elaboración de imágenes y la formación de la mente. Con el tiempo, el cerebro se añadió a sí mismo, y eso permitió que se generan respuestas originales. Por último, ya en los seres humanos, cuando estas mentes con una conciencia reflexiva se organizaron en colectivos de seres semejantes, fue posible crear culturas y con ellas los artefactos y productos externos que las acompaña. A su vez las culturas han influido a lo largo de generaciones en el funcionamiento de los cerebros individuales, y con el tiempo influyeron en la evolución del cerebro humano en su conjunto.

El cerebro es un sistema de sistemas.
Cada sistema está formado por una intrincada interconexión de regiones corticales pequeñas aunque macroscópica y núcleos subcorticales, que está formado por circuito locales microscópicos, constituido por neuronas conectadas todas ellas por medio de sinapsis.
Aquello que la neurona hace depende del conjunto de neuronas al que pertenecen; aquello que los sistemas acaban haciendo depende de cómo los conjunto locales influyen en otro conjunto dentro de una arquitectura interconectada; por último, lo que cada conjunto aporta a la función del sistema al que pertenece, depende del lugar que ocupa en ese sistema.
Hipótesis sobre la equivalencia cerebro mente.
El cerebro forma parte del sistema físico, equivalencia e identidad se definen por atributos físicos como el hecho de tener una masa, unas dimensiones, el movimiento, la carga, etcétera.
Aquellos que rechazan la hipótesis de la identidad entre los estados físicos y los estados mentales, apuntan que si bien procede hablar de mapas neuronales que corresponde a un objeto físico particular, en cambio, sería absurdo hablar del patrón mental que le corresponde en términos físicos. Y la razón que aducen es que, hasta la fecha, la ciencia no podía determinar las características físicas de los patrones mentales, y sí la ciencia no puede hacerlo, entonces no se pueden identificar lo mental y lo físico.
De qué modo determinamos si los estados mentales son físicos. En el caso de los objetos del mundo exterior, procedemos percibiéndolos con nuestras sondas sensoriales periféricas y utilizando diversos instrumentos para llevar a cabo las mediciones. En el caso de los objetos mentales, sin embargo no podemos hacer lo mismo. No porque los acontecimientos mentales no tengan sus equivalencia neuronales, sino porque allí donde tienen lugar- el interior del encéfalo- los estados mentales no se pueden medir. De hecho, los acontecimientos mentales no pueden ser percibidos por parte del proceso que los incluye, esto es, la mente. Se trata de una situación desafortunada, aunque de ella nada se interfiere acerca del carácter físico de la mente o de su carácter no físico. Esta situación obliga, no obstante, a matizar las intuiciones que pueden sacarse de ella y, por esta razón, es prudente poner en tela de juicio la visión tradicional según la cual los estados mentales no equivalen a estados físicos. Suscribir una visión de esta índole, sobre la base de las observaciones introspectiva, es poco razonable. La perspectiva personal debe utilizarse y disfrutarse en aquello que nos ofrece directamente; la experiencia que puede hacerse consciente, y puede ayudar a orientar nuestra vida, siempre y cuando un exhaustivo análisis reflexivo en diferido, en el que se incluye el examen científico, del Valor a su consejo.
Los mapas neurales y las imágenes correspondientes se hallan en el interior del cerebro y son sólo accesible al dueño del cerebro. ¿A la pregunta de, en que otro lugar podrían estar los mapas de imágenes, sino en el interior de un sector particular del cerebro, habida cuenta de que, ante todo, se forman en el cerebro? Lo sorprendente sería que se hallaran fuera del cerebro, dado que la anatomía del cerebro no está diseñada para externalizarlos
Una perspectiva adicional que interprete los acontecimiento mentales es como siempre muy difícil admitir. Nadie discute que los acontecimiento mentales guardan correlación con los acontecimientos cerebrales, y que lo sea, si bien acontecimientos cerebrales se produzcan en el cerebro hicieran inaccesible a cualquier intento de medición directa, justifica la adopción de un enfoque especial. Los acontecimientos cerebrales en tales son productos de la larga evolución biológica. Los acontecimientos mentales cerebrales son posiblemente los procesos más complejo de la naturaleza, la necesidad de un tratamiento especial no tiene por qué causar extrañeza.
Aún con las avanzadas técnicas científicas que poseemos es difícil entender que lleguemos a describir toda la gama de fenómenos neurales asociados con un estado mental, aunque éste sea simple. Pero al mismo tiempo, es posible y necesario una aproximación teórica entre lo mental y lo neural, y resulta especialmente útil cuando se aborda un problema tan desconcertante como la casualidad descendente. Los estados mentales influyen en el comportamiento, como se evidencia en toda clase de hacer realizadas por el sistema nervioso de los músculos siguiendo sus órdenes. El problema o el misterio, tiene que ver con por la explicación de entender un fenómeno no físico., La mente puede influir en el mismo sistema nervioso físico que nos mueve actuar. Lo estados neurales y los estados mentales son las dos caras de un mismo proceso.
Rechazar la equivalencia entre la mente y el cerebro es algo problemático, a saber, que de alguna manera, para las neuronas, el hecho de crear mapas de cosas, y para estos mapas, acontecimiento mentales plenamente formados, es menos natural y plausible que para las otras células del organismo, crear la forma de las partes del cuerpo o llevar a cabo acciones corporales. Cuando las células del cuerpo propiamente dicho son colocadas juntas, en una configuración espacial particular, conforme a un plan, constituyen un objeto.
La mano por ejemplo, está formada por huesos, músculos, tendones, tejido conjuntivo, vasos sanguíneos y vías nerviosas y varias capas de piel, todo ello colocado en un sitio con orden de composición arquitectónico específico. Cuando la mano se mueve en el espacio, entonces realiza una acción; por ejemplo, al alzarse señala mi posición. Tanto el objeto como la acción son acontecimientos físicos, en el espacio y el tiempo entonces. Cuando las neuronas dispuestas en una vaina de dos dimensiones están activas o inactivas, según los datos de entrada que reciben, crea un patrón. Cuando el patrón corresponde a algún objeto o alguna acción, constituye un mapa de algo más, un mapa de ese objeto o de esa acción.
la actividad de las células físicas, tienen un patrón igual de físico que los objetos o la reaccion con los que se corresponde. El patrón se dibuja de manera instantánea en el cerebro, es labrado en el cerebro a través de la actividad cerebral. ¿Por qué entonces los circuitos de células cerebrales no iban a crear cierto tipo de correspondencia de imagen para las cosas, siempre y cuando la célula estén adecuadamente conectadas y estén activas cuando deben estarlo?
No es de estrañar que en un futuro próximo tengamos pruebas funcionales que nos hagan ver junto a lo morfológico lo “somatico” con lo que hasta ahora se ha llamado “espiritual·, pero antes tenemos que convertir lo inconsciente en consciente.

Referencia
Y EL CEREBRO CREÓ AL HOMBRE . Antonio Damasio editoriasl Destino 2010

ARQUITECTURA DEL CEREBRO

El cerebro pese a su complejidad, tiene una arquitecturas repetitiva que es posible analizar . Su configuración en general es similar en todos los cerebros que observamos y su anatomía es muy coincidente también, y tiene una disposición y forma repetitiva, los ojos, las orejas, la boca y la nariz, son todas similares y solamente son algo diferente en cada individuo. Pero a pesar de la gran similitud en la forma de todos los cerebros, estos son muy individuales.
La arquitectura básica del cerebro está compuesta por células en cantidades de 10 elevado a 11 neuronas masivamente interconectada por conexiones llamadas axones. Estas conexiones que se cuentan por billones y es frecuente oír que todas las neurona están conectadas entre sí, y parece cierto que se conectan las neuronas, pero no todas con todas, sino algunas con algunas , lo cual fabrica unos patrones de una dificultad extraordinaria, que hacen que no todas las neuronas se conecten con todas las demás neuronas. Esta conexión es muy selectiva y depende de la parte del encéfalo que estemos estudiando.
Cuando nacemos los patrones de conexión neuronal que han sido dispuestos según las instrucciones de nuestros genes. Desde el momento de la concepción y durante su estancia en el útero, los cerebros están expuestos a estímulos medioambientales que modifican su arquitectura. Cuando nacemos la exposición a factores medioambientales aumenta y además se perciben de manera individual de forma que las conexiones se fortalecen o debilitan y se hacen más gruesas o delgadas, influenciadas por nuestra actividad. De forma que aprender y generar memoria es un proceso de modulación, y de dar forma individual a nuestro cerebro. El proceso que empezó al nacer se continua hasta el final y con frecuencia es modificado por la enfermedad.
Los procedimientos de investigación anatómica y funcional del cerebro evolucionan de manera notable. Y desde los estudios histológicos primitivos con tinciones específicas de las distintas estructuras cerebrales y su estudio microscópico, está utilizando procedimientos sofisticados tales como la resonancia magnética que nos permite conocer no solo su anatomía, sino también su función. Estos procedimientos no invasivos están permitiendo conocer las redes de conexión humana entendiendo que nos queda mucho por conocer.
La gran complejidad de la comunicación de las neuronas con el resto del cerebro, permite conocer el mundo que nos rodea y formar así la cultura.
Interpretar las cualidades del cerebro, sólo por las muchas neuronas y sinapsis que se establecen, en una palabra por la complejidad de su anatomía es una simpleza . Estas conexiones son imprescindible siempre que tengan el diseño adecuado, que permitan la configuración de circuitos y de la multiplicidad que éstos tienen en las distintas regiones que les permite asociarse y formar sistemas. La forma en que se asocian determina su función, así como la posición que ocupa una determinada arquitectura es de importancia vital.
El cerebro elabora la mente y esto se produce porque existe un tejido neural que al igual que cualquier otro tejido de nuestro organismo está formado por células. La célula fundamental del sistema nervioso es la neurona con características distintas en el mundo de la biología. La neurona es la célula fundamental del sistema nervioso pero necesitan de una red compleja de células nerviosas llamadas neuroglias que la soportan y mantienen . Estas aportan a las neuronas parte de los nutrientes que necesitan. Aunque las neuronas son la unidad fundamental del cerebro en cuanto a comportamientos y mente su función no sería posible sin la ayuda de la neuroglia.
Cuando las neuronas envían mensajes a través de sus axones, y estos llegan al músculo, y estos se contraen y producen movimiento. Pero las neuronas que se disponen en el interior de las redes complejas del cerebro , al ser activadas, elaboran mapas y el resultado son imágenes, que es la forma en que actúa la actividad mental, una frase útil es “el cerebro piensa en imágenes”. Las células gliales no saben hacer esto si bien participan en el funcionamiento de las células nobles.
Cada neurona tiene tres elementos anatómicos principales.
1. El cuerpo de la célula o soma celular, que es el centro de energía de la célula e incluye el núcleo de la celula y órganulos, el núcleo contiene el conjunto de genes que la gobiernan y las mitocondrias almacen de energía y contiene también ADN.
2. El axón que nace en el soma celular y es la principal aferencia.
3. Las dendritas, prolongaciones cortas que recuerdan un árbol que son también
Aferentes

Las neurona están conectadas entre sí por medio de una región mas amplia llamada sinapsis. En la mayoría de sinapsis, el axon de una neurona establece contacto químico con las dendritas de otra.
La neurona pueden estar activas (descargan impulso) o inactivas (cargadas y no producen impulsos). La descarga de impulso consiste en la producción de una señal electroquímica que cruza la frontera en dirección a otra neurona, esta frontera la marca la hendidura que existe entre la neurona presináptica y la postsinapticas, y esta señal estimula a la neurona postsináptica o ” neurona de descargué” y esta emite un impulso a su vez. Esto ocurre, siempre que la señal cumpla unos requisitos, por los que se rige la activación de la otra neurona. La señal electroquímica viaja del soma de la neurona al axón. La hendidura sináptica se halla situada entre el extremo de un axón y el comienzo de otra neurona, por lo general en la dendrita. Existe varias clases de neuronas en cuanto a su forma y tamaño, existen unas pocas excepciones así como ciertas variaciones menores. Las neuronas son todas microscopícas que necesitan de microscopios potentes, para estudiarlas , y cuando se trata de observar una sinapsis se requieren microscopios más potente.
Cuando la neurona descarga, la corriente eléctrica llamada potencial de acción se propaga alejándose del soma celular por el axon. El proceso dura milisegundos y al observar una imagen necesitamos unos fragmentos de segundo y de igual forma experimentamos los sentimientos en una escala de tiempo pequeñísima.
En una sinapsis se liberan sustancias químicas llamadas neurotransmisores, el más frecuente es el glutamato, el vertido del neurotransmisor se hace en la llamada hendidura sináptica. En una neurona excitadora, la interacción coopera con otras muchas neuronas cuyas sinapsis son contiguas y liberan o no su propia señal, esta emisión de neurotransmisor, determina que la siguiente neurona se activará y en consecuencia descargara, es decir producirá su propio potencial de acción que conducirá a la liberación de su propio neurotransmisor y así sucesivamente .
Las sinapsis pueden ser fuertes o débiles y la fuerza de la sinapsis determina que los impulsos sigan viajando hasta las siguientes neuronas, y de qué forma lo harán. En una neurona excitadora, una sinapsis fuerte facilita que el impulso viaje, en tanto que algunas de las débiles, lo impiden o lo bloquean.
Un aspecto fundamental del aprendizaje es el fortalecimiento de una sinapsis. La fuerza se traduce en el facilitar la descarga, y de este modo facilita la activación de las neuronas corriente abajo. La memoria depende de esta operación.
Donald Hebb a mediados del siglo XX pensó en la posibilidad de que el aprendizaje dependiera del fortalecimiento de la sinapsis que posteriormente activaría a otras neuronas.. En los últimos tiempos la compresión del aprendizaje ha abundado sobre todo en los mecanismos moleculares y en la genética.
Por término medio cada neurona se comunica con relativamente pocas neuronas, no se comunica con la mayoría y nunca se comunica con todas a la vez. Mucha neuronas se comunican solo con neuronas cercanas, dentro de circuitos relativamente locales; otras, aunque su axones pueden proyectarse como una longitud del varios centímetros, sólo establecen contacto con un pequeño número de otras neuronas. El lugar que ocupaba cada neurona en la arquitectura General le va a permitir tener más o menos interlocutores.
Los millones de neuronas se organizan en forma de circuitos. Algunos son diminutos microcircuitos, operadores de orden local e invisible a simple vista. Cuando mucho microcircuitos se colocan juntos, forman una región que se caracteriza por tener cierta arquitectura.

