ÁCIDO GLUTÁMICO Y RECEPTORES NMDA

Esta sustancia fue descubierta e identificada en el año 1866, por el químico alemán Karl Heinrich Ritthausen que trató gluten de trigo (por el que fue nombrado) con ácido sulfúrico.5 En 1908 el investigador japonés Kikunae Ikeda de la Universidad Imperial de Tokio identificó los cristales de color pardo dejados después de la evaporación de una gran cantidad de caldo de kombu como ácido glutámico. Estos cristales, cuando se probaron, reproducían el sabor difícil de describir pero innegable que se detecta en muchos alimentos, sobre todo en las algas marinas. El profesor Ikeda denominó a este saborumami. Posteriormente diseñó y patentó un método para producir a gran escala el ácido glutámico en forma de una sal cristalina, el glutamato monosódico.6
El ácido glutámico, o en su forma ionizada, el glutamato (abreviado Glu o E) es uno de los 20 aminoácidos que forman parte de las proteínas.
Es el neurotransmisor excitatorio por excelencia de la corteza cerebral humana. Su papel como neurotransmisor está mediado por la estimulación de receptores específicos, denominados receptores de glutamato, que se clasifican en: ionotrópicos (canales iónicos) y receptores metabotrópicos (de siete dominios transmembrana y acoplados a proteínas G) de ácido glutámico.
Todas las neuronas contienen glutamato, pero sólo unas pocas lo usan como neurotransmisor. Es potencialmente excitotóxico, por lo que existe una compleja maquinaria para que los niveles de esta sustancia estén siempre regulados.
Uno de los aminoácidos más activos metabólicamente. El ácido glutámico es uno de los aminoácidos más abundantes del organismo y un comodín para el intercambio de energía entre los tejidos. Se considera un aminoácido no esencial porque se puede sintetizar en muchos tejidos, teniendo un papel fundamental en el mantenimiento y el crecimiento celular.
Es un sustrato para la síntesis de proteínas y un precursor del metabolismo anabólico en el músculo mientras que regula el equilibrio ácido/básico en el riñón y la producción de urea en el hígado. También interviene en el transporte de nitrógeno entre los diferentes órganos. Las células de la mucosa intestinal son voraces consumidoras de este aminoácido al igual que lo requieren como fuente de energía las células del sistema inmunitario. Finalmente, el ácido glutámico es un precursor para la síntesis de un metabolito con alto potencial antioxidante como es la producción del glutatión.
Varios estudios han demostrado que el estómago, intestino, páncreas y bazo consumen un 95% del ácido glutámico ingerido en la dieta, con lo que es importante tomar una dieta rica en proteínas para no alterar el equilibrio de aminoácidos con acceso al resto del organismo después de este paso inicial de nutrientes por el aparato digestivo.2
El glutamato interviene en la liberación de las GnRH (hormona liberadora de la gonadotropina) fundamental para el dimorfismo cerebral y corporal. Efectivamente, un descenso de GABA, junto con un aumento de glutamato coincide con un aumento en la liberación de GnRH. Del mismo modo, se sabe que cuando comienza la pubertad aumenta la glutaminasa, enzima encargada de la síntesis de glutamato, que a su vez dinamiza o controla la pulsatilidad de la GnRH a través de receptores NMDA.
La inflamación en el cerebro puede producir altos niveles de glutamato lo cual a su vez puede producir pensamientos suicidas en la persona afectada.34 un un
Los receptores NMDA o NMDAr (de N-metil-D-aspartato) son receptores celulares pertenecientes a un subgrupo (GluN) de los receptores ionotrópicos, un tipo de receptores de glutamato presente en las sinapsis neuronales, que participa en la regulación del potencial excitatorio postsináptico, teniendo un rol preponderante en la plasticidad neuronal, el aprendizaje y la memoria. También está involucrado en la patogenia de enfermedades neurológicas como la epilepsia, el accidente cerebrovascular, enfermedades neurológicas degenerativas tales como Parkinson, Huntington y Alzheimer; y psiquiátricas, como la esquizofrenia.123
El acrónimo NMDA procede de N-metil D-aspartato, un agonista selectivo que une a este tipo de receptores de glutamato pero no a otros tipos.