Las estructuras elementales regionales se presentan en dos variedades: la variedad núcleo y la variedad micro de la corteza cerebral. En unas micro área de la corteza cerebral, las neuronas se despliegan apiladas en capas. Muchas de estas capas tienen una delicada organización topográfica. Esta cualidad las hace ideales para acotar en mapas la información de manera detallada. En un número de neuronas, es facil confundir con el núcleo de la neurona, las neuronas se disponen como las uvas en el interior de un plato, aunque existen algunas parciales excepciones: los núcleos geniculados y los núcleos coliculares tienen por ejemplo brazos de dos dimensiones; varios núcleos tienen también una organización topográfica, lo que supone que pueden generar mapas no muy refinados.
Los núcleos contienen “saber hacer ”y los circuitos incorporan físicamente el conocimiento sobre de qué manera actuar o qué hacer cuando determinados mensajes hacen que el núcleo se active. Debido a este “saber hacer”, la actividad de los núcleos de neuronas resulta indispensable para la gestión de la vida en el caso de especies cuyos cerebros son más pequeños, con corteza cerebral o sin ella, y con capacidad limitada para acotar la información en mapas. Pero los núcleos son también indispensable para gestionar la vida en cerebros como los nuestros, en los cuales pasan a ser los responsables de la gestión básica de la vida, por el, el metabolismo, la respuesta visceral, las emociones, la actividad sexual, los sentimientos y aspectos de la conciencia. La manera de gobernar sistemas como el endocrino y el inmunológico depende de los núcleos, y también depende de ellos la vida afectiva. En los seres humanos, una buena parte del funcionamiento de los núcleos y las operaciones que llevan a cabo se hallan bajo la influencia de la mente, y eso significa, que en una amplia medida, aunque no por completo, se hallan bajo la influencia de la corteza cerebral.
Un hecho importante es que en las regiones particulares que los núcleos y las micro áreas corticales (patches) definen, se hallan interconectadas. Núcleos y micro áreas, a su vez, forman circuitos más grandes y lo hacen a una escalada cada vez mayor. Numerosas micro áreas de la corteza cerebral llegan a estar interconectadas, de forma interactiva, pero cada micro variedad está también conectada con los núcleos subcorticales. A veces una microárea cortical es receptora de las señales que provienen de un núcleo, otras veces es una emisora de señales; y algunas otras es tanto emisora como receptora. Las interacciones son especialmente significativas en relación con la miríada de núcleos del tálamo (en cuyo caso las conexiones con la corteza cerebral suelen hacerse en doble sentido) y en relación con los ganglios basales (en que las conexiones tienden a descender de la corteza o a dirigirse hacia ella, pero no ambas cosas).
En resumen, los circuitos de neuronas constituyen regiones corticales, cuando se configuran formando vainas dispuestas en capas paralelas, como un pastel; o constituyen núcleos cuando se agrupan en configuraciones no estratificadas (sin olvidar las excepciones antes mencionadas). Tanto a nivel de regiones corticales como en los núcleos se hayan interconectados con las proyecciones de los axones, y de este modo forman sistemas, con un nivel cada vez más elevado de complejidad, forman sistemas de sistemas. Cuando los racimos de proyección axonales son lo suficientemente grande para ser apreciados a simple vista, reciben el nombre del vías neurales. Toda las neuronas y circuitos locales son microscópicos, mientras que todas las regiones corticales, la mayoría de los núcleos y todos los sistemas de sistemas son macroscópicos.
Un gran número de células gliales forman el andamio que sustenta las neuronas de cualquier lugar del cerebro. Los axones se recubren de una vaina de mielina que los convierte en buenos conductores. La mielina están producidas por células gliales y son protectora de los axones. Las células gliales se diferencian de las neuronas porque no son excitables y no tienen axones ni dendritas y por tanto no tramiten señales a larga distancia. Las células gliales intervienen en la nutrición, aportando elementos que necesita la neurona. Posiblemente tienen más influencia de la que estamos escribiendo.
El sistema nervioso tiene dos grandes divisiones:
El principal componente del sistema nervioso es el cerebro, formado por dos hemisferios, izquierdo y derecho y unidos por el cuerpo calloso. Que desempeña un importante papel integrador.
Los hemisferios cerebrales están cubierto por la corteza cerebral, que se organiza en lóbulos (occipital, parietal, temporal y frontal) e incluye una región conocida como la corteza cingulada, sólo visible en la superficie interna en (medial). Cuando se examina la corteza cerebral hay dos regiones que no son visibles; se trata de la corteza insular, escondidas bajo la región frontal y parietal, y el hipocampo, una estructura cortical de carácter especial oculta en el lóbulo temporal.
Por debajo de la corteza cerebral del sistema nervioso central existen profundos conglomerados de núcleos como los ganglios basales, el cerebro anterior basal, la amígdala y el diencéfalo (que es la combinación de tálamo e hipotálamo). El encéfalo se haya unido a la médula espinal por el tronco del encéfalo, detrás del que se halla situado el cerebelo, con sus dos hemisferios. Si bien se suele mencionar conjuntamente el tálamo y el hipotálamo como componentes del diencéfalo, en realidad el hipotálamo ésta, desde el punto de vista funcional, más cerca del tronco del encéfalo, con el cual comparte la mayor parte de los aspectos decisivos de la regulación de la vida del organismo.
El sistema nervioso central se conecta con todo los puntos del cuerpo por medio de haces de axones que se originan en las neuronas y estos haces se llaman nervios. La suma total de todos los nervios que conectan el sistema nervioso central con la periferia, y viceversa, constituye el sistema nervioso periférico. Los nervios transmiten impulsos del cerebro al cuerpo y del cuerpo al cerebro. Una de las partes más antiguas e importantes del sistema nervioso periférico es el sistema nervioso autónomo, llamado así porque su funcionamiento es ajeno a nuestro control voluntario consciente. El sistema nervioso autónomo está formado por el sistema simpático, el sistema parasimpático y el sistema nervioso entérico. El sistema autónomo desempeña un papel decisivo en la regulación de la vida, así como la emociones y sentimientos. El cerebro y el cuerpo se hayan asimismo interrelacionado por moléculas químicas, por ejemplo, las hormonas que viajan por el torrente sanguíneo. Las que van del cerebro al cuerpo se originan en núcleos como los situados en el hipotálamo. Pero moléculas químicas también viajan en la dirección opuesta, e influyen directamente sobre las neuronas en determinadas zonas como el área postre más, donde desaparece la barrera hematoencefálica, que es el mecanismo de protección que se opone selectivamente al tránsito de la mayoría de los compuestos moleculares grandes presentes en la sangre,. El área postrema se sitúa en el tronco encefálico, muy cerca de estructuras como los núcleos parabraquiales y la sustancia gris periacueductal, que tan importante son para la regulación de la vida.
Sé si cortamos las láminas del sistema nervioso central en cualquier dirección y examinamos la sesión transversal, apreciamos una diferencia entre los sectores oscuros y pálidos de la muestra. Los sectores oscuro recibe el nombre de sustancia gris (aunque en realidad es una mezcla de marrón i lis), y los receptores para ellos reciben el nombre de sustancia blanca (aunque más bien café con leche) la tonalidad oscura del acto de dix se debe a los paquetes que han formado un gran número dos del soma celular entre las neuronas; la apariencia más claras de la sustancia blanca se debe a las vainas aislantes de los axones que brotan de los soma celular de situados en la materia gris. Tal como ya hemos señalado la mielina aporta la capa aislante que acelera la conducción eléctrica en los axones. El aislamiento míelinico y la rápida conducción de las señales son las características que distinguen a los axones, evolutivamente modernos. Las fibras no mielinizadas son bastante más lentas y su origen es más antiguo en términos evolutivos.
La sustancia gris presenta dos variedades. La variedad estratificada se encuentra en la corteza cerebral, que envuelve los hemisferios, y en la corteza cerebelosa que envuelve el cerebelo.
La variedad no estratificadas está formada por núcleos, uno de cuyos máximos exponentes, son los ganglios basales (situados en el interior de cada uno de los hemisferios cerebrales y constituido por tres grandes núcleos; el caudado, el putamen y el pálido); la amígdala, es un acúmulo de dimensiones considerables en el interior de cada lóbulo temporal; y de varios núcleos más pequeños que forman el tálamo, el hipotálamo y los sectores de sustancia gris del tronco encefálico.
La corteza cerebral recubre el encéfalo, de cada hemisferio cerebral, incluidas aquellas que se hallan situada en el fondo de las fisuras y surcos – grietas que dan al encéfalo su apariencia única de volumen llena de pliegues-. La corteza tiene desde los tres mm y las capas son paralelas unas a otras y a la superficie del cerebro. La neo corteza de la parte es la corteza cerebral evolutivamente más moderna. Las principales divisiones de la corteza cerebral se designan de la misma manera que los lóbulos (frontal, temporal, parietal y occipital). Toda las demás estructura grises (los diversos núcleos antes mencionados y el cerebelo) son subcorticales.
Las cortezas sensoriales y la corteza de asociación sólo se refieren al espacio que ocupan a lo largo de una cadena de procesamiento sensorial. Se llaman corteza sensoriales aquellas situadas a su alrededor. Por el cual las vías sensoriales periféricas entran en la corteza cerebral (por ejemplo, el punto de entrada para señales visuales, auditivas o táctiles). La región focal se extiende a presentar una reelección concéntrica y desempeña un papel muy importante en la elaboración de mapas detallados utilizando las señales de las que son portadoras las vías sensoriales.
La corteza de asociación, interrelaciona las señales que provienen de las cortezas iniciales. Están diseminada por todas partes de la corteza cerebral donde no hay corteza sensoriales iniciales o corteza motora. Se organizan de forma jerárquica, y las que se hayan más arriba en la cadena de suelen designar como el nombre de cortezas de asociación superiores, como son, por ejemplo, la corteza prefrontal y la cortezas temporales anteriores.
El mejor sistema para nombrar las regiones cerebrales lo propuso el neurólogo alemán Brodmann hace un siglo y siguen teniendo utilidad, aunque los números de las áreas no tienen nada que ver con su tamaño o con su importancia funcional.
La importancia de la posición
La estructura anatómica interna de una región cerebral es un factor determinante de la función que desempeña cuando hay en lugar en que se área de situada una determinada región en el interior del espacio tridimensional del cerebro es otro factor de importancia. Tanto el emplazamiento en el interior de la estructura global del encéfalo, como lectura anatómica interna, son en gran medida es consecuencia de la evolución, aunque en ella se incluye también el desarrollo individual. La experiencia individual da forma, moldea los circuitos cerebrales, y aunque la influencia resulta más marcada en los microcircuitos, se deja sentir inevitablemente también en el plano macroanatómico.
Los núcleos son estructuras de una gran antigüedad evolutiva y nos transportan una época de la historia de la evolución de la vida en la que los cerebros, era una cadena de ganglios unidos como las cuentas de un rosario. El ganglio es esencialmente un núcleo individual antes de ser incorporado en el transcurso de la evolución de la masa cerebral. Es el caso más claro es el cerebro de los nematodos.
La posición que ocupan los núcleos en el interior del conjunto del volumen encefálico es baja, ya que siempre están situados bajo el recubrimiento que proporciona la corteza cerebral. Se asientan en el tronco del encéfalo, hipotálamo y tálamo, ganglios basales y cerebro anterior basal (cuya extensión incluye la colección de núcleos que denominamos amígdala). Estos núcleos están enterrados en la capa principal de la corteza, y presentan todavía una jerarquía evolutiva. Cuanto más antiguos son, en términos históricos, más próximo se hallan a la línea media del encéfalo. Y dado que todo el cerebro consta de dos mitades, izquierda y derecha y en medio una línea que los divide, sucede también que los núcleo más antiguos se hallan situados mirando de frente a la parte situada al otro lado de la línea media, así sucede por ejemplo, en el caso de los núcleos del tronco del encéfalo, tan esenciales para regulación de la vida y para la conciencia. En el caso de los núcleos algo más modernos, la amígdala, derecha e izquierda, son más independientes y se hayan claramente separados uno del otro.
Las cortezas cerebrales son más recientes en términos evolutivos, que los núcleos, y se caracterizan por tener una estructura en forma de vaina bidimensional, que confieren a alguna de estas cortezas capacidades para la elaboración de mapas muy detallados. El número de capas presentes en una corteza varía no obstante, de sólo tres en el caso de la corteza más antigua en términos evolutivo, hasta seis capas en el caso de la corteza más reciente. La complejidad del conjunto de circuitos, en el interior de estas capas, así como entre ellas, también varía. La posición que ocupa el conjunto de circuitos en el interior del volumen encefálico es reveladora también desde el punto de vista funcional. Los circuitos más modernos, en General, se hallan situados alrededor o en el punto en que las principales vías sensoriales – auditiva, visual, somatosensorial – entran en el manto de la corteza cerebral, y de este modo quedan conectados con el procesamiento sensorial y el proceso de acotación de la información en mapas neuronales. Dicho de otro modo pertenecen al club de las cortezas sensoriales iniciales.
También existen diversas edades evolutivas en las cortezas motoras. Algunas cortezas motoras son bastante antiguas y pequeñas, y se hallan situadas también junto a la línea media de la corteza anterior el cíngulo y otras regiones motoras suplementarias, claramente visible en la superficie interna y medial de cada hemisferio cerebral. Otras cortezas motoras son modernas y sofisticadas en términos estructurales, y ocupan un considerable territorio en la superficie el exterior del cerebro (la superficie lateral).
Una determinada región acaba aportando al funcionamiento General del cerebro algo que está en dependencia muy notable, con las regiones con las que colabora, esto es, depende de que regiones se comuniquen con ella, y concreción en esta región reticular se comunica, o dicho de una manera más concreta, depende de que regiones proyectan sus neuronas a la región X (y de este modo son modificadas por su resultado) del lugar en que estaba situada la región X en el interior de la red dependen muchas cosas, y otro factor importante en el papel funcional que acabe por desempeñar en si la región X tiene o no capacidades para elaborar mapas.
La mente y el comportamiento son el resultado en cada momento del funcionamiento de ganancias de núcleos y paquetes corticales articulado por proyecciones neuronales convergentes y divergentes. Si estas grupos neuronales están bien organizadas y funcionan de manera armoniosa, el individuo sueña o hace poesías. Si no, el resultado es la demencia.
El contacto del cerebro con el mundo.
Dos tipos de estructuras neurales se hallan situadas en la frontera entre cerebro y el mundo. Una apunta hacia dentro, la otra lo hace hacia fuera. La primera estructura neural está formada por los receptores sensoriales situados en la periferia del cuerpo, esto es, la retina en el ojo, la coclea en el oído interno, las terminaciones nerviosas de la piel, y demás. Estos receptores no reciben proyecciones neuronales del exterior, al menos no de una manera natural si bien los inputs eléctricos parecidos a los neuronales que producen los implantes prostéticos actualmente están cambiando esta situación. Los receptores reciben, en cambio, estímulos físicos como la luz, vibraciones o contactos mecánicos. Los receptores sensoriales inician una cadena de señales que se extienden desde la frontera del cuerpo con el medio físico exterior, hasta el interior del encéfalo, la cual pasa a través de múltiples jerarquías de circuitos neuronales situados en el interior profundo de los territorios cerebrales. Pero las señales no se mueven en sentido ascendente como lo haría el agua al pasar por un sistema de cañerías. Las señales son objeto de un procesamiento y experimentado una transformación en cada nueva estación por la que pasan. Además tienden a enviar señales de vuelta hacia el lugar en el que se habían iniciado las cadenas de proyecciones entrantes. Este rasgo de la arquitectura del cerebro, escasamente estudiado, es muy posible que tenga una gran importancia para determinados aspectos de la conciencia.
El otro tipo fronterizo se sitúa allí donde terminan las proyecciones eferentes, hacia el exterior y dónde empieza el medio ambiente. La cadena de señales surge en el interior del cerebro, pero termina o bien liberando moléculas químicas o conectándose a fibras musculares del cuerpo. Esta última opción nos permiten movernos y hablar, y es en este extremo donde finalizan las principales cadenas eferentes, en en las que las señales se tramiten hacia la periferia y el exterior. Después de los músculo ya sólo queda realizar el movimiento directo en el espacio. En estadios anteriores de la evolución, la liberación de moléculas químicas en la membrana o el límite de la dermis desempeñó una importante función en la vida de un organismo. Se trataba de un importante medio de acción y, que aunque no hay duda de que liberamos feromonas, esta faceta está muy poco estudiada en los seres humanos.
Podemos considerar que el cerebro es una elaboración progresiva de algo que empezó siendo tan sencillo como un simple acto reflejo: una neurona NEU detecta el objeto OB y envía señales a la neurona ZADIG en, que se proyecta hacia la fibra muscular MUSC, y causa el movimiento. En una época posterior de la historia evolutiva, el circuito reflejo entre NEU y ZADIG se le añadió otra neurona, a la que llamamos INT.INT eran una interneurona y se comportaba de tal modo que las respuestas de la neurona ZADIG ya no era automática. La neurona ZADIG sólo responde, por ejemplo, si la neurona NEU se activa y descarga todo su arsenal sobre ella, pero no cuando recibe un mensaje más débil; una parte fundamental de la toma de decisiones se dejan en manos de la interneurona INT.
Un aspecto importante de la evolución del cerebro ha consistido precisamente en añadir neuronas equivalentes a interneuronas en cada nivel del conjunto de circuitos cerebrales (de hecho hay montones de esta índole de equivalente). A las células mayores de esta índole de equivalentes, situadas en la corteza cerebral, la podríamos denominar “ Interregiones”, ya que se hayan intercaladas entre otras regiones, con el evidente y sano propósito de modular la respuesta simple a los diversos estímulos, y con ello hace que la respuesta sean menos simples, menos automatizadas.
En el camino de hacer la modulación más sutil y sofisticada, el cerebro desarrolló sistemas que aportaban los estímulos en mapas tan detallados que tuvieron como consecuencia última la elaboración de imágenes y la formación de la mente. Con el tiempo, el cerebro se añadió a sí mismo, y eso permitió que se generan respuestas originales. Por último, ya en los seres humanos, cuando estas mentes con una conciencia reflexiva se organizaron en colectivos de seres semejantes, fue posible crear culturas y con ellas los artefactos y productos externos que las acompaña. A su vez las culturas han influido a lo largo de generaciones en el funcionamiento de los cerebros individuales, y con el tiempo influyeron en la evolución del cerebro humano en su conjunto.

El cerebro es un sistema de sistemas.
Cada sistema está formado por una intrincada interconexión de regiones corticales pequeñas aunque macroscópica y núcleos subcorticales, que está formado por circuito locales microscópicos, constituido por neuronas conectadas todas ellas por medio de sinapsis.
Aquello que la neurona hace depende del conjunto de neuronas al que pertenecen; aquello que los sistemas acaban haciendo depende de cómo los conjunto locales influyen en otro conjunto dentro de una arquitectura interconectada; por último, lo que cada conjunto aporta a la función del sistema al que pertenece, depende del lugar que ocupa en ese sistema.
Hipótesis sobre la equivalencia cerebro mente.
El cerebro forma parte del sistema físico, equivalencia e identidad se definen por atributos físicos como el hecho de tener una masa, unas dimensiones, el movimiento, la carga, etcétera.
Aquellos que rechazan la hipótesis de la identidad entre los estados físicos y los estados mentales, apuntan que si bien procede hablar de mapas neuronales que corresponde a un objeto físico particular, en cambio, sería absurdo hablar del patrón mental que le corresponde en términos físicos. Y la razón que aducen es que, hasta la fecha, la ciencia no podía determinar las características físicas de los patrones mentales, y sí la ciencia no puede hacerlo, entonces no se pueden identificar lo mental y lo físico.
De qué modo determinamos si los estados mentales son físicos. En el caso de los objetos del mundo exterior, procedemos percibiéndolos con nuestras sondas sensoriales periféricas y utilizando diversos instrumentos para llevar a cabo las mediciones. En el caso de los objetos mentales, sin embargo no podemos hacer lo mismo. No porque los acontecimientos mentales no tengan sus equivalencia neuronales, sino porque allí donde tienen lugar- el interior del encéfalo- los estados mentales no se pueden medir. De hecho, los acontecimientos mentales no pueden ser percibidos por parte del proceso que los incluye, esto es, la mente. Se trata de una situación desafortunada, aunque de ella nada se interfiere acerca del carácter físico de la mente o de su carácter no físico. Esta situación obliga, no obstante, a matizar las intuiciones que pueden sacarse de ella y, por esta razón, es prudente poner en tela de juicio la visión tradicional según la cual los estados mentales no equivalen a estados físicos. Suscribir una visión de esta índole, sobre la base de las observaciones introspectiva, es poco razonable. La perspectiva personal debe utilizarse y disfrutarse en aquello que nos ofrece directamente; la experiencia que puede hacerse consciente, y puede ayudar a orientar nuestra vida, siempre y cuando un exhaustivo análisis reflexivo en diferido, en el que se incluye el examen científico, del Valor a su consejo.
Los mapas neurales y las imágenes correspondientes se hallan en el interior del cerebro y son sólo accesible al dueño del cerebro. ¿A la pregunta de, en que otro lugar podrían estar los mapas de imágenes, sino en el interior de un sector particular del cerebro, habida cuenta de que, ante todo, se forman en el cerebro? Lo sorprendente sería que se hallaran fuera del cerebro, dado que la anatomía del cerebro no está diseñada para externalizarlos
Una perspectiva adicional que interprete los acontecimiento mentales es como siempre muy difícil admitir. Nadie discute que los acontecimiento mentales guardan correlación con los acontecimientos cerebrales, y que lo sea, si bien acontecimientos cerebrales se produzcan en el cerebro hicieran inaccesible a cualquier intento de medición directa, justifica la adopción de un enfoque especial. Los acontecimientos cerebrales en tales son productos de la larga evolución biológica. Los acontecimientos mentales cerebrales son posiblemente los procesos más complejo de la naturaleza, la necesidad de un tratamiento especial no tiene por qué causar extrañeza.
Aún con las avanzadas técnicas científicas que poseemos es difícil entender que lleguemos a describir toda la gama de fenómenos neurales asociados con un estado mental, aunque éste sea simple. Pero al mismo tiempo, es posible y necesario una aproximación teórica entre lo mental y lo neural, y resulta especialmente útil cuando se aborda un problema tan desconcertante como la casualidad descendente. Los estados mentales influyen en el comportamiento, como se evidencia en toda clase de hacer realizadas por el sistema nervioso de los músculos siguiendo sus órdenes. El problema o el misterio, tiene que ver con por la explicación de entender un fenómeno no físico., La mente puede influir en el mismo sistema nervioso físico que nos mueve actuar. Lo estados neurales y los estados mentales son las dos caras de un mismo proceso.
Rechazar la equivalencia entre la mente y el cerebro es algo problemático, a saber, que de alguna manera, para las neuronas, el hecho de crear mapas de cosas, y para estos mapas, acontecimiento mentales plenamente formados, es menos natural y plausible que para las otras células del organismo, crear la forma de las partes del cuerpo o llevar a cabo acciones corporales. Cuando las células del cuerpo propiamente dicho son colocadas juntas, en una configuración espacial particular, conforme a un plan, constituyen un objeto.
La mano por ejemplo, está formada por huesos, músculos, tendones, tejido conjuntivo, vasos sanguíneos y vías nerviosas y varias capas de piel, todo ello colocado en un sitio con orden de composición arquitectónico específico. Cuando la mano se mueve en el espacio, entonces realiza una acción; por ejemplo, al alzarse señala mi posición. Tanto el objeto como la acción son acontecimientos físicos, en el espacio y el tiempo entonces. Cuando las neuronas dispuestas en una vaina de dos dimensiones están activas o inactivas, según los datos de entrada que reciben, crea un patrón. Cuando el patrón corresponde a algún objeto o alguna acción, constituye un mapa de algo más, un mapa de ese objeto o de esa acción.
la actividad de las células físicas, tienen un patrón igual de físico que los objetos o la reaccion con los que se corresponde. El patrón se dibuja de manera instantánea en el cerebro, es labrado en el cerebro a través de la actividad cerebral. ¿Por qué entonces los circuitos de células cerebrales no iban a crear cierto tipo de correspondencia de imagen para las cosas, siempre y cuando la célula estén adecuadamente conectadas y estén activas cuando deben estarlo?
No es de estrañar que en un futuro próximo tengamos pruebas funcionales que nos hagan ver junto a lo morfológico lo “somatico” con lo que hasta ahora se ha llamado “espiritual·, pero antes tenemos que convertir lo inconsciente en consciente.

Referencia
Y EL CEREBRO CREÓ AL HOMBRE . Antonio Damasio editoriasl Destino 2010

.

.

ARQUITECTURA DEL CEREBRO

El cerebro pese a su complejidad, tiene una arquitecturas repetitiva que es posible analizar . Su configuración en general es similar en todos los cerebros que observamos y su anatomía es muy coincidente también, y tiene una disposición y forma repetitiva, los ojos, las orejas, la boca y la nariz, son todas similares y solamente son algo diferente en cada individuo. Pero a pesar de la gran similitud en la forma de todos los cerebros, estos son muy individuales.
La arquitectura básica del cerebro está compuesta por células en cantidades de 10 elevado a 11 neuronas masivamente interconectada por conexiones llamadas axones. Estas conexiones que se cuentan por billones y es frecuente oír que todas las neurona están conectadas entre sí, y parece cierto que se conectan las neuronas, pero no todas con todas, sino algunas con algunas , lo cual fabrica unos patrones de una dificultad extraordinaria, que hacen que no todas las neuronas se conecten con todas las demás neuronas. Esta conexión es muy selectiva y depende de la parte del encéfalo que estemos estudiando.
Cuando nacemos los patrones de conexión neuronal que han sido dispuestos según las instrucciones de nuestros genes. Desde el momento de la concepción y durante su estancia en el útero, los cerebros están expuestos a estímulos medioambientales que modifican su arquitectura. Cuando nacemos la exposición a factores medioambientales aumenta y además se perciben de manera individual de forma que las conexiones se fortalecen o debilitan y se hacen más gruesas o delgadas, influenciadas por nuestra actividad. De forma que aprender y generar memoria es un proceso de modulación, y de dar forma individual a nuestro cerebro. El proceso que empezó al nacer se continua hasta el final y con frecuencia es modificado por la enfermedad.
Los procedimientos de investigación anatómica y funcional del cerebro evolucionan de manera notable. Y desde los estudios histológicos primitivos con tinciones específicas de las distintas estructuras cerebrales y su estudio microscópico, está utilizando procedimientos sofisticados tales como la resonancia magnética que nos permite conocer no solo su anatomía, sino también su función. Estos procedimientos no invasivos están permitiendo conocer las redes de conexión humana entendiendo que nos queda mucho por conocer.
La gran complejidad de la comunicación de las neuronas con el resto del cerebro, permite conocer el mundo que nos rodea y formar así la cultura.
Interpretar las cualidades del cerebro, sólo por las muchas neuronas y sinapsis que se establecen, en una palabra por la complejidad de su anatomía es una simpleza . Estas conexiones son imprescindible siempre que tengan el diseño adecuado, que permitan la configuración de circuitos y de la multiplicidad que éstos tienen en las distintas regiones que les permite asociarse y formar sistemas. La forma en que se asocian determina su función, así como la posición que ocupa una determinada arquitectura es de importancia vital.
El cerebro elabora la mente y esto se produce porque existe un tejido neural que al igual que cualquier otro tejido de nuestro organismo está formado por células. La célula fundamental del sistema nervioso es la neurona con características distintas en el mundo de la biología. La neurona es la célula fundamental del sistema nervioso pero necesitan de una red compleja de células nerviosas llamadas neuroglias que la soportan y mantienen . Estas aportan a las neuronas parte de los nutrientes que necesitan. Aunque las neuronas son la unidad fundamental del cerebro en cuanto a comportamientos y mente su función no sería posible sin la ayuda de la neuroglia.
Cuando las neuronas envían mensajes a través de sus axones, y estos llegan al músculo, y estos se contraen y producen movimiento. Pero las neuronas que se disponen en el interior de las redes complejas del cerebro , al ser activadas, elaboran mapas y el resultado son imágenes, que es la forma en que actúa la actividad mental, una frase útil es “el cerebro piensa en imágenes”. Las células gliales no saben hacer esto si bien participan en el funcionamiento de las células nobles.
Cada neurona tiene tres elementos anatómicos principales.
1. El cuerpo de la célula o soma celular, que es el centro de energía de la célula e incluye el núcleo de la celula y órganulos, el núcleo contiene el conjunto de genes que la gobiernan y las mitocondrias almacen de energía y contiene también ADN.
2. El axón que nace en el soma celular y es la principal aferencia.
3. Las dendritas, prolongaciones cortas que recuerdan un árbol que son también
Aferentes

Las neurona están conectadas entre sí por medio de una región mas amplia llamada sinapsis. En la mayoría de sinapsis, el axon de una neurona establece contacto químico con las dendritas de otra.
La neurona pueden estar activas (descargan impulso) o inactivas (cargadas y no producen impulsos). La descarga de impulso consiste en la producción de una señal electroquímica que cruza la frontera en dirección a otra neurona, esta frontera la marca la hendidura que existe entre la neurona presináptica y la postsinapticas, y esta señal estimula a la neurona postsináptica o ” neurona de descargué” y esta emite un impulso a su vez. Esto ocurre, siempre que la señal cumpla unos requisitos, por los que se rige la activación de la otra neurona. La señal electroquímica viaja del soma de la neurona al axón. La hendidura sináptica se halla situada entre el extremo de un axón y el comienzo de otra neurona, por lo general en la dendrita. Existe varias clases de neuronas en cuanto a su forma y tamaño, existen unas pocas excepciones así como ciertas variaciones menores. Las neuronas son todas microscopícas que necesitan de microscopios potentes, para estudiarlas , y cuando se trata de observar una sinapsis se requieren microscopios más potente.
Cuando la neurona descarga, la corriente eléctrica llamada potencial de acción se propaga alejándose del soma celular por el axon. El proceso dura milisegundos y al observar una imagen necesitamos unos fragmentos de segundo y de igual forma experimentamos los sentimientos en una escala de tiempo pequeñísima.
En una sinapsis se liberan sustancias químicas llamadas neurotransmisores, el más frecuente es el glutamato, el vertido del neurotransmisor se hace en la llamada hendidura sináptica. En una neurona excitadora, la interacción coopera con otras muchas neuronas cuyas sinapsis son contiguas y liberan o no su propia señal, esta emisión de neurotransmisor, determina que la siguiente neurona se activará y en consecuencia descargara, es decir producirá su propio potencial de acción que conducirá a la liberación de su propio neurotransmisor y así sucesivamente .
Las sinapsis pueden ser fuertes o débiles y la fuerza de la sinapsis determina que los impulsos sigan viajando hasta las siguientes neuronas, y de qué forma lo harán. En una neurona excitadora, una sinapsis fuerte facilita que el impulso viaje, en tanto que algunas de las débiles, lo impiden o lo bloquean.
Un aspecto fundamental del aprendizaje es el fortalecimiento de una sinapsis. La fuerza se traduce en el facilitar la descarga, y de este modo facilita la activación de las neuronas corriente abajo. La memoria depende de esta operación.
Donald Hebb a mediados del siglo XX pensó en la posibilidad de que el aprendizaje dependiera del fortalecimiento de la sinapsis que posteriormente activaría a otras neuronas.. En los últimos tiempos la compresión del aprendizaje ha abundado sobre todo en los mecanismos moleculares y en la genética.
Por término medio cada neurona se comunica con relativamente pocas neuronas, no se comunica con la mayoría y nunca se comunica con todas a la vez. Mucha neuronas se comunican solo con neuronas cercanas, dentro de circuitos relativamente locales; otras, aunque su axones pueden proyectarse como una longitud del varios centímetros, sólo establecen contacto con un pequeño número de otras neuronas. El lugar que ocupaba cada neurona en la arquitectura General le va a permitir tener más o menos interlocutores.
Los millones de neuronas se organizan en forma de circuitos. Algunos son diminutos microcircuitos, operadores de orden local e invisible a simple vista. Cuando mucho microcircuitos se colocan juntos, forman una región que se caracteriza por tener cierta arquitectura.

Las estructuras elementales regionales se presentan en dos variedades: la variedad núcleo y la variedad micro de la corteza cerebral. En unas micro área de la corteza cerebral, las neuronas se despliegan apiladas en capas. Muchas de estas capas tienen una delicada organización topográfica. Esta cualidad las hace ideales para acotar en mapas la información de manera detallada. En un número de neuronas, es facil confundir con el núcleo de la neurona, las neuronas se disponen como las uvas en el interior de un plato, aunque existen algunas parciales excepciones: los núcleos geniculados y los núcleos coliculares tienen por ejemplo brazos de dos dimensiones; varios núcleos tienen también una organización topográfica, lo que supone que pueden generar mapas no muy refinados.
Los núcleos contienen “saber hacer ”y los circuitos incorporan físicamente el conocimiento sobre de qué manera actuar o qué hacer cuando determinados mensajes hacen que el núcleo se active. Debido a este “saber hacer”, la actividad de los núcleos de neuronas resulta indispensable para la gestión de la vida en el caso de especies cuyos cerebros son más pequeños, con corteza cerebral o sin ella, y con capacidad limitada para acotar la información en mapas. Pero los núcleos son también indispensable para gestionar la vida en cerebros como los nuestros, en los cuales pasan a ser los responsables de la gestión básica de la vida, por el, el metabolismo, la respuesta visceral, las emociones, la actividad sexual, los sentimientos y aspectos de la conciencia. La manera de gobernar sistemas como el endocrino y el inmunológico depende de los núcleos, y también depende de ellos la vida afectiva. En los seres humanos, una buena parte del funcionamiento de los núcleos y las operaciones que llevan a cabo se hallan bajo la influencia de la mente, y eso significa, que en una amplia medida, aunque no por completo, se hallan bajo la influencia de la corteza cerebral.
Un hecho importante es que en las regiones particulares que los núcleos y las micro áreas corticales (patches) definen, se hallan interconectadas. Núcleos y micro áreas, a su vez, forman circuitos más grandes y lo hacen a una escalada cada vez mayor. Numerosas micro áreas de la corteza cerebral llegan a estar interconectadas, de forma interactiva, pero cada micro variedad está también conectada con los núcleos subcorticales. A veces una microárea cortical es receptora de las señales que provienen de un núcleo, otras veces es una emisora de señales; y algunas otras es tanto emisora como receptora. Las interacciones son especialmente significativas en relación con la miríada de núcleos del tálamo (en cuyo caso las conexiones con la corteza cerebral suelen hacerse en doble sentido) y en relación con los ganglios basales (en que las conexiones tienden a descender de la corteza o a dirigirse hacia ella, pero no ambas cosas).
En resumen, los circuitos de neuronas constituyen regiones corticales, cuando se configuran formando vainas dispuestas en capas paralelas, como un pastel; o constituyen núcleos cuando se agrupan en configuraciones no estratificadas (sin olvidar las excepciones antes mencionadas). Tanto a nivel de regiones corticales como en los núcleos se hayan interconectados con las proyecciones de los axones, y de este modo forman sistemas, con un nivel cada vez más elevado de complejidad, forman sistemas de sistemas. Cuando los racimos de proyección axonales son lo suficientemente grande para ser apreciados a simple vista, reciben el nombre del vías neurales. Toda las neuronas y circuitos locales son microscópicos, mientras que todas las regiones corticales, la mayoría de los núcleos y todos los sistemas de sistemas son macroscópicos.
Un gran número de células gliales forman el andamio que sustenta las neuronas de cualquier lugar del cerebro. Los axones se recubren de una vaina de mielina que los convierte en buenos conductores. La mielina están producidas por células gliales y son protectora de los axones. Las células gliales se diferencian de las neuronas porque no son excitables y no tienen axones ni dendritas y por tanto no tramiten señales a larga distancia. Las células gliales intervienen en la nutrición, aportando elementos que necesita la neurona. Posiblemente tienen más influencia de la que estamos escribiendo.
El sistema nervioso tiene dos grandes divisiones:
El principal componente del sistema nervioso es el cerebro, formado por dos hemisferios, izquierdo y derecho y unidos por el cuerpo calloso. Que desempeña un importante papel integrador.
Los hemisferios cerebrales están cubierto por la corteza cerebral, que se organiza en lóbulos (occipital, parietal, temporal y frontal) e incluye una región conocida como la corteza cingulada, sólo visible en la superficie interna en (medial). Cuando se examina la corteza cerebral hay dos regiones que no son visibles; se trata de la corteza insular, escondidas bajo la región frontal y parietal, y el hipocampo, una estructura cortical de carácter especial oculta en el lóbulo temporal.
Por debajo de la corteza cerebral del sistema nervioso central existen profundos conglomerados de núcleos como los ganglios basales, el cerebro anterior basal, la amígdala y el diencéfalo (que es la combinación de tálamo e hipotálamo). El encéfalo se haya unido a la médula espinal por el tronco del encéfalo, detrás del que se halla situado el cerebelo, con sus dos hemisferios. Si bien se suele mencionar conjuntamente el tálamo y el hipotálamo como componentes del diencéfalo, en realidad el hipotálamo ésta, desde el punto de vista funcional, más cerca del tronco del encéfalo, con el cual comparte la mayor parte de los aspectos decisivos de la regulación de la vida del organismo.
El sistema nervioso central se conecta con todo los puntos del cuerpo por medio de haces de axones que se originan en las neuronas y estos haces se llaman nervios. La suma total de todos los nervios que conectan el sistema nervioso central con la periferia, y viceversa, constituye el sistema nervioso periférico. Los nervios transmiten impulsos del cerebro al cuerpo y del cuerpo al cerebro. Una de las partes más antiguas e importantes del sistema nervioso periférico es el sistema nervioso autónomo, llamado así porque su funcionamiento es ajeno a nuestro control voluntario consciente. El sistema nervioso autónomo está formado por el sistema simpático, el sistema parasimpático y el sistema nervioso entérico. El sistema autónomo desempeña un papel decisivo en la regulación de la vida, así como la emociones y sentimientos. El cerebro y el cuerpo se hayan asimismo interrelacionado por moléculas químicas, por ejemplo, las hormonas que viajan por el torrente sanguíneo. Las que van del cerebro al cuerpo se originan en núcleos como los situados en el hipotálamo. Pero moléculas químicas también viajan en la dirección opuesta, e influyen directamente sobre las neuronas en determinadas zonas como el área postre más, donde desaparece la barrera hematoencefálica, que es el mecanismo de protección que se opone selectivamente al tránsito de la mayoría de los compuestos moleculares grandes presentes en la sangre,. El área postrema se sitúa en el tronco encefálico, muy cerca de estructuras como los núcleos parabraquiales y la sustancia gris periacueductal, que tan importante son para la regulación de la vida.
Sé si cortamos las láminas del sistema nervioso central en cualquier dirección y examinamos la sesión transversal, apreciamos una diferencia entre los sectores oscuros y pálidos de la muestra. Los sectores oscuro recibe el nombre de sustancia gris (aunque en realidad es una mezcla de marrón i lis), y los receptores para ellos reciben el nombre de sustancia blanca (aunque más bien café con leche) la tonalidad oscura del acto de dix se debe a los paquetes que han formado un gran número dos del soma celular entre las neuronas; la apariencia más claras de la sustancia blanca se debe a las vainas aislantes de los axones que brotan de los soma celular de situados en la materia gris. Tal como ya hemos señalado la mielina aporta la capa aislante que acelera la conducción eléctrica en los axones. El aislamiento míelinico y la rápida conducción de las señales son las características que distinguen a los axones, evolutivamente modernos. Las fibras no mielinizadas son bastante más lentas y su origen es más antiguo en términos evolutivos.
La sustancia gris presenta dos variedades. La variedad estratificada se encuentra en la corteza cerebral, que envuelve los hemisferios, y en la corteza cerebelosa que envuelve el cerebelo.
La variedad no estratificadas está formada por núcleos, uno de cuyos máximos exponentes, son los ganglios basales (situados en el interior de cada uno de los hemisferios cerebrales y constituido por tres grandes núcleos; el caudado, el putamen y el pálido); la amígdala, es un acúmulo de dimensiones considerables en el interior de cada lóbulo temporal; y de varios núcleos más pequeños que forman el tálamo, el hipotálamo y los sectores de sustancia gris del tronco encefálico.
La corteza cerebral recubre el encéfalo, de cada hemisferio cerebral, incluidas aquellas que se hallan situada en el fondo de las fisuras y surcos – grietas que dan al encéfalo su apariencia única de volumen llena de pliegues-. La corteza tiene desde los tres mm y las capas son paralelas unas a otras y a la superficie del cerebro. La neo corteza de la parte es la corteza cerebral evolutivamente más moderna. Las principales divisiones de la corteza cerebral se designan de la misma manera que los lóbulos (frontal, temporal, parietal y occipital). Toda las demás estructura grises (los diversos núcleos antes mencionados y el cerebelo) son subcorticales.
Las cortezas sensoriales y la corteza de asociación sólo se refieren al espacio que ocupan a lo largo de una cadena de procesamiento sensorial. Se llaman corteza sensoriales aquellas situadas a su alrededor. Por el cual las vías sensoriales periféricas entran en la corteza cerebral (por ejemplo, el punto de entrada para señales visuales, auditivas o táctiles). La región focal se extiende a presentar una reelección concéntrica y desempeña un papel muy importante en la elaboración de mapas detallados utilizando las señales de las que son portadoras las vías sensoriales.
La corteza de asociación, interrelaciona las señales que provienen de las cortezas iniciales. Están diseminada por todas partes de la corteza cerebral donde no hay corteza sensoriales iniciales o corteza motora. Se organizan de forma jerárquica, y las que se hayan más arriba en la cadena de suelen designar como el nombre de cortezas de asociación superiores, como son, por ejemplo, la corteza prefrontal y la cortezas temporales anteriores.
El mejor sistema para nombrar las regiones cerebrales lo propuso el neurólogo alemán Brodmann hace un siglo y siguen teniendo utilidad, aunque los números de las áreas no tienen nada que ver con su tamaño o con su importancia funcional.
La importancia de la posición
La estructura anatómica interna de una región cerebral es un factor determinante de la función que desempeña cuando hay en lugar en que se área de situada una determinada región en el interior del espacio tridimensional del cerebro es otro factor de importancia. Tanto el emplazamiento en el interior de la estructura global del encéfalo, como lectura anatómica interna, son en gran medida es consecuencia de la evolución, aunque en ella se incluye también el desarrollo individual. La experiencia individual da forma, moldea los circuitos cerebrales, y aunque la influencia resulta más marcada en los microcircuitos, se deja sentir inevitablemente también en el plano macroanatómico.
Los núcleos son estructuras de una gran antigüedad evolutiva y nos transportan una época de la historia de la evolución de la vida en la que los cerebros, era una cadena de ganglios unidos como las cuentas de un rosario. El ganglio es esencialmente un núcleo individual antes de ser incorporado en el transcurso de la evolución de la masa cerebral. Es el caso más claro es el cerebro de los nematodos.
La posición que ocupan los núcleos en el interior del conjunto del volumen encefálico es baja, ya que siempre están situados bajo el recubrimiento que proporciona la corteza cerebral. Se asientan en el tronco del encéfalo, hipotálamo y tálamo, ganglios basales y cerebro anterior basal (cuya extensión incluye la colección de núcleos que denominamos amígdala). Estos núcleos están enterrados en la capa principal de la corteza, y presentan todavía una jerarquía evolutiva. Cuanto más antiguos son, en términos históricos, más próximo se hallan a la línea media del encéfalo. Y dado que todo el cerebro consta de dos mitades, izquierda y derecha y en medio una línea que los divide, sucede también que los núcleo más antiguos se hallan situados mirando de frente a la parte situada al otro lado de la línea media, así sucede por ejemplo, en el caso de los núcleos del tronco del encéfalo, tan esenciales para regulación de la vida y para la conciencia. En el caso de los núcleos algo más modernos, la amígdala, derecha e izquierda, son más independientes y se hayan claramente separados uno del otro.
Las cortezas cerebrales son más recientes en términos evolutivos, que los núcleos, y se caracterizan por tener una estructura en forma de vaina bidimensional, que confieren a alguna de estas cortezas capacidades para la elaboración de mapas muy detallados. El número de capas presentes en una corteza varía no obstante, de sólo tres en el caso de la corteza más antigua en términos evolutivo, hasta seis capas en el caso de la corteza más reciente. La complejidad del conjunto de circuitos, en el interior de estas capas, así como entre ellas, también varía. La posición que ocupa el conjunto de circuitos en el interior del volumen encefálico es reveladora también desde el punto de vista funcional. Los circuitos más modernos, en General, se hallan situados alrededor o en el punto en que las principales vías sensoriales – auditiva, visual, somatosensorial – entran en el manto de la corteza cerebral, y de este modo quedan conectados con el procesamiento sensorial y el proceso de acotación de la información en mapas neuronales. Dicho de otro modo pertenecen al club de las cortezas sensoriales iniciales.
También existen diversas edades evolutivas en las cortezas motoras. Algunas cortezas motoras son bastante antiguas y pequeñas, y se hallan situadas también junto a la línea media de la corteza anterior el cíngulo y otras regiones motoras suplementarias, claramente visible en la superficie interna y medial de cada hemisferio cerebral. Otras cortezas motoras son modernas y sofisticadas en términos estructurales, y ocupan un considerable territorio en la superficie el exterior del cerebro (la superficie lateral).
Una determinada región acaba aportando al funcionamiento General del cerebro algo que está en dependencia muy notable, con las regiones con las que colabora, esto es, depende de que regiones se comuniquen con ella, y concreción en esta región reticular se comunica, o dicho de una manera más concreta, depende de que regiones proyectan sus neuronas a la región X (y de este modo son modificadas por su resultado) del lugar en que estaba situada la región X en el interior de la red dependen muchas cosas, y otro factor importante en el papel funcional que acabe por desempeñar en si la región X tiene o no capacidades para elaborar mapas.
La mente y el comportamiento son el resultado en cada momento del funcionamiento de ganancias de núcleos y paquetes corticales articulado por proyecciones neuronales convergentes y divergentes. Si estas grupos neuronales están bien organizadas y funcionan de manera armoniosa, el individuo sueña o hace poesías. Si no, el resultado es la demencia.
El contacto del cerebro con el mundo.
Dos tipos de estructuras neurales se hallan situadas en la frontera entre cerebro y el mundo. Una apunta hacia dentro, la otra lo hace hacia fuera. La primera estructura neural está formada por los receptores sensoriales situados en la periferia del cuerpo, esto es, la retina en el ojo, la coclea en el oído interno, las terminaciones nerviosas de la piel, y demás. Estos receptores no reciben proyecciones neuronales del exterior, al menos no de una manera natural si bien los inputs eléctricos parecidos a los neuronales que producen los implantes prostéticos actualmente están cambiando esta situación. Los receptores reciben, en cambio, estímulos físicos como la luz, vibraciones o contactos mecánicos. Los receptores sensoriales inician una cadena de señales que se extienden desde la frontera del cuerpo con el medio físico exterior, hasta el interior del encéfalo, la cual pasa a través de múltiples jerarquías de circuitos neuronales situados en el interior profundo de los territorios cerebrales. Pero las señales no se mueven en sentido ascendente como lo haría el agua al pasar por un sistema de cañerías. Las señales son objeto de un procesamiento y experimentado una transformación en cada nueva estación por la que pasan. Además tienden a enviar señales de vuelta hacia el lugar en el que se habían iniciado las cadenas de proyecciones entrantes. Este rasgo de la arquitectura del cerebro, escasamente estudiado, es muy posible que tenga una gran importancia para determinados aspectos de la conciencia.
El otro tipo fronterizo se sitúa allí donde terminan las proyecciones eferentes, hacia el exterior y dónde empieza el medio ambiente. La cadena de señales surge en el interior del cerebro, pero termina o bien liberando moléculas químicas o conectándose a fibras musculares del cuerpo. Esta última opción nos permiten movernos y hablar, y es en este extremo donde finalizan las principales cadenas eferentes, en en las que las señales se tramiten hacia la periferia y el exterior. Después de los músculo ya sólo queda realizar el movimiento directo en el espacio. En estadios anteriores de la evolución, la liberación de moléculas químicas en la membrana o el límite de la dermis desempeñó una importante función en la vida de un organismo. Se trataba de un importante medio de acción y, que aunque no hay duda de que liberamos feromonas, esta faceta está muy poco estudiada en los seres humanos.
Podemos considerar que el cerebro es una elaboración progresiva de algo que empezó siendo tan sencillo como un simple acto reflejo: una neurona NEU detecta el objeto OB y envía señales a la neurona ZADIG en, que se proyecta hacia la fibra muscular MUSC, y causa el movimiento. En una época posterior de la historia evolutiva, el circuito reflejo entre NEU y ZADIG se le añadió otra neurona, a la que llamamos INT.INT eran una interneurona y se comportaba de tal modo que las respuestas de la neurona ZADIG ya no era automática. La neurona ZADIG sólo responde, por ejemplo, si la neurona NEU se activa y descarga todo su arsenal sobre ella, pero no cuando recibe un mensaje más débil; una parte fundamental de la toma de decisiones se dejan en manos de la interneurona INT.
Un aspecto importante de la evolución del cerebro ha consistido precisamente en añadir neuronas equivalentes a interneuronas en cada nivel del conjunto de circuitos cerebrales (de hecho hay montones de esta índole de equivalente). A las células mayores de esta índole de equivalentes, situadas en la corteza cerebral, la podríamos denominar “ Interregiones”, ya que se hayan intercaladas entre otras regiones, con el evidente y sano propósito de modular la respuesta simple a los diversos estímulos, y con ello hace que la respuesta sean menos simples, menos automatizadas.
En el camino de hacer la modulación más sutil y sofisticada, el cerebro desarrolló sistemas que aportaban los estímulos en mapas tan detallados que tuvieron como consecuencia última la elaboración de imágenes y la formación de la mente. Con el tiempo, el cerebro se añadió a sí mismo, y eso permitió que se generan respuestas originales. Por último, ya en los seres humanos, cuando estas mentes con una conciencia reflexiva se organizaron en colectivos de seres semejantes, fue posible crear culturas y con ellas los artefactos y productos externos que las acompaña. A su vez las culturas han influido a lo largo de generaciones en el funcionamiento de los cerebros individuales, y con el tiempo influyeron en la evolución del cerebro humano en su conjunto.