Los receptores de NMDA son de tipo ionotrópico y tienen características poco frecuentes tales como ser activados, en general, por voltaje y por unión de ligando (aminoácidos excitatorios como glutamato o aspartato). Las concentraciones fisiológicas de Mg2+ en las células en reposo son suficientes para bloquearlos. Cuando la célula alcanza potenciales ligeramente despolarizados (aprox. – 30/–20 mV), el Mg2+ pierde su afinidad por el receptor y deja de bloquearlo, y entonces el receptor de NMDA es sensible a la acción de sus ligandos. En la mayoría de las sinapsis los receptores de NMDA están asociados a receptores AMPA o a receptores de Kainato en la neurona postsináptica, que son los encargados de producir potenciales postsinápticos excitatorios (EPSPs) en respuesta a la liberación de aminoácidos excitatorios desde el terminal presináptico, despolarizando la membrana y permitiendo así el desbloqueo de los receptores de NMDA (por la disociación de Mg2+ desde el canal) y su posterior activación por una nueva liberación de aminoácidos excitatorios (el proceso de activación de los receptores de NMDA requiere, por tanto, una estimulación repetida con una determinada frecuencia desde el terminal presináptico). Los receptores de NMDA son permeables a Ca2+ (fundamentalmente) y Na+. La entrada de Ca2+ a través de estos receptores activa a las proteínas kinasas asociadas al sistema Ca2+/calmodulina (por ejemplo, tras la estimulación a alta frecuencia de neuronas presinápticas) y/o fosfatasas dependientes de Ca2+ (calcineurina) (por ejemplo tras la estimulación a baja frecuencia de neuronas presinápticas), disparando una serie de respuestas secundarias que conducen a la fosforilación/defosforilación de los receptores AMPA, esenciales en procesos de plasticidad sináptica. Estos cambios modifican a la alza o a la baja la actividad y el tráfico intracelular de dichos receptores AMPA, y así, se producen cambios de larga duración en las sinapsis excitadoras que pueden ser potenciadores (potenciación a largo lazo o LTP) o depresores (depresión a largo plazo o LTD) de dichas sinapsis y que están asociados a determinados procesos de memoria y aprendizaje. Además, también existen evidencias de la participación de receptores presinápticos en determinadas formas de LTD inducidas por el apareamiento en una ventana temporal (decenas de milisegundos) de potenciales de acción primero a nivel postsináptico y luego a nivel presináptico (conocidas en inglés como “spike-timing dependent LTD”). Aunque los mecanismos moleculares no se conocen con suficiente detalle, se postula un papel de dichos receptores NMDA presinápticos en la regulación negativa de la liberación exocitótica de neurotransmisores desde la neurona presináptica.
Referencias
• Intestinal glutamate metabolism. [J Nutr. 2000] – PubMed Result
• «Countering Brain Chemical Could Prevent Suicides». http://msutoday.msu.edu. 13 de diciembre de 2012. Consultado el 4 de febrero de 2013.
• «El glutamato y las ganas de suicidarse». Noticiasdelaciencia.com. 8 de enero de 2013. Consultado el 10 de enero de 2013.
• R.H.A. Plimmer (1912) [1908]. R.H.A. Plimmer & F.G. Hopkins, ed. The Chemical el tution of the Protein. Monographs on biochemistry. Part I. Analysis (2nd edición). Londres: lo Longmans, Green and Co. p. 114. Consultado el 3 de junio de 2012.
• «Kikunae Ikeda Sodium Glutamate». Japan Patent Office. 7 de octubre de 2002. Consultado el 21 de noviembre de 2008.
• Vyklick, V; Korinek, M; Smejkalov, T; Balik, A; Krausova, B; Kaniakova, M (2014). «Structure, Function, and Pharmacology of NMDA Receptor Channels» [Estructura, función y farmacología de los canales de los receptores NMDA]. Uno
• Li, Fei; Tsien, Joe Z (julio de 2013). «Memory and the NMDA Receptors» [Memoria y los receptores NMDA]. N Engl J Med (en inglés) (Shangai, China) 361 (3): 302-303. PMID 19605837. doi:10.1056/NEJMcibr0902052. Consultado el 2 de marzo de 2017.
• Yuan, Hongjie; Geballe, Matthew T; Hansen, Kasper B; Traynelis, Stephen F (junio de 2008). «Structure and function of the NMDA receptor» [Estructura y función del receptor NMDA]. En Hell, Johannes W; Ehlers, Michael D. Structural and Functional Organization of the Synapse [Organización estructural y funcional de las sinapsis] (en inglés)(Ilustrada edición). Springer Science & Business Media. pp. 289-316. ISBN 0387772324. Consultado el 2 de marzo de 2017.
• Dingledine R, Borges K, Bowie D, Traynelis SF (marzo de 1999). «The glutamate receptor ion channels». Pharmac