El cerebro es un sistema de sistemas.
Cada sistema está formado por una intrincada interconexión de regiones corticales pequeñas aunque macroscópica y núcleos subcorticales, que está formado por circuito locales microscópicos, constituido por neuronas conectadas todas ellas por medio de sinapsis.
Aquello que la neurona hace depende del conjunto de neuronas al que pertenecen; aquello que los sistemas acaban haciendo depende de cómo los conjunto locales influyen en otro conjunto dentro de una arquitectura interconectada; por último, lo que cada conjunto aporta a la función del sistema al que pertenece, depende del lugar que ocupa en ese sistema.
Hipótesis sobre la equivalencia cerebro mente.
El cerebro forma parte del sistema físico, equivalencia e identidad se definen por atributos físicos como el hecho de tener una masa, unas dimensiones, el movimiento, la carga, etcétera.
Aquellos que rechazan la hipótesis de la identidad entre los estados físicos y los estados mentales, apuntan que si bien procede hablar de mapas neuronales que corresponde a un objeto físico particular, en cambio, sería absurdo hablar del patrón mental que le corresponde en términos físicos. Y la razón que aducen es que, hasta la fecha, la ciencia no podía determinar las características físicas de los patrones mentales, y sí la ciencia no puede hacerlo, entonces no se pueden identificar lo mental y lo físico.
De qué modo determinamos si los estados mentales son físicos. En el caso de los objetos del mundo exterior, procedemos percibiéndolos con nuestras sondas sensoriales periféricas y utilizando diversos instrumentos para llevar a cabo las mediciones. En el caso de los objetos mentales, sin embargo no podemos hacer lo mismo. No porque los acontecimientos mentales no tengan sus equivalencia neuronales, sino porque allí donde tienen lugar- el interior del encéfalo- los estados mentales no se pueden medir. De hecho, los acontecimientos mentales no pueden ser percibidos por parte del proceso que los incluye, esto es, la mente. Se trata de una situación desafortunada, aunque de ella nada se interfiere acerca del carácter físico de la mente o de su carácter no físico. Esta situación obliga, no obstante, a matizar las intuiciones que pueden sacarse de ella y, por esta razón, es prudente poner en tela de juicio la visión tradicional según la cual los estados mentales no equivalen a estados físicos. Suscribir una visión de esta índole, sobre la base de las observaciones introspectiva, es poco razonable. La perspectiva personal debe utilizarse y disfrutarse en aquello que nos ofrece directamente; la experiencia que puede hacerse consciente, y puede ayudar a orientar nuestra vida, siempre y cuando un exhaustivo análisis reflexivo en diferido, en el que se incluye el examen científico, del Valor a su consejo.
Los mapas neurales y las imágenes correspondientes se hallan en el interior del cerebro y son sólo accesible al dueño del cerebro. ¿A la pregunta de, en que otro lugar podrían estar los mapas de imágenes, sino en el interior de un sector particular del cerebro, habida cuenta de que, ante todo, se forman en el cerebro? Lo sorprendente sería que se hallaran fuera del cerebro, dado que la anatomía del cerebro no está diseñada para externalizarlos
Una perspectiva adicional que interprete los acontecimiento mentales es como siempre muy difícil admitir. Nadie discute que los acontecimiento mentales guardan correlación con los acontecimientos cerebrales, y que lo sea, si bien acontecimientos cerebrales se produzcan en el cerebro hicieran inaccesible a cualquier intento de medición directa, justifica la adopción de un enfoque especial. Los acontecimientos cerebrales en tales son productos de la larga evolución biológica. Los acontecimientos mentales cerebrales son posiblemente los procesos más complejo de la naturaleza, la necesidad de un tratamiento especial no tiene por qué causar extrañeza.
Aún con las avanzadas técnicas científicas que poseemos es difícil entender que lleguemos a describir toda la gama de fenómenos neurales asociados con un estado mental, aunque éste sea simple. Pero al mismo tiempo, es posible y necesario una aproximación teórica entre lo mental y lo neural, y resulta especialmente útil cuando se aborda un problema tan desconcertante como la casualidad descendente. Los estados mentales influyen en el comportamiento, como se evidencia en toda clase de hacer realizadas por el sistema nervioso de los músculos siguiendo sus órdenes. El problema o el misterio, tiene que ver con por la explicación de entender un fenómeno no físico., La mente puede influir en el mismo sistema nervioso físico que nos mueve actuar. Lo estados neurales y los estados mentales son las dos caras de un mismo proceso.
Rechazar la equivalencia entre la mente y el cerebro es algo problemático, a saber, que de alguna manera, para las neuronas, el hecho de crear mapas de cosas, y para estos mapas, acontecimiento mentales plenamente formados, es menos natural y plausible que para las otras células del organismo, crear la forma de las partes del cuerpo o llevar a cabo acciones corporales. Cuando las células del cuerpo propiamente dicho son colocadas juntas, en una configuración espacial particular, conforme a un plan, constituyen un objeto.
La mano por ejemplo, está formada por huesos, músculos, tendones, tejido conjuntivo, vasos sanguíneos y vías nerviosas y varias capas de piel, todo ello colocado en un sitio con orden de composición arquitectónico específico. Cuando la mano se mueve en el espacio, entonces realiza una acción; por ejemplo, al alzarse señala mi posición. Tanto el objeto como la acción son acontecimientos físicos, en el espacio y el tiempo entonces. Cuando las neuronas dispuestas en una vaina de dos dimensiones están activas o inactivas, según los datos de entrada que reciben, crea un patrón. Cuando el patrón corresponde a algún objeto o alguna acción, constituye un mapa de algo más, un mapa de ese objeto o de esa acción.
la actividad de las células físicas, tienen un patrón igual de físico que los objetos o la reaccion con los que se corresponde. El patrón se dibuja de manera instantánea en el cerebro, es labrado en el cerebro a través de la actividad cerebral. ¿Por qué entonces los circuitos de células cerebrales no iban a crear cierto tipo de correspondencia de imagen para las cosas, siempre y cuando la célula estén adecuadamente conectadas y estén activas cuando deben estarlo?
No es de estrañar que en un futuro próximo tengamos pruebas funcionales que nos hagan ver junto a lo morfológico lo “somatico” con lo que hasta ahora se ha llamado “espiritual·, pero antes tenemos que convertir lo inconsciente en consciente.

Referencia
Y EL CEREBRO CREÓ AL HOMBRE . Antonio Damasio editoriasl Destino 2010

ARQUITECTURA DEL CEREBRO

El cerebro pese a su complejidad, tiene una arquitecturas repetitiva que es posible analizar . Su configuración en general es similar en todos los cerebros que observamos y su anatomía es muy coincidente también, y tiene una disposición y forma repetitiva, los ojos, las orejas, la boca y la nariz, son todas similares y solamente son algo diferente en cada individuo. Pero a pesar de la gran similitud en la forma de todos los cerebros, estos son muy individuales.
La arquitectura básica del cerebro está compuesta por células en cantidades de 10 elevado a 11 neuronas masivamente interconectada por conexiones llamadas axones. Estas conexiones que se cuentan por billones y es frecuente oír que todas las neurona están conectadas entre sí, y parece cierto que se conectan las neuronas, pero no todas con todas, sino algunas con algunas , lo cual fabrica unos patrones de una dificultad extraordinaria, que hacen que no todas las neuronas se conecten con todas las demás neuronas. Esta conexión es muy selectiva y depende de la parte del encéfalo que estemos estudiando.
Cuando nacemos los patrones de conexión neuronal que han sido dispuestos según las instrucciones de nuestros genes. Desde el momento de la concepción y durante su estancia en el útero, los cerebros están expuestos a estímulos medioambientales que modifican su arquitectura. Cuando nacemos la exposición a factores medioambientales aumenta y además se perciben de manera individual de forma que las conexiones se fortalecen o debilitan y se hacen más gruesas o delgadas, influenciadas por nuestra actividad. De forma que aprender y generar memoria es un proceso de modulación, y de dar forma individual a nuestro cerebro. El proceso que empezó al nacer se continua hasta el final y con frecuencia es modificado por la enfermedad.
Los procedimientos de investigación anatómica y funcional del cerebro evolucionan de manera notable. Y desde los estudios histológicos primitivos con tinciones específicas de las distintas estructuras cerebrales y su estudio microscópico, está utilizando procedimientos sofisticados tales como la resonancia magnética que nos permite conocer no solo su anatomía, sino también su función. Estos procedimientos no invasivos están permitiendo conocer las redes de conexión humana entendiendo que nos queda mucho por conocer.
La gran complejidad de la comunicación de las neuronas con el resto del cerebro, permite conocer el mundo que nos rodea y formar así la cultura.
Interpretar las cualidades del cerebro, sólo por las muchas neuronas y sinapsis que se establecen, en una palabra por la complejidad de su anatomía es una simpleza . Estas conexiones son imprescindible siempre que tengan el diseño adecuado, que permitan la configuración de circuitos y de la multiplicidad que éstos tienen en las distintas regiones que les permite asociarse y formar sistemas. La forma en que se asocian determina su función, así como la posición que ocupa una determinada arquitectura es de importancia vital.
El cerebro elabora la mente y esto se produce porque existe un tejido neural que al igual que cualquier otro tejido de nuestro organismo está formado por células. La célula fundamental del sistema nervioso es la neurona con características distintas en el mundo de la biología. La neurona es la célula fundamental del sistema nervioso pero necesitan de una red compleja de células nerviosas llamadas neuroglias que la soportan y mantienen . Estas aportan a las neuronas parte de los nutrientes que necesitan. Aunque las neuronas son la unidad fundamental del cerebro en cuanto a comportamientos y mente su función no sería posible sin la ayuda de la neuroglia.
Cuando las neuronas envían mensajes a través de sus axones, y estos llegan al músculo, y estos se contraen y producen movimiento. Pero las neuronas que se disponen en el interior de las redes complejas del cerebro , al ser activadas, elaboran mapas y el resultado son imágenes, que es la forma en que actúa la actividad mental, una frase útil es “el cerebro piensa en imágenes”. Las células gliales no saben hacer esto si bien participan en el funcionamiento de las células nobles.
Cada neurona tiene tres elementos anatómicos principales.
1. El cuerpo de la célula o soma celular, que es el centro de energía de la célula e incluye el núcleo de la celula y órganulos, el núcleo contiene el conjunto de genes que la gobiernan y las mitocondrias almacen de energía y contiene también ADN.
2. El axón que nace en el soma celular y es la principal aferencia.
3. Las dendritas, prolongaciones cortas que recuerdan un árbol que son también
Aferentes

Las neurona están conectadas entre sí por medio de una región mas amplia llamada sinapsis. En la mayoría de sinapsis, el axon de una neurona establece contacto químico con las dendritas de otra.
La neurona pueden estar activas (descargan impulso) o inactivas (cargadas y no producen impulsos). La descarga de impulso consiste en la producción de una señal electroquímica que cruza la frontera en dirección a otra neurona, esta frontera la marca la hendidura que existe entre la neurona presináptica y la postsinapticas, y esta señal estimula a la neurona postsináptica o ” neurona de descargué” y esta emite un impulso a su vez. Esto ocurre, siempre que la señal cumpla unos requisitos, por los que se rige la activación de la otra neurona. La señal electroquímica viaja del soma de la neurona al axón. La hendidura sináptica se halla situada entre el extremo de un axón y el comienzo de otra neurona, por lo general en la dendrita. Existe varias clases de neuronas en cuanto a su forma y tamaño, existen unas pocas excepciones así como ciertas variaciones menores. Las neuronas son todas microscopícas que necesitan de microscopios potentes, para estudiarlas , y cuando se trata de observar una sinapsis se requieren microscopios más potente.
Cuando la neurona descarga, la corriente eléctrica llamada potencial de acción se propaga alejándose del soma celular por el axon. El proceso dura milisegundos y al observar una imagen necesitamos unos fragmentos de segundo y de igual forma experimentamos los sentimientos en una escala de tiempo pequeñísima.
En una sinapsis se liberan sustancias químicas llamadas neurotransmisores, el más frecuente es el glutamato, el vertido del neurotransmisor se hace en la llamada hendidura sináptica. En una neurona excitadora, la interacción coopera con otras muchas neuronas cuyas sinapsis son contiguas y liberan o no su propia señal, esta emisión de neurotransmisor, determina que la siguiente neurona se activará y en consecuencia descargara, es decir producirá su propio potencial de acción que conducirá a la liberación de su propio neurotransmisor y así sucesivamente .
Las sinapsis pueden ser fuertes o débiles y la fuerza de la sinapsis determina que los impulsos sigan viajando hasta las siguientes neuronas, y de qué forma lo harán. En una neurona excitadora, una sinapsis fuerte facilita que el impulso viaje, en tanto que algunas de las débiles, lo impiden o lo bloquean.
Un aspecto fundamental del aprendizaje es el fortalecimiento de una sinapsis. La fuerza se traduce en el facilitar la descarga, y de este modo facilita la activación de las neuronas corriente abajo. La memoria depende de esta operación.
Donald Hebb a mediados del siglo XX pensó en la posibilidad de que el aprendizaje dependiera del fortalecimiento de la sinapsis que posteriormente activaría a otras neuronas.. En los últimos tiempos la compresión del aprendizaje ha abundado sobre todo en los mecanismos moleculares y en la genética.
Por término medio cada neurona se comunica con relativamente pocas neuronas, no se comunica con la mayoría y nunca se comunica con todas a la vez. Mucha neuronas se comunican solo con neuronas cercanas, dentro de circuitos relativamente locales; otras, aunque su axones pueden proyectarse como una longitud del varios centímetros, sólo establecen contacto con un pequeño número de otras neuronas. El lugar que ocupaba cada neurona en la arquitectura General le va a permitir tener más o menos interlocutores.
Los millones de neuronas se organizan en forma de circuitos. Algunos son diminutos microcircuitos, operadores de orden local e invisible a simple vista. Cuando mucho microcircuitos se colocan juntos, forman una región que se caracteriza por tener cierta arquitectura.

Las estructuras elementales regionales se presentan en dos variedades: la variedad núcleo y la variedad micro de la corteza cerebral. En unas micro área de la corteza cerebral, las neuronas se despliegan apiladas en capas. Muchas de estas capas tienen una delicada organización topográfica. Esta cualidad las hace ideales para acotar en mapas la información de manera detallada. En un número de neuronas, es facil confundir con el núcleo de la neurona, las neuronas se disponen como las uvas en el interior de un plato, aunque existen algunas parciales excepciones: los núcleos geniculados y los núcleos coliculares tienen por ejemplo brazos de dos dimensiones; varios núcleos tienen también una organización topográfica, lo que supone que pueden generar mapas no muy refinados.
Los núcleos contienen “saber hacer ”y los circuitos incorporan físicamente el conocimiento sobre de qué manera actuar o qué hacer cuando determinados mensajes hacen que el núcleo se active. Debido a este “saber hacer”, la actividad de los núcleos de neuronas resulta indispensable para la gestión de la vida en el caso de especies cuyos cerebros son más pequeños, con corteza cerebral o sin ella, y con capacidad limitada para acotar la información en mapas. Pero los núcleos son también indispensable para gestionar la vida en cerebros como los nuestros, en los cuales pasan a ser los responsables de la gestión básica de la vida, por el, el metabolismo, la respuesta visceral, las emociones, la actividad sexual, los sentimientos y aspectos de la conciencia. La manera de gobernar sistemas como el endocrino y el inmunológico depende de los núcleos, y también depende de ellos la vida afectiva. En los seres humanos, una buena parte del funcionamiento de los núcleos y las operaciones que llevan a cabo se hallan bajo la influencia de la mente, y eso significa, que en una amplia medida, aunque no por completo, se hallan bajo la influencia de la corteza cerebral.
Un hecho importante es que en las regiones particulares que los núcleos y las micro áreas corticales (patches) definen, se hallan interconectadas. Núcleos y micro áreas, a su vez, forman circuitos más grandes y lo hacen a una escalada cada vez mayor. Numerosas micro áreas de la corteza cerebral llegan a estar interconectadas, de forma interactiva, pero cada micro variedad está también conectada con los núcleos subcorticales. A veces una microárea cortical es receptora de las señales que provienen de un núcleo, otras veces es una emisora de señales; y algunas otras es tanto emisora como receptora. Las interacciones son especialmente significativas en relación con la miríada de núcleos del tálamo (en cuyo caso las conexiones con la corteza cerebral suelen hacerse en doble sentido) y en relación con los ganglios basales (en que las conexiones tienden a descender de la corteza o a dirigirse hacia ella, pero no ambas cosas).
En resumen, los circuitos de neuronas constituyen regiones corticales, cuando se configuran formando vainas dispuestas en capas paralelas, como un pastel; o constituyen núcleos cuando se agrupan en configuraciones no estratificadas (sin olvidar las excepciones antes mencionadas). Tanto a nivel de regiones corticales como en los núcleos se hayan interconectados con las proyecciones de los axones, y de este modo forman sistemas, con un nivel cada vez más elevado de complejidad, forman sistemas de sistemas. Cuando los racimos de proyección axonales son lo suficientemente grande para ser apreciados a simple vista, reciben el nombre del vías neurales. Toda las neuronas y circuitos locales son microscópicos, mientras que todas las regiones corticales, la mayoría de los núcleos y todos los sistemas de sistemas son macroscópicos.
Un gran número de células gliales forman el andamio que sustenta las neuronas de cualquier lugar del cerebro. Los axones se recubren de una vaina de mielina que los convierte en buenos conductores. La mielina están producidas por células gliales y son protectora de los axones. Las células gliales se diferencian de las neuronas porque no son excitables y no tienen axones ni dendritas y por tanto no tramiten señales a larga distancia. Las células gliales intervienen en la nutrición, aportando elementos que necesita la neurona. Posiblemente tienen más influencia de la que estamos escribiendo.
El sistema nervioso tiene dos grandes divisiones:
El principal componente del sistema nervioso es el cerebro, formado por dos hemisferios, izquierdo y derecho y unidos por el cuerpo calloso. Que desempeña un importante papel integrador.
Los hemisferios cerebrales están cubierto por la corteza cerebral, que se organiza en lóbulos (occipital, parietal, temporal y frontal) e incluye una región conocida como la corteza cingulada, sólo visible en la superficie interna en (medial). Cuando se examina la corteza cerebral hay dos regiones que no son visibles; se trata de la corteza insular, escondidas bajo la región frontal y parietal, y el hipocampo, una estructura cortical de carácter especial oculta en el lóbulo temporal.
Por debajo de la corteza cerebral del sistema nervioso central existen profundos conglomerados de núcleos como los ganglios basales, el cerebro anterior basal, la amígdala y el diencéfalo (que es la combinación de tálamo e hipotálamo). El encéfalo se haya unido a la médula espinal por el tronco del encéfalo, detrás del que se halla situado el cerebelo, con sus dos hemisferios. Si bien se suele mencionar conjuntamente el tálamo y el hipotálamo como componentes del diencéfalo, en realidad el hipotálamo ésta, desde el punto de vista funcional, más cerca del tronco del encéfalo, con el cual comparte la mayor parte de los aspectos decisivos de la regulación de la vida del organismo.
El sistema nervioso central se conecta con todo los puntos del cuerpo por medio de haces de axones que se originan en las neuronas y estos haces se llaman nervios. La suma total de todos los nervios que conectan el sistema nervioso central con la periferia, y viceversa, constituye el sistema nervioso periférico. Los nervios transmiten impulsos del cerebro al cuerpo y del cuerpo al cerebro. Una de las partes más antiguas e importantes del sistema nervioso periférico es el sistema nervioso autónomo, llamado así porque su funcionamiento es ajeno a nuestro control voluntario consciente. El sistema nervioso autónomo está formado por el sistema simpático, el sistema parasimpático y el sistema nervioso entérico. El sistema autónomo desempeña un papel decisivo en la regulación de la vida, así como la emociones y sentimientos. El cerebro y el cuerpo se hayan asimismo interrelacionado por moléculas químicas, por ejemplo, las hormonas que viajan por el torrente sanguíneo. Las que van del cerebro al cuerpo se originan en núcleos como los situados en el hipotálamo. Pero moléculas químicas también viajan en la dirección opuesta, e influyen directamente sobre las neuronas en determinadas zonas como el área postre más, donde desaparece la barrera hematoencefálica, que es el mecanismo de protección que se opone selectivamente al tránsito de la mayoría de los compuestos moleculares grandes presentes en la sangre,. El área postrema se sitúa en el tronco encefálico, muy cerca de estructuras como los núcleos parabraquiales y la sustancia gris periacueductal, que tan importante son para la regulación de la vida.
Sé si cortamos las láminas del sistema nervioso central en cualquier dirección y examinamos la sesión transversal, apreciamos una diferencia entre los sectores oscuros y pálidos de la muestra. Los sectores oscuro recibe el nombre de sustancia gris (aunque en realidad es una mezcla de marrón i lis), y los receptores para ellos reciben el nombre de sustancia blanca (aunque más bien café con leche) la tonalidad oscura del acto de dix se debe a los paquetes que han formado un gran número dos del soma celular entre las neuronas; la apariencia más claras de la sustancia blanca se debe a las vainas aislantes de los axones que brotan de los soma celular de situados en la materia gris. Tal como ya hemos señalado la mielina aporta la capa aislante que acelera la conducción eléctrica en los axones. El aislamiento míelinico y la rápida conducción de las señales son las características que distinguen a los axones, evolutivamente modernos. Las fibras no mielinizadas son bastante más lentas y su origen es más antiguo en términos evolutivos.
La sustancia gris presenta dos variedades. La variedad estratificada se encuentra en la corteza cerebral, que envuelve los hemisferios, y en la corteza cerebelosa que envuelve el cerebelo.
La variedad no estratificadas está formada por núcleos, uno de cuyos máximos exponentes, son los ganglios basales (situados en el interior de cada uno de los hemisferios cerebrales y constituido por tres grandes núcleos; el caudado, el putamen y el pálido); la amígdala, es un acúmulo de dimensiones considerables en el interior de cada lóbulo temporal; y de varios núcleos más pequeños que forman el tálamo, el hipotálamo y los sectores de sustancia gris del tronco encefálico.
La corteza cerebral recubre el encéfalo, de cada hemisferio cerebral, incluidas aquellas que se hallan situada en el fondo de las fisuras y surcos – grietas que dan al encéfalo su apariencia única de volumen llena de pliegues-. La corteza tiene desde los tres mm y las capas son paralelas unas a otras y a la superficie del cerebro. La neo corteza de la parte es la corteza cerebral evolutivamente más moderna. Las principales divisiones de la corteza cerebral se designan de la misma manera que los lóbulos (frontal, temporal, parietal y occipital). Toda las demás estructura grises (los diversos núcleos antes mencionados y el cerebelo) son subcorticales.
Las cortezas sensoriales y la corteza de asociación sólo se refieren al espacio que ocupan a lo largo de una cadena de procesamiento sensorial. Se llaman corteza sensoriales aquellas situadas a su alrededor. Por el cual las vías sensoriales periféricas entran en la corteza cerebral (por ejemplo, el punto de entrada para señales visuales, auditivas o táctiles). La región focal se extiende a presentar una reelección concéntrica y desempeña un papel muy importante en la elaboración de mapas detallados utilizando las señales de las que son portadoras las vías sensoriales.
La corteza de asociación, interrelaciona las señales que provienen de las cortezas iniciales. Están diseminada por todas partes de la corteza cerebral donde no hay corteza sensoriales iniciales o corteza motora. Se organizan de forma jerárquica, y las que se hayan más arriba en la cadena de suelen designar como el nombre de cortezas de asociación superiores, como son, por ejemplo, la corteza prefrontal y la cortezas temporales anteriores.
El mejor sistema para nombrar las regiones cerebrales lo propuso el neurólogo alemán Brodmann hace un siglo y siguen teniendo utilidad, aunque los números de las áreas no tienen nada que ver con su tamaño o con su importancia funcional.
La importancia de la posición
La estructura anatómica interna de una región cerebral es un factor determinante de la función que desempeña cuando hay en lugar en que se área de situada una determinada región en el interior del espacio tridimensional del cerebro es otro factor de importancia. Tanto el emplazamiento en el interior de la estructura global del encéfalo, como lectura anatómica interna, son en gran medida es consecuencia de la evolución, aunque en ella se incluye también el desarrollo individual. La experiencia individual da forma, moldea los circuitos cerebrales, y aunque la influencia resulta más marcada en los microcircuitos, se deja sentir inevitablemente también en el plano macroanatómico.
Los núcleos son estructuras de una gran antigüedad evolutiva y nos transportan una época de la historia de la evolución de la vida en la que los cerebros, era una cadena de ganglios unidos como las cuentas de un rosario. El ganglio es esencialmente un núcleo individual antes de ser incorporado en el transcurso de la evolución de la masa cerebral. Es el caso más claro es el cerebro de los nematodos.
La posición que ocupan los núcleos en el interior del conjunto del volumen encefálico es baja, ya que siempre están situados bajo el recubrimiento que proporciona la corteza cerebral. Se asientan en el tronco del encéfalo, hipotálamo y tálamo, ganglios basales y cerebro anterior basal (cuya extensión incluye la colección de núcleos que denominamos amígdala). Estos núcleos están enterrados en la capa principal de la corteza, y presentan todavía una jerarquía evolutiva. Cuanto más antiguos son, en términos históricos, más próximo se hallan a la línea media del encéfalo. Y dado que todo el cerebro consta de dos mitades, izquierda y derecha y en medio una línea que los divide, sucede también que los núcleo más antiguos se hallan situados mirando de frente a la parte situada al otro lado de la línea media, así sucede por ejemplo, en el caso de los núcleos del tronco del encéfalo, tan esenciales para regulación de la vida y para la conciencia. En el caso de los núcleos algo más modernos, la amígdala, derecha e izquierda, son más independientes y se hayan claramente separados uno del otro.
Las cortezas cerebrales son más recientes en términos evolutivos, que los núcleos, y se caracterizan por tener una estructura en forma de vaina bidimensional, que confieren a alguna de estas cortezas capacidades para la elaboración de mapas muy detallados. El número de capas presentes en una corteza varía no obstante, de sólo tres en el caso de la corteza más antigua en términos evolutivo, hasta seis capas en el caso de la corteza más reciente. La complejidad del conjunto de circuitos, en el interior de estas capas, así como entre ellas, también varía. La posición que ocupa el conjunto de circuitos en el interior del volumen encefálico es reveladora también desde el punto de vista funcional. Los circuitos más modernos, en General, se hallan situados alrededor o en el punto en que las principales vías sensoriales – auditiva, visual, somatosensorial – entran en el manto de la corteza cerebral, y de este modo quedan conectados con el procesamiento sensorial y el proceso de acotación de la información en mapas neuronales. Dicho de otro modo pertenecen al club de las cortezas sensoriales iniciales.
También existen diversas edades evolutivas en las cortezas motoras. Algunas cortezas motoras son bastante antiguas y pequeñas, y se hallan situadas también junto a la línea media de la corteza anterior el cíngulo y otras regiones motoras suplementarias, claramente visible en la superficie interna y medial de cada hemisferio cerebral. Otras cortezas motoras son modernas y sofisticadas en términos estructurales, y ocupan un considerable territorio en la superficie el exterior del cerebro (la superficie lateral).
Una determinada región acaba aportando al funcionamiento General del cerebro algo que está en dependencia muy notable, con las regiones con las que colabora, esto es, depende de que regiones se comuniquen con ella, y concreción en esta región reticular se comunica, o dicho de una manera más concreta, depende de que regiones proyectan sus neuronas a la región X (y de este modo son modificadas por su resultado) del lugar en que estaba situada la región X en el interior de la red dependen muchas cosas, y otro factor importante en el papel funcional que acabe por desempeñar en si la región X tiene o no capacidades para elaborar mapas.
La mente y el comportamiento son el resultado en cada momento del funcionamiento de ganancias de núcleos y paquetes corticales articulado por proyecciones neuronales convergentes y divergentes. Si estas grupos neuronales están bien organizadas y funcionan de manera armoniosa, el individuo sueña o hace poesías. Si no, el resultado es la demencia.
El contacto del cerebro con el mundo.
Dos tipos de estructuras neurales se hallan situadas en la frontera entre cerebro y el mundo. Una apunta hacia dentro, la otra lo hace hacia fuera. La primera estructura neural está formada por los receptores sensoriales situados en la periferia del cuerpo, esto es, la retina en el ojo, la coclea en el oído interno, las terminaciones nerviosas de la piel, y demás. Estos receptores no reciben proyecciones neuronales del exterior, al menos no de una manera natural si bien los inputs eléctricos parecidos a los neuronales que producen los implantes prostéticos actualmente están cambiando esta situación. Los receptores reciben, en cambio, estímulos físicos como la luz, vibraciones o contactos mecánicos. Los receptores sensoriales inician una cadena de señales que se extienden desde la frontera del cuerpo con el medio físico exterior, hasta el interior del encéfalo, la cual pasa a través de múltiples jerarquías de circuitos neuronales situados en el interior profundo de los territorios cerebrales. Pero las señales no se mueven en sentido ascendente como lo haría el agua al pasar por un sistema de cañerías. Las señales son objeto de un procesamiento y experimentado una transformación en cada nueva estación por la que pasan. Además tienden a enviar señales de vuelta hacia el lugar en el que se habían iniciado las cadenas de proyecciones entrantes. Este rasgo de la arquitectura del cerebro, escasamente estudiado, es muy posible que tenga una gran importancia para determinados aspectos de la conciencia.
El otro tipo fronterizo se sitúa allí donde terminan las proyecciones eferentes, hacia el exterior y dónde empieza el medio ambiente. La cadena de señales surge en el interior del cerebro, pero termina o bien liberando moléculas químicas o conectándose a fibras musculares del cuerpo. Esta última opción nos permiten movernos y hablar, y es en este extremo donde finalizan las principales cadenas eferentes, en en las que las señales se tramiten hacia la periferia y el exterior. Después de los músculo ya sólo queda realizar el movimiento directo en el espacio. En estadios anteriores de la evolución, la liberación de moléculas químicas en la membrana o el límite de la dermis desempeñó una importante función en la vida de un organismo. Se trataba de un importante medio de acción y, que aunque no hay duda de que liberamos feromonas, esta faceta está muy poco estudiada en los seres humanos.
Podemos considerar que el cerebro es una elaboración progresiva de algo que empezó siendo tan sencillo como un simple acto reflejo: una neurona NEU detecta el objeto OB y envía señales a la neurona ZADIG en, que se proyecta hacia la fibra muscular MUSC, y causa el movimiento. En una época posterior de la historia evolutiva, el circuito reflejo entre NEU y ZADIG se le añadió otra neurona, a la que llamamos INT.INT eran una interneurona y se comportaba de tal modo que las respuestas de la neurona ZADIG ya no era automática. La neurona ZADIG sólo responde, por ejemplo, si la neurona NEU se activa y descarga todo su arsenal sobre ella, pero no cuando recibe un mensaje más débil; una parte fundamental de la toma de decisiones se dejan en manos de la interneurona INT.
Un aspecto importante de la evolución del cerebro ha consistido precisamente en añadir neuronas equivalentes a interneuronas en cada nivel del conjunto de circuitos cerebrales (de hecho hay montones de esta índole de equivalente). A las células mayores de esta índole de equivalentes, situadas en la corteza cerebral, la podríamos denominar “ Interregiones”, ya que se hayan intercaladas entre otras regiones, con el evidente y sano propósito de modular la respuesta simple a los diversos estímulos, y con ello hace que la respuesta sean menos simples, menos automatizadas.
En el camino de hacer la modulación más sutil y sofisticada, el cerebro desarrolló sistemas que aportaban los estímulos en mapas tan detallados que tuvieron como consecuencia última la elaboración de imágenes y la formación de la mente. Con el tiempo, el cerebro se añadió a sí mismo, y eso permitió que se generan respuestas originales. Por último, ya en los seres humanos, cuando estas mentes con una conciencia reflexiva se organizaron en colectivos de seres semejantes, fue posible crear culturas y con ellas los artefactos y productos externos que las acompaña. A su vez las culturas han influido a lo largo de generaciones en el funcionamiento de los cerebros individuales, y con el tiempo influyeron en la evolución del cerebro humano en su conjunto.

El cerebro es un sistema de sistemas.
Cada sistema está formado por una intrincada interconexión de regiones corticales pequeñas aunque macroscópica y núcleos subcorticales, que está formado por circuito locales microscópicos, constituido por neuronas conectadas todas ellas por medio de sinapsis.
Aquello que la neurona hace depende del conjunto de neuronas al que pertenecen; aquello que los sistemas acaban haciendo depende de cómo los conjunto locales influyen en otro conjunto dentro de una arquitectura interconectada; por último, lo que cada conjunto aporta a la función del sistema al que pertenece, depende del lugar que ocupa en ese sistema.
Hipótesis sobre la equivalencia cerebro mente.
El cerebro forma parte del sistema físico, equivalencia e identidad se definen por atributos físicos como el hecho de tener una masa, unas dimensiones, el movimiento, la carga, etcétera.
Aquellos que rechazan la hipótesis de la identidad entre los estados físicos y los estados mentales, apuntan que si bien procede hablar de mapas neuronales que corresponde a un objeto físico particular, en cambio, sería absurdo hablar del patrón mental que le corresponde en términos físicos. Y la razón que aducen es que, hasta la fecha, la ciencia no podía determinar las características físicas de los patrones mentales, y sí la ciencia no puede hacerlo, entonces no se pueden identificar lo mental y lo físico.
De qué modo determinamos si los estados mentales son físicos. En el caso de los objetos del mundo exterior, procedemos percibiéndolos con nuestras sondas sensoriales periféricas y utilizando diversos instrumentos para llevar a cabo las mediciones. En el caso de los objetos mentales, sin embargo no podemos hacer lo mismo. No porque los acontecimientos mentales no tengan sus equivalencia neuronales, sino porque allí donde tienen lugar- el interior del encéfalo- los estados mentales no se pueden medir. De hecho, los acontecimientos mentales no pueden ser percibidos por parte del proceso que los incluye, esto es, la mente. Se trata de una situación desafortunada, aunque de ella nada se interfiere acerca del carácter físico de la mente o de su carácter no físico. Esta situación obliga, no obstante, a matizar las intuiciones que pueden sacarse de ella y, por esta razón, es prudente poner en tela de juicio la visión tradicional según la cual los estados mentales no equivalen a estados físicos. Suscribir una visión de esta índole, sobre la base de las observaciones introspectiva, es poco razonable. La perspectiva personal debe utilizarse y disfrutarse en aquello que nos ofrece directamente; la experiencia que puede hacerse consciente, y puede ayudar a orientar nuestra vida, siempre y cuando un exhaustivo análisis reflexivo en diferido, en el que se incluye el examen científico, del Valor a su consejo.
Los mapas neurales y las imágenes correspondientes se hallan en el interior del cerebro y son sólo accesible al dueño del cerebro. ¿A la pregunta de, en que otro lugar podrían estar los mapas de imágenes, sino en el interior de un sector particular del cerebro, habida cuenta de que, ante todo, se forman en el cerebro? Lo sorprendente sería que se hallaran fuera del cerebro, dado que la anatomía del cerebro no está diseñada para externalizarlos
Una perspectiva adicional que interprete los acontecimiento mentales es como siempre muy difícil admitir. Nadie discute que los acontecimiento mentales guardan correlación con los acontecimientos cerebrales, y que lo sea, si bien acontecimientos cerebrales se produzcan en el cerebro hicieran inaccesible a cualquier intento de medición directa, justifica la adopción de un enfoque especial. Los acontecimientos cerebrales en tales son productos de la larga evolución biológica. Los acontecimientos mentales cerebrales son posiblemente los procesos más complejo de la naturaleza, la necesidad de un tratamiento especial no tiene por qué causar extrañeza.
Aún con las avanzadas técnicas científicas que poseemos es difícil entender que lleguemos a describir toda la gama de fenómenos neurales asociados con un estado mental, aunque éste sea simple. Pero al mismo tiempo, es posible y necesario una aproximación teórica entre lo mental y lo neural, y resulta especialmente útil cuando se aborda un problema tan desconcertante como la casualidad descendente. Los estados mentales influyen en el comportamiento, como se evidencia en toda clase de hacer realizadas por el sistema nervioso de los músculos siguiendo sus órdenes. El problema o el misterio, tiene que ver con por la explicación de entender un fenómeno no físico., La mente puede influir en el mismo sistema nervioso físico que nos mueve actuar. Lo estados neurales y los estados mentales son las dos caras de un mismo proceso.
Rechazar la equivalencia entre la mente y el cerebro es algo problemático, a saber, que de alguna manera, para las neuronas, el hecho de crear mapas de cosas, y para estos mapas, acontecimiento mentales plenamente formados, es menos natural y plausible que para las otras células del organismo, crear la forma de las partes del cuerpo o llevar a cabo acciones corporales. Cuando las células del cuerpo propiamente dicho son colocadas juntas, en una configuración espacial particular, conforme a un plan, constituyen un objeto.
La mano por ejemplo, está formada por huesos, músculos, tendones, tejido conjuntivo, vasos sanguíneos y vías nerviosas y varias capas de piel, todo ello colocado en un sitio con orden de composición arquitectónico específico. Cuando la mano se mueve en el espacio, entonces realiza una acción; por ejemplo, al alzarse señala mi posición. Tanto el objeto como la acción son acontecimientos físicos, en el espacio y el tiempo entonces. Cuando las neuronas dispuestas en una vaina de dos dimensiones están activas o inactivas, según los datos de entrada que reciben, crea un patrón. Cuando el patrón corresponde a algún objeto o alguna acción, constituye un mapa de algo más, un mapa de ese objeto o de esa acción.
la actividad de las células físicas, tienen un patrón igual de físico que los objetos o la reaccion con los que se corresponde. El patrón se dibuja de manera instantánea en el cerebro, es labrado en el cerebro a través de la actividad cerebral. ¿Por qué entonces los circuitos de células cerebrales no iban a crear cierto tipo de correspondencia de imagen para las cosas, siempre y cuando la célula estén adecuadamente conectadas y estén activas cuando deben estarlo?
No es de estrañar que en un futuro próximo tengamos pruebas funcionales que nos hagan ver junto a lo morfológico lo “somatico” con lo que hasta ahora se ha llamado “espiritual·, pero antes tenemos que convertir lo inconsciente en consciente.

Referencia
Y EL CEREBRO CREÓ AL HOMBRE . Antonio Damasio editoriasl Destino 2010

.

.

ANATOMIA CEREBRAL DE LA CONDUCTA

ANATOMIA CEREBRAL DE LA CONDUCTA
Los órganos de los sentidos nos permiten una percepción muy limitada, la ayuda instrumental cada día más sofisticada, nos está informando de manera extraordinaria. Somos animales muy complejos, y el rector de nuestra economía, “el cerebro” es inimaginablemente complejo.
Si queremos saber que somos, es imprescindible conocer la anatomía de nuestro cerebro y desde aquí conocer su función. Función que es biológica y psíquica y que ha motivado a lo largo de miles de años, el controvertido dilema de cuerpo y alma.
Hace 500 millones de años periodo Cambrico. La organización neuronal en los primeros cerebros estaba destinada a controlar el metabolismo y funciones vitales basicas. Era el cerebro de los instintos propios de los reptiles
Hace 220 millones de años. Al añadirse nuevos circuitos neuronales aparecen las emociones y la información en relacion con las experiencias pasadas que se acoplaron al cerebro de los instintos.
Hace 55 millones de años. Los ultimos Primates, tienen ciruitos receptores de las aferencias externas localizados en las partes posteriores del cerebro (somaticos, visuales, auditivos). La parte anterior del cerebro (lobulo frontal) y especialmente en los hominidos se especializa en la razon, resolucion de problemas y toma de decisiones, organización y dirección
El hemisferio derecho veria el mundo como un todo. El arte la poesia, El analisis del todo conjuntamente.
El hemisferior izquierdo, veria el todo como la suma de sus partes, el habla, la logica y la razón. La suma de las partes es siempre inferior al todo
SYDNEY BRENNER descubridor del ARN PREMIO NOBEL DE MEDICINA 2002 afirma, que somos chimpancés con visión del futuro gracias al cerebro prefrontal. Un cerebro que podemos moldear y reforzar. ¿Cuándo se le pregunta si puede trasmitirse el conocimiento por vía genética?, Responde muy enfáticamente:
“No”. El ADN experimenta mutaciones a causa de sustancias químicas o radiaciones y pueden trasmitirse. Eso es todo. El ambiente es decisivo para producir mutaciones ontogenéticas.

Nuestro homo mas antiguo, fue de Australopithecus afarensis llamada Lucy, que tenía todas las cualidades para adquirir inteligencia.
Es Omnivoro
Hace dietas prolongadas Camina siempre.
Viaja y explora.
Tiene vida social.
Su cerebro pesa medio kilo,
vive entre 20 y 40 años

Apartándonos de datos, y dado que nos está permitido imaginar, recordemos el Fragmento del documental de FERNANDO MAKLUM que titula
EL SEXTO SENTIDO
Los Atlantes sabían que el cerebro tiene dos mitades prácticamente idénticas pero que tienen funciones diferentes.
El lado izdo. es la parte científica, controla el habla, la lógica y la razón.
El lado derecho reconoce forma patrones y sonidos. Es el artista que vive en la sombra y solo reconocemos su existencia en momentos de profunda relajación e inspiración.
La civilización atlante baso sus conocimientos en el uso del cerebro derecho que capta los objetos como un todo. Este tipo de conocimiento llamado lunar produce un vision integrada de toda la realidad. Al final de este gran ciclo empezó a predominar el pensamiento racional que se localiza en el lado izdo del cerebro y que funciona con palabras y conceptos, fragmentando y analizando el objeto que se quiere conocer. Esta manera de interpretar el Universo es llamada Solar y esta basada en la razon simbolo de la ciencia y la racionalidad.
Amold J. Toynbee, ilustre historiador británico, mundialmente conocido por su monumental Estudio de la Historia y otros trabajos fundamentales y Daisaku Ikeda, eminente filósofo japonés que desarrolla una destacada labor en defensa de la paz mundial, sostuvieron poco antes de la muerte del profesor Toynbee, verbalmente y por correspondencia, este importante diálogo sobre algunos problemas esenciales de la vida contemporánea.
Ikeda: Creo que una imagen total de la vida y de la psique humanas es imposible si no se presta atención a la esfera del inconsciente que se extiende detrás de todos los actos, pensamientos y deseos del hombre.
Toynbee: El inconsciente es la fuente de intuiciones que pueden inspirar al pensamiento racional; pero el espíritu no puede llegar a esas intuiciones si limita su actividad al nivel consciente.
Toynbee: Hay una tendencia a que una facultad más antigua se atrofie cuando otra nueva la complementa. Y esta es una circunstancia desdichada, porque la nueva facultad rara vez cumple todas las funciones de la vieja aunque puede llevar a cabo más eficazmente algunas de las funciones de ésta y aunque también pueda cumplir nuevas funciones que la facultad más antigua nunca desempeñó ni podría desempeñar.
Por ejemplo, entre las personas que han aprendido a leer y a escribir, se debilitó la facultad de la memoria, y quizá la facuItad de leer y escribir a su vez sufra por la influencia de la radiotelefonía y la televisión, usadas como medios de comunicación. De manera parecida creo yo que el subconsciente queda parcialmente atrofiado en los seres humanos por obra de los logros de la consciencia que aportaron la razón y la cultura.
No obstante algo se escapa a nuestro pensamiento organizado y funciones que se escapan a la conciencia tiene una fuerza capaces de dirigir nuestra conducta de manera no voluntaria. El experimento de John Dylan Haynes: el significativo al mostrar que nuestro subconsciente es capas de determinar acciones que no concienciamos
Realizamos un experimento con un escáner cerebral en el que las personas debían tomar decisiones muy sencillas. Podían decidir si pulsaban un botón a la izquierda u otro a la derecha.
Descubrimos que podíamos predecir su decisión siete segundos antes de que la hubiera tomado
En este caso, sientes que eres totalmente libre de elegir de hacer una cosa u otra, no hay nada que te obligue a elegir una opción o la otra. Es decir, no siete segundos antes de que pulsaran el botón, sino siete segundos antes, incluso de que pensaran que habían decidido cuál iban a escoger.
Registramos la actividad cerebral de las personas y descubrimos que podíamos predecir su decisión, si iban a pulsar el botón de la izquierda o de la derecha, siete segundos antes de que la hubieran tomado.
RAFAEL YUSTE. autor de la idea del MAPA CEREBRAL, ha recibido del presidente Obama dos millones de euros, para construir el mapa.
Parte de la idea que la corteza cerebral, la parte más grande del cerebro de los humanos y de los mamíferos “debe estar construida de una manera muy simple” utilizando unas reglas muy basicas
Y se contesta con la frase “nada puede utilizarse bien si no se conoce su anatomia y su funcion”.
Siempre es bueno recordar, que el hombre evolucionó porque sus ideas se convirtieron en materia.
La cantidad del acto que procesan nuestro cerebro no es entendible de una manera lineal. La evolución viene del conocimiento y del conocimiento del conjunto. El mundo, es demasiado complejo para que unos cuantos la interpreten. Muchos datos y muchos hombres conducen al conocimiento.
LA SUPERCOMPUTACION SERA NUESTRA GRAN ALIADA.
Pocas veces el hombre ha conocido tanto progreso tecnológico como en la informática. Los ordenadores son cada vez más rápidos, y el numeroo de chips que lo componen aumenta de manera exponencial según la ley de Moore, cada 2 años se duplica la potencia de cálculo de los procesadores que aparecen. En este contexto aparece el concepto de supercomputación, que empieza a ser familiar no sólo en la mayor parte de campos científicos, sino incluso en la vida diaria. La supercomputación hace referencia a los grandes ordenadores construidos para situarse en la frontera de la computación de altas prestaciones. Los primeros superordenadores se construyeron en los años 60 del siglo pasado por Seymour Cray, gracias a la sustitución de las válvulas de vacío por transistores, lo que supuso un salto significativo sobre la capacidad de computación existente, llegando a alcanzar velocidades en la escala del megaflop (un millón de operaciones de coma flotante por segundo). Posteriormente fueron incorporándose diferentes avances tecnológicos, como los circuitos integrados y la paralelización masiva. Desde los años 90, la velocidad de cálculo de los superordenadores ha ido escalando de forma exponencial, aumentando por 1000 aproximadamente cada 10 años. Los superordenadores actuales más potentes se componen de millones de procesadores en paralelo, lo que permite alcanzar velocidades de petaflops, y el almacenamiento de petabytes de información en sus discos [1]. En pocos años, se espera alcanzar la velocidad de exaflop y la capacidad de almacenar exabytes (computación a exaescala).

Arquitectura del cerebro

Arquitectura del cerebro

El estudio del cerebro nos demuestra que hay un arquitecturas repetitiva que es fácil de apreciar. Su configuración en general es similar en todos los cerebros que observamos y su anatomía es muy coincidente también, de la misma forma que tienen una disposición y forma repetitiva, los ojos, las orejas, la boca y la nariz. También son similares las dimensiones que solamente son algo diferente en cada individuo.
Pero a pesar de la gran similitud en la forma de todos los cerebros, estos son muy individuales.
La arquitectura básica del cerebro está compuesta por células en cantidades de 10 elevado a 11 neuronas masivamente interconectada por conexiones llamadas axones. Estas conexiones que se cuentan por billones y es frecuente oír que todas neurona están conectadas entre sí, y parece cierto que se conectan las neuronas, pero no todas con todas, sino algunas con algunas , lo cual fabrica unos patrones de una dificultad extraordinaria, que hacen que no todas las neuronas se conecten con todas las demás neuronas. Esta conexión es muy selectiva y depende de la parte del encéfalo que estemos estudiando.
Cuando nacemos tenemos los patrones de conexión neuronal que han sido dispuestos según las instrucciones de nuestros genes. Desde el momento de la concepción y durante su estancia en el útero, los cerebros están expuestos a estímulos medioambientales que modifican su arquitectura. Cuando nacemos la exposición a factores medioambientales aumenta y además se perciben de manera individual de forma que las conexiones se fortalecen o debilitan y se hacen más gruesas o delgadas, influenciadas por nuestra actividad. De forma que aprender y generar memoria es simplemente un proceso de modulación, y de dar forma individual a nuestro cerebro. El proceso que empezó al nacer se continua hasta el final y con frecuencia es modificado por la enfermedad.
Los procedimientos de investigación anatómica y funcional del cerebro evolucionan de manera notable. Y desde los estudios histológicos primitivos con tinciónes especifica de estructuras cerebrales y su estudio microscópico, se están utilizando procedimientos sofisticados donde por medio de la resonancia magnética no sólo se conoce la estructura y anatomía del cerebro sino su función. Estos procedimientos no invasivos están permitiendo conocer las redes de conexión humana entendiendo que nos queda mucho por conocer.
La gran complejidad de la comunicación de las neuronas con el resto del cerebro, convierte el mundo que nos rodea en conocimiento y da lugar a la cultura.
Parece fácil interpretar estas cualidades sólo por las muchas neuronas y sinapsis que se establecen, en una palabra por la complejidad de la anatomía. Estas son sin duda necesarias, pero se necesita algo más. Diseños en la configuración de circuitos y de la multiplicidad que éstos tienen en las distintas regiones que les permite asociarse y formar sistemas. La forma en que se asocian determina su función, así como la posición que ocupa una determinada arquitectura es de importancia vital.
El cerebro elabora la mente y esto se produce porque existe un tejido neural que al igual que cualquier otro tejido de nuestro organismo está formado por células. La célula fundamental del sistema nervioso es la neurona con características distintas en el mundo de la biología. Las neuronas es la célula fundamental del sistema nervioso pero son soportadas por otras células nerviosas llamadas neuroglias. Estas son el soporte físico que aportará las neuronas parte de los nutrientes que necesita. Aunque las neuronas son la unidad fundamental del cerebro en cuanto a comportamientos y mente su función no sería posible sin la ayuda de la neuroglia.
Cuando las neuronas envían mensajes a través de sus axones, y eston llegan al músculo este se contrae y produce movimiento. Pero las neuronas activadas dentro de las redes complejas del cerebro, elaboran mapas, el resultado son imágenes, que es la moneda principal de la actividad mental. Las células gliales no saben hacer esto si bien participan en el funcionamiento de las células nobles.
Cada neurona tiene tres elementos anatómicos principales.
1. El cuerpo de la célula o soma celular, quer es el centro de energía de la célula e incluye el núcleo de la celula y órganulos, el núcleo contiene el conjunto de genes que la gobiernan y las mitocondrias almacen de energía y contiene también ADN.
2. El axón que nace en el soma celular y es la principal aferencia.
3. Las dendritas, prolongaciones cortas que recuerdan un árbol que son también
Aferentes

Las neurona están conectadas entre sí por medio de una región mas amplia llamada sinapsis. En la mayoría de sinapsis, el axon de una neurona establece contacto químico con las dendritas de otra.
La neurona pueden estar activas (descargan impulso) o inactivas (cargadas y no producen impulsos). La descarga de impulso consiste en la producción de una señal electroquímica que cruza la frontera en dirección a otra neurona, esta frontera la marca la hendidura de la sinapsis, y esta señal entonces , afecta a la otra neurona ”descargué” y emita un impulso a su vez, siempre que la señal cumpla los requisitos, por los que se rige la activación de la otra neurona. La señal electroquímica viaja del soma de la neurona al axón. La hendidura sináptica se halla situada entre el extremo de un axón y el comienzo de otra neurona, por lo general en la dendrita. Si bien es una depleción, es preciso señalar, además de la variabilidad de la diferentes clases de neuronas en cuanto a su forma y tamaño, existen unas pocas excepciones así como ciertas variaciones menores. Cada neurona es tan pequeña que se precisa el máximo aumento en el microscopio para verla, y cuando se trata de observar una sinapsis se requiere incluso de un microscopio más potente que permita verla al observador.
Cuando la neurona descarga, la corriente eléctrica llamada potencial de acción se propaga alejándose del soma celular por el axon. El proceso dura milisegundo. Y cuando observamos una imagen necesitamos unos fragmentos de segundo y de igual forma experimentamos los sentimientos en una escala de tiempo pequeñísima.
Cuando los impulsos llegaba a los senos se deben saber quién, dónde llegan a una sinapsis se liberan sustancias químicas llamadas neurotransmisores, el más frecuente es el glutamato, el vertido del neurotransmisor se hace en la llamada hendidura sináptica. En una neurona excitadora, la interacción coopera con otra mucha neuronas cuyas sinapsis son contiguas y liberan o no su propia señal, esta emisión de neurotransmisor, determina que la siguiente neurona se activará y en consecuencia descargara, es decir producirá su propio potencial de acción que conducirá a la liberación de su propio neurotransmisor y así sucesivamente .
Las sinapsis pueden ser fuertes o débiles y la fuerza de la sinapsis determina si los impulsos seguirán viajando hasta las siguientes neuronas, y en su caso, de qué forma lo harán. En una neurona de excitadora, una sinapsis fuerte facilita que el impulso viaje, en tanto que algunas de las débiles, lo impiden o lo bloqueo.
Un aspecto fundamental del aprendizaje es el fortalecimiento de una sinapsis. La fuerza se traduce en el facilitar la descarga, y de este modo facilita la activación de las neuronas corriente abajo. La memoria depende de esta operación.
Donald Hebb a mediados del siglo xx, pensó en la posibilidad de que el aprendizaje dependiera del fortalecimiento de la sinapsis que posteriormente activaría a otras neuronas. Y partió de la base puramente teórica, pero su hipótesis fue corroborada posteriormente. En los últimos tiempos la compresión del aprendizaje ha abundado sobre todo en los mecanismos moleculares y en la genética.
Por término medio cada neurona se comunica con relativamente pocas neuronas, no se comunica con la mayoría y nunca se comunica con todas a la vez. Mucha neuronas hablan sólo con neuronas cercanas, dentro del circuito relativamente locales; otras, aunque su axones pueden proyectarse como una longitud del varios centímetros, sólo establecen contacto con un pequeño número de otras neuronas. El lugar que ocupaba cada neurona en la arquitectura General le va a permitir tener más o menos interlocutores.
Los millones de neuronas se organizan en forma de circuitos. Algunos son diminutos microcircuitos, operadores de orden local e invisible a simple vista. Cuando mucho microcircuitos de colocan juntos, en cambio, forman una región caracterizada por tener cierta arquitectura.
Las estructuras elementales regionales se presentan en dos variedades: la variedad núcleo y la variedad micro variedad de la corteza cerebral. En una micro áreas de la corteza cerebral, las neuronas se despliegan sobre vainas de superficie bidimensional apiladas en capas. Muchas de estas capas tienen una delicada organización topográfica. Este cualidad las hace ideales para acotar en mapas la información de manera detallada. En un número de neuronas, no confundir con el núcleo de la neurona, las neuronas se disponen, las uvas en el interior de un plato, aunque existen algunas parciales excepciones: los núcleos geniculados y los núcleos coliculares
,, tienen por ejemplo braza poco robadas de dos dimensiones; varios núcleos tienen también una organización topográfica, lo que supone que pueden generar mapas no muy refinados.
Los núcleos contienen “saber hacer”. Sus circuitos incorporan físicamente el conocimiento sobre de qué manera actuar o qué hacer cuando determinados mensajes hacen que el núcleo se active. Debido a este “saber hacer” basado en disposiciones, la actividad de los núcleos de neuronas resulta indispensable para la gestión de la vida en el caso de especies cuyos cerebros son más pequeños, con corteza cerebral o sin ella, y con capacidad limitada para acotar la información en mapas. Pero los núcleos son también indispensable para gestionar la vida en cerebros como los nuestros, en los cuales pasan a ser los responsables de la gestión básica de la vida, esto es, el metabolismo, la respuesta visceral, las emociones, la actividad sexual, los sentimientos y aspectos de la conciencia. La manera de gobernar sistemas como el endocrino y el inmunológico depende de los núcleos, y también depende de ellos la vida afectiva. En los seres humanos, no obstante, una buena parte del funcionamiento de los núcleos y las operaciones que llevan a cabo se hallan bajo la influencia de la mente, y eso significa, que en una amplia medida, aunque no por completo, se hallan bajo la influencia de la corteza cerebral.
Un hecho importante es que en las regiones particulares que los núcleos y las micro áreas corticales (patches) definen, se hallan interconectadas. Núcleos y micro áreas, a su vez, forman circuitos más grandes y lo hacen a una escalada cada vez mayor. Numerosas micro áreas de la corteza cerebral llegan a estar interconectadas, de forma interactiva, pero cada micro variedad está también conectada con los núcleos subcorticales. A veces una microárea cortical es receptora de las señales que provienen de un núcleo, otras veces es una emisora de señales; y algunas otras es tanto emisora como receptora. Las interacciones son especialmente significativas en relación con la miríada de núcleos del tálamo (en cuyo caso las conexiones con la corteza cerebral tienden a hacerlo en doble sentido) y en relación con los ganglios basales (en que las conexiones R tienden a descender de la corteza o a dirigirse hacia ella, pero no ambas cosas).
En resumen, los circuitos de neuronas constituyen regiones corticales, cuando se configuran formando vainas dispuestas en capas paralelas, como un pastel; o constituyen núcleos cuando se agrupan en configuraciones no estratificadas (sin olvidar las excepciones antes mencionadas). Tanto a nivel de regiones corticales como en los núcleos se hayan interconectados con las proyecciones de los axones, y de este modo forman sistemas, con un nivel cada vez más elevado de complejidad, forman sistemas de sistemas. Cuando los racimos de proyección axonales son lo suficientemente grande para ser apreciados a simple vista, reciben el nombre del vías neurales. Toda las neuronas y circuitos locales son microscópicos, mientras que todas las regiones corticales, la mayoría de los núcleos y todos los sistemas de sistemas son macroscópicos.
Un gran número de células gliales forman el andamio que sustenta las neuronas de cualquier lugar del cerebro. Los axones se recubren de una vaina de melina que los convierte en el mundo aquellos conductores. La mielina estas debe a dar por células gliales y son protectora de los axones. Las células gliales se diferencian de las neuronas porque no son excitables y no tienen axones ni dendritas y por tanto no tramiten señales a larga distancia. Las células gliales intervienen en la nutrición, aportando elementos que aporten el día. Posiblemente tienen más influencia de la que estamos escribiendo.
El sistema nervioso tiene dos grandes divisiones:
El principal componente del sistema nervioso es el cerebro, formado por dos hemisferios, izquierdo y derecho y unido por el cuerpo calloso. Que desempeña un importante papel integrador.
Los hemisferios cerebrales están cubierto por la corteza cerebral, que se organiza en lóbulos (occipital, parietal, temporal y frontal) e incluye una región conocida como la corteza cingulada, sólo visible en la superficie interna en (medial). Cuando se examina la corteza cerebral hay dos regiones que no son visibles; se trata de la corteza insular, escondidas bajo la región frontal y parietal, y el hipocampo, una estructura cortical de carácter especial oculta en el lóbulo temporal.
Por debajo de la corteza cerebral del sistema nervioso central existen profundos conglomerados de núcleos como los ganglios basales, el cerebro anterior basal, la amígdala y el diencéfalo (que es la combinación de tálamo e hipotálamo). El encéfalo se haya unido a la médula espinal por el tronco del encéfalo, detrás del que se halla situado el cerebelo, con sus dos hemisferios. Si bien se suele mencionar conjuntamente el tálamo y el hipotálamo como componentes del diencéfalo, en realidad el hipotálamo ésta, desde el punto de vista funcional, más cerca del tronco del encéfalo, con el cual comparte la mayor parte de los aspectos decisivos de la regulación de la vida del organismo.
El sistema nervioso central se conecta con todo los puntos del cuerpo por medio de haces de axones que se originan en las neuronas y estos haces se llaman nervios. La suma total de todos los nervios que conectan el sistema nervioso central con la periferia, y viceversa, constituye el sistema nervioso periférico. Los nervios transmiten impulsos del cerebro al cuerpo y del cuerpo al cerebro. Una de las partes más antiguas e importantes del sistema nervioso periférico es el sistema nervioso autónomo, llamado así porque su funcionamiento es ajeno a nuestro control voluntario consciente. El sistema nervioso autónomo está formado por el sistema simpático, el sistema parasimpático y el sistema nervioso entérico. El sistema autónomo desempeña un papel decisivo en la regulación de la vida, así como la emociones y sentimientos. El cerebro y el cuerpo se hayan asimismo interrelacionado por moléculas químicas, por ejemplo, las hormonas que viajan por el torrente sanguíneo. Las que van del cerebro al cuerpo se originan en núcleos como los situados en el hipotálamo. Pero moléculas químicas también viajan en la dirección opuesta, e influyen directamente sobre las neuronas en determinadas zonas como el área postre más, donde desaparece la barrera hematoencefálica, que es el mecanismo de protección que se pone selectivamente al tránsito de la mayoría de los compuestos moleculares grandes presentes en la sangre,. El área postre ma se situa en el tronco encefálico, muy cerca de estructuras como los núcleos parabraquiales y la sustancia gris periacueductal, que tan importante son para la regulación de la vida.
Sé si cortamos las láminas del sistema nervioso central en cualquier dirección y examinamos la sesión transversal, apreciamos una diferencia entre los sectores oscuros y pálidos de la muestra. Los sectores oscuro recibe el nombre de sustancia gris (aunque en realidad es una mezcla de marrón i lis), y los receptores para ellos reciben el nombre de sustancia blanca (aunque más bien café con leche) la tonalidad oscura del acto de dix se debe a los paquetes que han formado un gran número dos del soma celular entre las neuronas; la apariencia más claras de la sustancia blanca se debe a las vainas aislantes de los axones que brotan de los soma celular de situados en la materia gris. Tal como ya hemos señalado la mielina aporta la capa aislante que acelera la conducción eléctrica en los axones. El aislamiento míelinico y la rápida conducción de las señales son las características que distinguen a los axones, evolutivamente modernos. Las fibras no mielinizadas son bastante más lentas y su origen es más antiguo en términos evolutivos.
La sustancia gris presenta dos variedades. La variedad estratificada se encuentra en la corteza cerebral, que envuelve los hemisferios, y en la corteza cerebelosa que envuelve el cerebelo.
La variedad no estratificadas está formada por núcleos, uno de cuyos máximos exponentes, son los ganglios basales (situados en el interior de cada uno de los hemisferios cerebrales y constituido por tres grandes núcleos; el caudado, el putamen y el pálido); la amígdala, es una cúmulo de dimensiones considerable en el interior de cada lóbulo temporal; y varios heredado de núcleo más pequeños que forman el tálamo, el hipotálamo y los sectores de sustancia gris del tronco encefálico.
La corteza cerebral se informó de capa recubre el encéfalo, tras recibirse de cada hemisferio cerebral, incluidas aquellas que se halla situada en el fondo de las fisuras y surcos- las grietas que dan al encéfalo su apariencia única de volumen llena de pliegues-. Pero sólo de la corteza desde los tres mm y las capas son paralelas unas a otras y a la superficie del cerebro. La neo corteza de la parte de la corteza cerebral evolutivamente más moderna. Las principales divisiones de la corteza cerebral se designan de la misma manera que los lóbulos (frontal, temporal, parietal y occipital). Toda las demás estructura grises (los diversos núcleos antes mencionados y el cerebelo) son subcorticales.
Las cortezas sensoriales y la corteza de asociación sólo se refieren al espacio que ocupan a lo largo de una cadena de procesamiento sensorial. Se llaman corteza sensoriales aquellas situadas situadas a su alrededor. Por el cual las vías sensoriales periféricas entran en la corteza cerebral (por ejemplo, el punto de entrada para señales visuales, auditivas o táctiles). La región focal se extiende a presentar una reelección concéntrica y desempeña un papel muy importante en la elaboración de mapas detallados utilizando las señales de las que son portadoras las vías sensoriales.
La corteza de asociación, interrelaciona las señales que provienen de las cortezas iniciales. Están diseminada por todas partes de la corteza cerebral donde no hay corteza sensoriales iniciales o corteza motora. Se organizan de forma jerárquica, y las que se hayan más arriba en la cadena de suelen designar como el nombre de cortezas de asociación superiores, como son, por ejemplo, la corteza prefrontal y la cortezas temporales anteriores.
El mejor sistema para nombrar las regiones cerebrales lo propuso el neurólogo alemán Brodmann hace un siglo y siguen teniendo utilidad, aunque los números de las áreas no tienen nada que ver con su tamaño o con su importancia funcional.
La importancia de la posición
La estructura anatómica interna de una región cerebral es un factor determinante de la función que desempeña cuando hay en lugar en que se área de situada una determinada región en el interior del espacio tridimensional del cerebro es otro factor de importancia. Tanto el emplazamiento en el interior de la estructura global del encéfalo, como lectura anatómica interna, son en gran medida es consecuencia de la evolución, aunque en ella se ha incluye también el desarrollo individual. La experiencia individual da forma, moldea los circuitos cerebrales, y aunque la influencia resulta más marcada en los microcircuitos, se deja sentir inevitablemente también en el plano macroanatómico.
Los núcleos son estructuras de una gran antigüedad evolutiva y nos transportan una época de la historia de la evolución de la vida en la que los cerebros, era una cadena de ganglios unidos como las cuentas de un rosario. El ganglio es esencialmente un núcleo individual antes de ser incorporado en el transcurso de la evolución de la masa cerebral. Es el caso más claro es el cerebro de los nematodos.
La posición que ocupan los núcleos en el interior del conjunto del volumen encefálico es baja, ya que siempre están situados bajo el recubrimiento que proporciona la corteza cerebral. Se asientan en el tronco del encéfalo, hipotálamo y tálamo, ganglios basales y cerebro anterior basal (cuya extensión incluye la colección de núcleos que denominamos amígdala). Estos núcleos estan desterrado de la capa principal de la corteza, y presentan todavía una jerarquía evolutiva. Cuanto más antiguos son, en términos históricos, más próximo se hallan a la linea media del encéfalo. Y dado que todo el cerebro consta de dos mitades, izquierda y derecha y en medio una línea que los divide, sucede también que los núcleo más antiguos se hallan situados mirando de frente a la parte situada al otro lado de la línea media, así sucede por ejemplo, en el caso de los núcleos del tronco del encéfalo, tan esenciales para regulación de la vida y para la conciencia. En el caso de los núcleos algo más modernos, la amígdala, derecha e izquierda, son más independientes y se hayan claramente separados uno del otro.
Las cortezas cerebrales son más recientes en términos evolutivos, que los núcleos, y se caracterizan por tener una estructura en forma de vaina bidimensional, que confieren a alguna de estas cortezas capacidades para la elaboración de mapas muy detallados. El número de capas presentes en una corteza María no obstante, dedos sólo tres en el caso de la corteza más antigua en términos evolutivo, hasta seis capas en el caso de la corteza más reciente. La complejidad del conjunto de circuitos, en el interior de estas capas, así como entre ellas, también varía. La posición que ocupa el conjunto de circuitos en el interior del volumen encefálico es reveladora también desde el punto de vista funcional. Los circuitos más modernos, en General, se hallan situados alrededor o en el punto en que las principales vías sensoriales – auditiva, visual, somatosensorial – entran en el manto de la corteza cerebral, y de este modo quedan conectados con el procesamiento sensorial y el proceso de acotación de la información en mapas neuronales. Dicho de otro modo pertenecen al club de las cortezas sensoriales iniciales.
También existen diversas edades evolutivas en las cortezas motoras. Algunas cortezas motoras son bastante antiguas y pequeñas, y se hallan situadas también junto a la línea media de la corteza anterior el cíngulo y otras regiones motoras suplementarias, claramente visible en la superficie interna y medial de cada hemisferio cerebral. Otras cortezas motoras son modernas y sofisticadas en términos estructurales, y ocupan un considerable territorio en la superficie el exterior del cerebro (la superficie lateral).
Una determinada región acaba aportando al funcionamiento General del cerebro algo que está en dependencia muy notable, con las regiones con las que colabora, esto es, depende de que regiones se comuniquen con ella, y concreción en esta región reticular se comunica, o dicho de una manera más concreta, depende de que regiones proyectan sus neuronas a la región X (y de este modo son modificadas por su resultado). Si, del lugar en que estaba situada la región X en el interior de la red dependen muchas cosas, y otro factor importante en el papel funcional que acabe por desempeñar en si la región X tiene o no capacidades para elaborar mapas.
La mente y el comportamiento son el resultado en cada momento del funcionamiento de ganancias de núcleos y paquetes corticales articulado por proyecciones neuronales convergentes y divergentes. Si éstas gracias neuronales están bien organizadas y funcionan de manera armoniosa, sube y su sueño hace poesía. Si no, el resultado es la demencia.
El contacto del cerebro con el mundo.
Dos tipos de estructuras neurales se hallan situadas en la frontera entre cerebro y el mundo. Una apunta hacia dentro, la otra lo hace hacia fuera. La primera estructura neural está formada por los receptores sensoriales situados en la periferia del cuerpo, esto es, la retina en el ojo, la coclea en el oído interno, las terminaciones nerviosas de la piel, y demás. Estos receptores no reciben proyecciones neuronales del exterior, al menos no de una manera natural si bien los imputs eléctricos parecidos a los neuronales que producen los implantes prostéticos actualmente están cambiando esta situación. Los receptores reciben, en cambio, estímulos físicos como la luz, vibraciones o contactos mecánicos. Los receptores sensoriales inician una cadena de señales que se extienden desde la frontera del cuerpo con el medio físico exterior, hasta el interior del encéfalo, la cual pasa a través de múltiples jerarquías de circuitos neuronales situados en el interior profundo de los territorios cerebrales. Pero las señales no se mueve en sentido ascendente como lo haría el agua al pasar por un sistema de cañerías. Las señales son objeto de un procesamiento y experimentado una transformación en cada nueva estación por la que pasan. Además tienden a enviar señales de vuelta hacia el lugar en el que se habían iniciado las cadenas de proyecciónes entrantes. Este rasgo de la arquitectura del cerebro, escasamente estudiado, es muy posible que tenga una gran importancia para determinados aspectos de la conciencia.
El otro tipo fronterizo se sitúa allí donde terminan las proyecciones eferentes, hacia el exterior y dónde empieza el medio ambiente. La cadena de señales surge en el interior del cerebro, pero termina o bien liberando moléculas químicas que en la atmósfera o conectándose a fibras musculares del cuerpo. Esta última opción no permiten modernos y hablar, y es en este extremo donde finalizan las principales cadenas eferentes, en, en las que las señales se tramiten hacia la periferia y el exterior. Después de los músculo ya sólo queda realizar el movimiento directo en el espacio. En estadios anteriores de la evolución, la liberación de moléculas químicas en la membrana o el límite de la dermis desempeñó una importante función en la vida de un organismo. Se trataba de un importante medio de acción y, que aunque no hay duda de que liberamos feromonas, esta faceta está muy poco estudiada en los seres humanos.
Podemos considerar que el cerebro es una elaboración progresiva de algo que empezó siendo tan sencillo como un simple acto reflejo un dos: una neurona NEU detecta el objeto OB y envía señales a la neurona ZADIG en, que se proyecta hacia la fibra muscular MUSC, y causa el movimiento. En una época posterior de la historia evolutiva, el circuito reflejo entre NEU y ZADIG se le añadió otra neurona, a la que llamamos INT.INT eran una interneurona y se comportaba de tal modo que las respuestas de la neurona ZADIG ya no era automática. La neurona ZADIG sólo responde, por ejemplo, si la neurona NEU se activa y descarga todo su arsenal sobre ella, pero no cuando recibe un mensaje más débil; una parte fundamental de la toma de decisiones se dejan en manos de la interneurona INT.
Un aspecto importante de la evolución del cerebro ha consistido precisamente en añadir neuronas equivalentes de interneuronas en cada nivel del conjunto de circuitos cerebrales (de hecho hay montones de esta índole de equivalente). A las células mayores de esta índole de equivalentes, situadas en la corteza cerebral, la podríamos denominar “ interregiones”, ya que se hayan intercaladas entre otras regiones, con el evidente y sano propósito de modular la respuesta simple a los diversos estímulos, y con ello hace que la respuesta sean menos simples, menos automatizadas.
En el camino de hacer la modulación más sutil y sofisticada, el cerebro desarrolló sistemas que aportaban los estímulos en mapas tan detallados que tuvieron como consecuencia última la elaboración de imágenes y la formación de la mente. Con el tiempo, el cerebro añadió en sí mismo, y eso permitió que se generan respuestas originales. Por último, ya en los seres humanos, cuando estas mentes con una conciencia reflexiva se organizaron en colectivos de seres semejantes, fue posible crear culturas y con ellas los artefactos y productos externos que las acompaña. A su vez las culturas han influido a lo largo de generaciones en el funcionamiento de los cerebros individuales, y con el tiempo influyeron en la evolución del cerebro humano en su conjunto.
El cerebro es un sistema de sistemas. Cada sistema está formado por una intrincada interconexión de regiones corticales pequeñas aunque macroscópica y núcleos subcorticales, que está formado por circuito locales microscópicos, constituido por neuronas conectadas todas ellas por medio de sinapsis.
Aquello que la neurona hace depende del conjunto de neuronas al que pertenecen; aquello que los sistemas acaban haciendo depende de cómo los conjunto locales influyen en otro conjunto dentro de una arquitectura interconectada; por último, lo que cada conjunto aporta a la función del sistema al que pertenece, depende del lugar que ocupa en ese sistema.
Hipótesis sobre la equivalencia cerebro mente.
El cerebro forma parte del sistema físico, equivalencia e identidad se definen por atributos físicos como el hecho de tener una masa, unas dimensiones, el movimiento, la carga, etcétera.
Aquellos que rechazan la hipótesis de la identidad entre los estados físicos y los estados mentales, apuntan que si bien procede hablar de mapas neuronales que corresponde a un objeto físico particular, en cambio, sería absurdo hablar del patrón mental que le corresponde en términos físicos. Y la razón que aducen es que, hasta la fecha, la ciencia no podía determinar las características físicas de los patrones mentales, y sí la ciencia no puede hacerlo, entonces no se pueden identificar lo mental y lo físico.
De qué modo determinamos si los estados mentales son físicos. En el caso de los objetos del mundo exterior, procedemos percibiéndolos con nuestras sondas sensoriales periféricas y utilizando diversos instrumentos para llevar a cabo las mediciones. En el caso de los objetos mentales, sin embargo no podemos hacer lo mismo. No porque los acontecimientos mentales no tengan sus equivalencia neuronales, sino porque allí donde tienen lugar- el interior del encéfalo- los estados mentales no se pueden medir. De hecho, los acontecimiento mentales no puede ser percibidos por parte del proceso que los incluye, esto es, la mente. Se trata de una situación desafortunada, aunque de ella nada se interfiere acerca del carácter físico de la mente o de su carácter no físico. Esta situación obliga, no obstante, a matizar las intuiciones que pueden sacarse de ella y, por esta razón, es prudente poner en tela de juicio la visión tradicional según la cual los estados mentales no equivalen a estados físicos. Suscribir una visión de esta índole, sobre la base de las observaciones introspectiva, es poco razonable. La perspectiva personal debe utilizarse y disfrutarse en aquello que nos ofrece directamente; la experiencia que puede hacerse consciente, y puede ayudar a orientar nuestra vida, siempre y cuando un exhaustivo análisis reflexivo en diferido, en el que se incluye el examen científico, del Valor a su consejo.
Los mapas neurales y las imágenes correspondientes se hallan en el interior del cerebro y son sólo accesible al dueño del cerebro. A la pregunta de, en que otro lugar podrían estar los mapas de imágenes, sino en el interior de un sector particular del cerebro, habida cuenta de que, ante todo, se forman en el cerebro? Lo sorprendente sería que se hallaran fuera del cerebro, dado que la anatomía del cerebro no está diseñada para externalizarlos
Hasta ahora, por las pruebas que aporta la neurobiología evolutiva dentro de las neurociencias.
Una perspectiva adicional que interprete los acontecimiento mentales es como siempre muy difícil admitir. Nadie discute que los acontecimiento mentales guardan correlación con los acontecimientos cerebrales, y que lo sea, si bien acontecimientos cerebrales se produzcan en el cerebro hicieran inaccesible a cualquier intento de medición directa, justifica la adopción de un enfoque especial. Los acontecimientos cerebrales en tales son productos de la larga evolución biológica, y por tanto tiene sentido tienen Valor la prueba que se puedan aportar desde la evolución. Los acontecimientos mentales cerebrales son posiblemente los cerebro más complejo de la naturaleza, la necesidad de un tratamiento especial no tiene porque causar extrañeza.
Aún con las avanzadas técnicas científicas que poseemos es difícil entender que lleguemos a describir toda la gama de fenómenos neurales asociados con un estado mental, aunque éste sea simple. Pero al mismo tiempo, es posible y necesario una aproximación teórica entre lo mental y lo neural, y resulta especialmente útil cuando se aborda un problema tan desconcertante como la casualidad descendente. Los estados mentales influye en el comportamiento, como se evidencia en toda clase de hacer realizadas por el sistema nervioso de los músculos siguiendo sus órdenes. El problema o el misterio, tiene que ver con por la explicación de entender un fenómeno no físico., La mente puede influir en el mismo sistema nervioso físico que nos mueve actuar. Lo estados neurales y los estados mentales son las dos caras de un mismo proceso.
Rechazar la equivalencia entre la mente y el cerebro se sigue de asumir, algo problemático, a saber, que de alguna manera, para las neuronas, el hecho de crear mapas de cosas, y para estos mapas, acontecimiento mentales plenamente formados, es menos natural y plausible que para las otras células del organismo, crear la forma de las partes del cuerpo o llevar a cabo acciones corporales. Cuando las células del cuerpo propiamente dicho son colocadas juntas, en una configuración espacial particular, conforme a un plan, constituyen un objeto.
La mano por ejemplo, está formada por huesos, músculos, tendones, tejido conjuntivo, vasos sanguíneos y vías nerviosas y varias capas de piel, todo ello colocado en un sitio con orden de composición arquitectónico específico. Cuando la mano se mueve en el espacio, entonces realiza una acción; por ejemplo, al alzarse señala mi posición. Tanto el objeto como la acción son acontecimientos físicos, en el espacio y el tiempo entonces. Cuando las neuronas dispuestas en una vaina de dos dimensiones están activas o inactivas, según los datos de entrada que reciben, crea un patrón. Cuando el patrón corresponde a algún objeto o alguna acción, constituye un mapa de algo más, un mapa de ese objeto o de esa acción.
Está basado en la actividad de las células físicas, el patrón es igual de físico que los objetos o la reaccion con los que se corresponde. El patrón se dibuja de manera instantánea en el cerebro, es labrado en el cerebro a través de la actividad cerebral. ¿Por qué entonces los circuitos de células cerebrales no iban a crear cierto tipo de correspondencia de imagen para las cosas, siempre y cuando la célula estén adecuadamente conectadas y estén activas cuando deben estarlo?
Referencia
Y EL CEREBRO CREÓ AL HOMBRE . Antonio Damasio editoriasl Destino 2010

.

EL CONECTOMA

99eb8d33ca915c748a2d3ee8bfeaf3261EL CONECTOMA
Un conectoma es un mapa de las conexiones entre las neuronas del cerebro. La producción y el estudio de los conectomas se conoce como conectómica.
La necesidad de dar forma al mundo que nos rodean se convierte en un principio vital, sin el cual no podemos partes.
Una forma y una función son condiciones imprescindibles para respuesta. Esto con un pensamiento clásico, no sabemos si en un futuro y a partir de la física cuántica, no será necesario. Lo cierto es que la compleja estructura del sistema nervioso, necesita una disposición para que sea útile. Hasta ahora el concepto de focalidad que describiera broca hace casi un siglo y medio, explicaba con cierta claridad cómo nuestras facultades estaban localizadas en alguna parte de nuestro cerebro. Sin embargo es todo no siempre ha sido así. La cirugía de los gliomas cerebrales, que demuestra que no siempre que se reseca una área expresiva, aparece un déficit. Las áreas expresivas suele estar multiplicada y permiten la persistencia de la función de puede ser mutiladas al menos parcialmente.
Que necesitamos un buen conocimiento anatómico de las neuronas y su comunicaciones no es discutible, pero su gran número imposibilita marcadamente el conocimiento.
En nuestra biología todo es un conjunto de forma, química y función y así con séptimo comprender parcialmente la interpretación de los órganos de los sentidos y elaborar una respuesta, que en principio son groseras. Pero intentar entender lo psíquico, lo espiritual del General lo no contable se hace enormemente complejo. No obstante el conocimiento del mapa cerebral de la neurona y sus conexiones es imprescindible. Pero no solo del punto de vista orgánico sino funcional. Topografíar un cilindro de la corteza cerebral, de 1,5 milímetros de diámetro no solamente supone un esfuerzo enorme aun con los ordenadores que conocemos. Necesitamos ordenadores más potentes que sean capaces de descifrar, por medio de la simulación el ordenamiento del conectoma. Pero la segunda parte es saber cómo funciona esto.
.
En 2005, Olaf Sporns, de la Universidad de Indiana, en el artículo The Human Connectome, a structural description of the human brain (El conectoma humano, una descripción funcional del cerebro humano)1 y Patric Hagmann, del Hospital Universitario de Lausana, en la tesis doctoral From diffusion MRI to brain connectomics (De la IRM de difusión a la conectómica cerebral),2 propusieron simultánea e independientemente el término connectome para referirse a un plano de las conexiones neuronales en un cerebro. El vocablo expresa el conjunto de las conexiones, del mismo modo que genoma expresa el conjunto de los genes.
Según Hagmann, «para comprender el funcionamiento de una red se deben conocer sus elementos y sus interconexiones El conectoma aumentará considerablemente nuestra comprensión de los procesos emergentes funcionales a partir de las estructuras cerebrales y proporcionará nuevas ideas sobre los mecanismos que utiliza el cerebro si las estructuras cerebrales están dañadas.»
Gracias al gusano Caenorhabditis elegans , se han podido reconstruir las conexiones neurales. White et al., 1986; Varshney et al., 2011), lnlclaron el Proyecto Conectoma Humano de los Institutos Nacionales de Salud (NHI) de los Estados Unidos, para construir un mapa de las redes neurales del cerebro humano adulto y sano.
Bock y otros han obtenido 12TB de datos que están disponibles públicamente en Open Connectome Project (Proyecto Conectoma Abierto).
Un conectoma óptimo sería la cartografía precisa de las conexiones de cada neurona, lo que resulta técnicamente muy largo y costoso y necesitaría el almacenaje y la utilización de una enorme cantidad de datos. Un cerebro humano contiene al menos 1010 neuronas unidas por 1014 conexiones sinápticas. Para fines de comparación, el número de bases del genoma humano es de 3×109.
A escala microscópica, el conectoma describe la disposición de las neuronas y de las sinapsis entre ellas en el interior de una parte del sistema nervioso.
Mientras que en el siglo XX se buscaba descubrir la secuencia completa del ADN, proyecto denominado “genoma humano”, actualmente se están desarrollando esfuerzos para obtener una descripción completa de la conectividad a gran escala (en cada una de las regiones de interés caben al menos 109 neuronas) de distintas regiones del cerebro, proyecto denominado “conectoma humano” (http://humanconnectome.org; véase la Figura 1). Este proyecto se propone estudiar tanto las redes estructurales del cerebro, construidas a partir de medidas de asociación física (p.ej., número de fibras axonales), como las redes funcionales, derivadas de medidas de dependencia estadística (p.ej., covarianza; Sporns, 2011). Si bien se han realizado importantes hallazgos en cuanto al cerebro humano en estadios prenatales (Miller, Ding y Sunkin, 2014), aún no es posible establecer completamente el conectoma adulto.
Se utilizan diversas técnicas para medir la conectividad cerebral. La conectividad estructural, es decir, el conjunto de conexiones físicas (anatómicas) que unen los elementos neuronales, se mide tanto mediante técnicas invasivas como el trazado de vías (“tract tracing”), que permite rastrear las proyecciones de una parte del sistema nervioso hacia otra (p.ej., mediante microesferas fluorescentes), como técnicas no invasivas, principalmente las imágenes por resonancia magnética (MRI por sus siglas en inglés) y las imágenes de tensor de difusión (DTI). Las MRI proporcionan información sobre la estructura y composición del cerebro, mientras que la técnica de DTI, al ser sensible a la forma tridimensional de la difusión de moléculas de agua, permite trazar las fibras de axones de la materia blanca.
La conectividad funcional, es decir, los patrones de coactivación entre las unidades neuronales distribuidas, se mide mediante técnicas invasivas como los electroencefalogramas intracraneales (iEEG), que registran la actividad eléctrica directamente de la corteza cerebral, y mediante técnicas no invasivas como las imágenes por resonancia magnética funcional (fMRI), la magnetoencefalografía (MEG) y la electroencefalografía (EEG). La fMRI sirve para identificar las regiones cerebrales que se activan mientras se ejecuta una tarea determinada, la MEG para registrar la actividad cerebral mediante la captación de campos magnéticos y la EEG para medir la actividad bioeléctrica cerebral en distintas condiciones basales (Sporns, 2010).
Recientemente, las investigaciones del proyecto conectoma se han extendido al campo de la psiquiatría, teniendo como objeto de estudio no sólo a cerebros “normales”, sino también “patológicos”. Al respecto, se han desarrollado algunas hipótesis que intentan explicar determinados trastornos neuropsiquiátricos, tales como la esquizofrenia, formulándolos en términos de problemas “económicos” de conectividad cerebral (Bulmmore y Sporns, 2012). A estas investigaciones subyacen dos supuestos: (i) el cerebro tiene costos metabólicos, ligados tanto al cableado de redes como a su funcionamiento, los cuales aumentan proporcionalmente a la distancia entre regiones conectadas; (ii) el cerebro realiza elecciones de “costo-beneficio”, dado que la organización de sus redes es el resultado de una “negociación económica” entre el costo físico de la red cerebral y el valor adaptativo de su topología: el cerebro está organizado para producir mayor valor por menor costo.
Al implicar costos metabólicos, el cerebro es altamente vulnerable a cualquier condición que afecte su suministro de energía. Si una red cerebral no puede afrontar los costos metabólicos de su actividad, los nodos centrales (“hubs”) resultarán especialmente susceptibles, y se producirá un problema funcional. Por ello, se predice que en los trastornos cerebrales asociados a alteraciones metabólicas se manifestarán anormalidades en sus componentes de alto costo (nodos centrales y conexiones de larga distancia), los cuales son centrales para la cognición y las conductas adaptativas.
Desde esta perspectiva, las causas funcionales en la esquizofrenia se entienden como un cambio anormal en las propiedades topológicas y los costos metabólicos del cerebro. De hecho, existe evidencia, generada a partir de MRI y fMRI, de un aumento anormal en la distancia de las conexiones neuronales, así como también un mayor número de conexiones de larga distancia (respecto a personas sanas; Bulmmore y Sporns, 2012). Si estas hipótesis resultasen adecuadas, podrían traducirse en nuevos modos de intervención basadas en los principios económicos del cerebro.
Trabajar a partir del concepto de red representa una ventaja respecto a los enfoques actuales de clasificación de trastornos (generalmente reduccionistas) que niegan la naturaleza interconectada de muchos de ellos. Esto tiene el potencial de replantear la forma en que se definen los trastornos, incorporando clasificaciones, definiciones de vulnerabilidad y predicciones e identificación de estrategias terapéuticas individualizadas. Asimismo, resultaría más coherente con los conocimientos actuales que poseemos respecto a los trastornos psiquiátricos, que indican que rara vez poseen una única causa, sino que más bien son producto de una multicausalidad compleja (Kendler, 2012).
Se espera que los estudios futuros sobre el conectoma humano amplíen de manera significativa nuestro conocimiento sobre el cerebro: sus redes funcionales y estructurales, su desarrollo, envejecimiento y sus alteraciones en diversas patologías, tales como la esquizofrenia, el autismo y el Alzheimer. Pero si bien el proyecto es prometedor, es preciso realizar algunas advertencias. Por un lado, existen al menos dos tipos de limitaciones: técnico-instrumentales, como la dificultad para obtener imágenes de alta resolución “in vivo”, y teóricas, dada la enorme complejidad del objeto de estudio y la perspectiva exclusivamente biologicista de este proyecto, la cual asume a priori que la raíz de los trastornos psiquiátricos se encuentra en el cerebro, desestimando aspectos importantes como el medio externo o el cuerpo. Por otro lado, hay que reconocer que la evidencia empírica obtenida hasta el momento, al menos para la esquizofrenia, no resulta concluyente. Por todas estas razones, es posible que transcurra aún un tiempo antes de que este proyecto aporte resultados con aplicaciones clínicas directas.
Referencias
Bullmore, E., y Sporns, O. (2012). The economy of brain network organization. Neuroscience, 13, 336-49.
Kendler, K. S. (2012). The dappled nature of causes of psychiatric illness: Replacing the organic–functional/hardware–software dichotomy with empirically based pluralism. Molecular Psychiatry, 17, 377–388.
Miller, J. A., Ding, S. L., y Sunkin, S. M. (2014) Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199-206.
Sporns, O. (2011). The human connectome: A complex network. Annals of the NY Academy of Sciences, 1224, 109-125.
Sporns, O. (2010). Networks of Brain. MIT Press.

EL UNIVERSO Y EL CEREBRO

EL UNIVERSO Y EL CEREBRO

La correspondencia entre las formas del universo, del macrocosmos y del microcosmos, nos hace pensar en una correspondencia de las funciones. Es decir, a diferentes escalas, tal vez a diferentes niíveles evolutivos, todas las cosas parecen operar bajos los mismos principios y manifestar una interconectividad que llena de asombro y refleja una enorme belleza en su arquitectura cósmica. Esto fue la inspiración, observar la naturaleza, que llevó a los primeros filósofos (y místicos) a formular teorías con respecto a la armonía universal, la semejanza de las formas y también sobre la divinidad (coherencia resonante en cada quantum del universo: el hombre como materialización simbólica de la conciencia cósmica, un ente cuyo cuerpo es información).
Entre los grandes filósofos de la naturaleza y de esta en particular que hoy en día la física agrupa bajo la teoría holográfica y fractal, se cuenta, en primer lugar, el mítico semidiós Hermes, a quien las tradiciones místicas le adjudican la fundación de todas las ciencias (incluyendo la escritura) y quien sintetizara toda la ciencia esotérica en su Tabla Esmeralda: «como arriba, es abajo»; Pitágoras, quien construyera una teoría de armonía universal entre las matemáticas, la música y los astros, cada uno una expresión (a diferente nivel) de un mismo código universal: el mundo, según este filósofo griego, es una sinfonía entre el Gran Hombre (el universo) y el Pequeño Hombre (el ser humano); Platón, quien viera en el mundo material la expresión o reflejo de un mundo espiritual (ideas o símbolos materializados).
Actualmente existen una serie de científicos que se han acercado desde la física a ese «arte» de la correspondencia entre las formas para descifrar el sistema operativo del universo (entre los cuales destaca David Bohm). Encontramos una versión interesante que expande estas teorías del autor Jay Alfred, cuyo postulado nos acerca a la posibilidad de que el universo entero sea una especie de inmenso cerebro (o Internet) que transmite información entre cada una de sus partes y el cerebro humano un reflejo de este cerebro cósmico al cual se conecta en perpetua retroalimentación.
«Las galaxias visibles en el universo no están aisladas ni desconectadas, sino están entretejidas por una estructura o red de filamentos que es la materia oscura que sirve como andamiaje del universo. Esta estructura en forma de red es una carcterística tanto de la materia oscura como del plasma magnético. La apariencia de esta red tiene un asombroso parecido con una disección del cerebro (ver imagen al principio de la entrada y hacer zoom).
»Pero no sólo es la morfología (aspectos estructurales) de la estructura del universo a grandes escalas la que es similar al cerebro humano, sino también la fisiología (las funciones). Estos filamentos transportan corrientes de partículas cargadas (iones) a lo largo de grandes distancias que generan campos magnéticos, al igual que una fibra nerviosa. Y forman circuitos, al igual que los circuitos neuronales en el cerebro.
»El alto grado de conectividad es lo que distingue al cerebro de una computadora ordinaria. La conectividad también es notable en la red cósmica. Las galaxias se forman cuando estos filamentos se cruzan entre sí. Un cúmulo (nexus) de filamentos provee la conectividad para transferir no sólo energía sino información de un núcleo galáctico a otro».
El autor también explica, aplicando la teoría de la memoria holográfica de Karl Pribram a toda la materia, cómo es posible que el universo sea también un organismo que graba todo lo que sucede en su «mansión de muchas habitaciones» (no existe el olvido, decía Borges). Algo que podría explicar por qué ciertos lugares parecen proyectar fantasmas o por qué la memoria está ligada al espacio donde un hecho ocurrió. Sugiere también la posibilidad de un intercambio de información entre los diversos tejidos cerebrales del universo, en sus diferentes escalas: galaxia, planeta, hombre, célula, electrón, etcétera:
«La Tierra parece tener un cerebro, ¿pero cómo recibe estímulos sensoriales? Una posibilidad es generando formas de vida. La miríada de formas de vida (incluyendo a los seres humanos) en el planeta son en realidad los muchos ojos y oídos de la Tierra. Las redes de corrientes en el cerebro de las formas de vida son parte integral de la red de corrientes en el cerebro de la Tierra. Es parte del interés del universo generar formas de vida para que pueda ver, oír, tocar, oler , probar y tomar conciencia de sí mismo de formas diversas.
»Si en realidad estamos conectados al cerebro de la Tierra, que está conectado al cerebro del universo, esto significa que compartimos un cerebro universal que puede tener contacto con el cerebro de otros planetas (o sistemas estelares) que generan sus propias memorias. Las formas de vida inteligente pueden mandar información (con o sin intención) vía el cerebro universal directamente a nuestro cerebro».
Tal vez el secreto de la semejanza entre las cosas, de las metáforas y los fractales, sea la obviedad. Que se parecen porque en el fondo son lo mismo. ¿Es posible que por alguna razón o divinidad en el insondable diseño del universo, las estrellas sean ojos y los cerebros galaxias?Es posible y quizás ese sea también el secreto del misterio de la existencia individual: averiguar por sí mismo y fundirse con el tejido neuronírico que llamamos universo, aquello a lo que tanto nos parecemos.
«El mayor hechicero (escribe memorablemente Novalis) sería el que hechizara hasta el punto de tomar sus propias fantasmagorías por apariciones autónomas. ¿No sería ese nuestro caso? Yo conjeturo que así es. Nosotros (la indivisa divinidad que opera en nosotros) hemos soñado el mundo. Lo hemos soñado resistente, misterioso, visible, ubicuo en el espacio y firme en el tiempo; pero hemos consentido en su arquitectura tenues y eternos intersticios de sinrazón para saber que es falso.» Jorge Luis Borges, «Avatares de la tortuga» (Discusión).
Harmonices mundi ( La armonía de los mundos , 1619 ) es un libro escrito por Johannes Kepler en la ciudad de Linz . El libro contiene la primera formulación de la tercera ley del movimiento planetario .
A Harmonices mundi Kepler intenta explicar los movimientos planetarios con base en un modelo geométrico de proporciones entre diferentes poliedros relacionando estos con escalas musicales. En esta obra muestra sus intentos de fijar las órbitas de los planetas en el interior de poliedros perfectos, o sólidos platónicos , tal como había hecho en una obra anterior, misterium Cosmographicum . Para gran decepción suya la teoría nunca funcionó y después de haber expuesto en largas páginas en esta obra la abandona finalmente mostrando que es incompatible con las observaciones y las leyes del movimiento planetario deducidas en Astronomía Nueva . Kepler intentó describir estos movimientos postulando una fuerza similar al magnetismo que él pensaba emanaba del Sol .
Kepler expuso en esta obra su teoría de que cada planeta produce un tono musical durante su movimiento de revolución alrededor del Sol y que la frecuencia del tono varía con la velocidad angular de los planetas. Algunos planetas producen notas musicales constantes: por ejemplo la Tierra sólo varía un semitono con una proporción de 16:15 (o equivalentemente la diferencia entre una nota mi y uno hace entre su afelio y su perihelio ) y Venus varía en un intervalo más reducido de 25:24. Kepler explica su razonamiento para deducir el reducido espacio de tonos propio de cada planeta en términos esotéricos.
« La Tierra canta Mi, Fa, Mi: se puede deducir de estas sílabas que en nuestro hogar podemos esperar mí seria y hace m. »
En momentos muy poco frecuentes todos los planetas podrían tocar juntos en perfecta concordancia. Kepler propuso que esto podría haber pasado una única vez en la historia, quizás en el momento de la creación.
En un libro anterior Astronomía nueva , Kepler había escrito las dos primeras leyes del movimiento planetario . La tercera ley, que indica que el cubo de la distancia media del planeta al Sol es proporcional al cuadrado de su período orbital, aparecía por primera vez en el capítulo 5 de este libro después de una larga discusión en astrología .

EL UNIVERSO Y EL CEREBRO

EL UNIVERSO Y EL CEREBRO

La correspondencia entre las formas del universo, del macrocosmos y del microcosmos, nos hace pensar en una correspondencia de las funciones. Es decir, a diferentes escalas, tal vez a diferentes niíveles evolutivos, todas las cosas parecen operar bajos los mismos principios y manifestar una interconectividad que llena de asombro y refleja una enorme belleza en su arquitectura cósmica. Esto fue la inspiración, observar la naturaleza, que llevó a los primeros filósofos (y místicos) a formular teorías con respecto a la armonía universal, la semejanza de las formas y también sobre la divinidad (coherencia resonante en cada quantum del universo: el hombre como materialización simbólica de la conciencia cósmica, un ente cuyo cuerpo es información).
Entre los grandes filósofos de la naturaleza y de esta en particular que hoy en día la física agrupa bajo la teoría holográfica y fractal, se cuenta, en primer lugar, el mítico semidiós Hermes, a quien las tradiciones místicas le adjudican la fundación de todas las ciencias (incluyendo la escritura) y quien sintetizara toda la ciencia esotérica en su Tabla Esmeralda: «como arriba, es abajo»; Pitágoras, quien construyera una teoría de armonía universal entre las matemáticas, la música y los astros, cada uno una expresión (a diferente nivel) de un mismo código universal: el mundo, según este filósofo griego, es una sinfonía entre el Gran Hombre (el universo) y el Pequeño Hombre (el ser humano); Platón, quien viera en el mundo material la expresión o reflejo de un mundo espiritual (ideas o símbolos materializados).
Actualmente existen una serie de científicos que se han acercado desde la física a ese «arte» de la correspondencia entre las formas para descifrar el sistema operativo del universo (entre los cuales destaca David Bohm). Encontramos una versión interesante que expande estas teorías del autor Jay Alfred, cuyo postulado nos acerca a la posibilidad de que el universo entero sea una especie de inmenso cerebro (o Internet) que transmite información entre cada una de sus partes y el cerebro humano un reflejo de este cerebro cósmico al cual se conecta en perpetua retroalimentación.
«Las galaxias visibles en el universo no están aisladas ni desconectadas, sino están entretejidas por una estructura o red de filamentos que es la materia oscura que sirve como andamiaje del universo. Esta estructura en forma de red es una carcterística tanto de la materia oscura como del plasma magnético. La apariencia de esta red tiene un asombroso parecido con una disección del cerebro (ver imagen al principio de la entrada y hacer zoom).
»Pero no sólo es la morfología (aspectos estructurales) de la estructura del universo a grandes escalas la que es similar al cerebro humano, sino también la fisiología (las funciones). Estos filamentos transportan corrientes de partículas cargadas (iones) a lo largo de grandes distancias que generan campos magnéticos, al igual que una fibra nerviosa. Y forman circuitos, al igual que los circuitos neuronales en el cerebro.
»El alto grado de conectividad es lo que distingue al cerebro de una computadora ordinaria. La conectividad también es notable en la red cósmica. Las galaxias se forman cuando estos filamentos se cruzan entre sí. Un cúmulo (nexus) de filamentos provee la conectividad para transferir no sólo energía sino información de un núcleo galáctico a otro».
El autor también explica, aplicando la teoría de la memoria holográfica de Karl Pribram a toda la materia, cómo es posible que el universo sea también un organismo que graba todo lo que sucede en su «mansión de muchas habitaciones» (no existe el olvido, decía Borges). Algo que podría explicar por qué ciertos lugares parecen proyectar fantasmas o por qué la memoria está ligada al espacio donde un hecho ocurrió. Sugiere también la posibilidad de un intercambio de información entre los diversos tejidos cerebrales del universo, en sus diferentes escalas: galaxia, planeta, hombre, célula, electrón, etcétera:
«La Tierra parece tener un cerebro, ¿pero cómo recibe estímulos sensoriales? Una posibilidad es generando formas de vida. La miríada de formas de vida (incluyendo a los seres humanos) en el planeta son en realidad los muchos ojos y oídos de la Tierra. Las redes de corrientes en el cerebro de las formas de vida son parte integral de la red de corrientes en el cerebro de la Tierra. Es parte del interés del universo generar formas de vida para que pueda ver, oír, tocar, oler , probar y tomar conciencia de sí mismo de formas diversas.
»Si en realidad estamos conectados al cerebro de la Tierra, que está conectado al cerebro del universo, esto significa que compartimos un cerebro universal que puede tener contacto con el cerebro de otros planetas (o sistemas estelares) que generan sus propias memorias. Las formas de vida inteligente pueden mandar información (con o sin intención) vía el cerebro universal directamente a nuestro cerebro».
Tal vez el secreto de la semejanza entre las cosas, de las metáforas y los fractales, sea la obviedad. Que se parecen porque en el fondo son lo mismo. ¿Es posible que por alguna razón o divinidad en el insondable diseño del universo, las estrellas sean ojos y los cerebros galaxias?Es posible y quizás ese sea también el secreto del misterio de la existencia individual: averiguar por sí mismo y fundirse con el tejido neuronírico que llamamos universo, aquello a lo que tanto nos parecemos.
«El mayor hechicero (escribe memorablemente Novalis) sería el que hechizara hasta el punto de tomar sus propias fantasmagorías por apariciones autónomas. ¿No sería ese nuestro caso? Yo conjeturo que así es. Nosotros (la indivisa divinidad que opera en nosotros) hemos soñado el mundo. Lo hemos soñado resistente, misterioso, visible, ubicuo en el espacio y firme en el tiempo; pero hemos consentido en su arquitectura tenues y eternos intersticios de sinrazón para saber que es falso.» Jorge Luis Borges, «Avatares de la tortuga» (Discusión).
Harmonices mundi ( La armonía de los mundos , 1619 ) es un libro escrito por Johannes Kepler en la ciudad de Linz . El libro contiene la primera formulación de la tercera ley del movimiento planetario .
A Harmonices mundi Kepler intenta explicar los movimientos planetarios con base en un modelo geométrico de proporciones entre diferentes poliedros relacionando estos con escalas musicales. En esta obra muestra sus intentos de fijar las órbitas de los planetas en el interior de poliedros perfectos, o sólidos platónicos , tal como había hecho en una obra anterior, misterium Cosmographicum . Para gran decepción suya la teoría nunca funcionó y después de haber expuesto en largas páginas en esta obra la abandona finalmente mostrando que es incompatible con las observaciones y las leyes del movimiento planetario deducidas en Astronomía Nueva . Kepler intentó describir estos movimientos postulando una fuerza similar al magnetismo que él pensaba emanaba del Sol .
Kepler expuso en esta obra su teoría de que cada planeta produce un tono musical durante su movimiento de revolución alrededor del Sol y que la frecuencia del tono varía con la velocidad angular de los planetas. Algunos planetas producen notas musicales constantes: por ejemplo la Tierra sólo varía un semitono con una proporción de 16:15 (o equivalentemente la diferencia entre una nota mi y uno hace entre su afelio y su perihelio ) y Venus varía en un intervalo más reducido de 25:24. Kepler explica su razonamiento para deducir el reducido espacio de tonos propio de cada planeta en términos esotéricos.
« La Tierra canta Mi, Fa, Mi: se puede deducir de estas sílabas que en nuestro hogar podemos esperar mí seria y hace m. »
En momentos muy poco frecuentes todos los planetas podrían tocar juntos en perfecta concordancia. Kepler propuso que esto podría haber pasado una única vez en la historia, quizás en el momento de la creación.
En un libro anterior Astronomía nueva , Kepler había escrito las dos primeras leyes del movimiento planetario . La tercera ley, que indica que el cubo de la distancia media del planeta al Sol es proporcional al cuadrado de su período orbital, aparecía por primera vez en el capítulo 5 de este libro después de una larga discusión en astrología .

« Entradas anteriores Entradas siguientes »