Investigadores del Cima, de la Clínica Universidad de Navarra y del Complejo Hospitalario de Navarra confirman que la amilina podría tener un papel relevante para los pacientes con enfermedad de Parkinson o Alzheimer.

Los investigadores Juan Antonio Sánchez, Irene Amat, Carlos de Andrea, María Rosario Luquin, Rafael Valentí, María Teresa Tuñón, Mario Riverol, Iván Martínez, Irene Marcilla y Laura Alonso.
.
Varios estudios señalan que la diabetes tipo 2 y la resistencia a la insulina u otros estadios prediabéticos podrían contribuir a la aparición de enfermedades neurodegenerativas como la enfermedad de Parkinson o la de Alzheimer. Sin embargo, no se conocían los elementos implicados en la asociación de estas enfermedades.
Investigadores del Cima, de la Clínica Universidad de Navarra y del Complejo Hospitalario de Navarra, pertenecientes al Instituto de Investigación Sanitaria de Navarra (IdiSNA), han descubierto un posible mecanismo que relaciona estas enfermedades.
Es la conclusión de dos estudios donde se han analizado el tejido cerebral y pancreático de personas diagnosticadas con enfermedad de Alzheimer, con enfermedad de Parkinson, y con diabetes tipo 2 PERO SIN NINGUNA ENFERMEDAD NEURODEGENERATIVA. Los resultados se han publicado en las revistas científicas Acta Neuropathologica y Annals of Neurology.

¿Cómo si sufre Alzheimer y Parkinson y DiabeteS tipo dos, no tiene enfermedad degenerativa?

“Nuestro estudio comenzó analizando las alteraciones patológicas presentes en el páncreas de los pacientes con enfermedad de Parkinson. Vimos que la principal proteína que se acumula en el cerebro de estas personas (alfa-sinucleína) está presente también en el páncreas. En paralelo, confirmamos que los pacientes diabéticos que no tenían esta proteína en el cerebro sí que la expresaban en el páncreas. Es decir, el páncreas de ambos pacientes es muy parecido en cuanto al contenido y distribución de determinadas proteínas, pero no ocurre lo mismo con su cerebro”, explica Iván Martínez-Valbuena, primer autor del este trabajo e investigador del Programa de Neurociencias del Cima.
Con los datos obtenidos, los investigadores se plantearon confirmar estos resultados en el páncreas de pacientes con otras enfermedades neurodegenerativas. “En colaboración con el Complejo Hospitalario de Navarra analizamos muestras de enfermos con alzhéimer y encontramos que las proteínas que se acumulan de forma preferente en su cerebro (beta-amiloide y tau) también lo hacían en el tejido pancreático”, confirman Irene Amat y María Teresa Tuñón, especialistas del Servicio de Anatomía Patológica del Complejo Hospitalario de Navarra.
Por otra parte, en las muestras de tejido pancreático pertenecientes a sujetos diabéticos, pero que no tenían ninguna enfermedad neurodegenerativa (párkinson o alzhéimer), también aparecían depósitos de estas proteínas. Según apunta María Rosario Luquin, neuróloga e investigadora del Cima y de la Clínica Universidad de Navarra, “nuestros resultados indican que la amilina (una proteína que se deposita en el páncreas de las personas diabéticas) tiene un papel clave en la aparición de estos depósitos anormales. En concreto, podría interactuar con estas proteínas y desencadenar una cascada de eventos que originarían el depósito anormal de estas proteínas tanto en el cerebro como en el páncreas, lo que puede dar lugar al desarrollo de estas enfermedades”.
Diana terapéutica y de diagnóstico precoz
El trabajo concluye que la amilina podría ser una diana atractiva tanto para el tratamiento como para el diagnóstico precoz de pacientes con enfermedad de Parkinson o Alzheimer de manera sencilla. “Por ello, es importante poder detectar esta amilina en muestras biológicas, así como seguir estudiando el papel que tiene esta proteína en la aparición de la enfermedad de Parkinson o de Alzheimer, lo que facilitará el desarrollo de nuevos tratamientos para combatir estas dos enfermedades”.
Además, los resultados obtenidos confirman que la diabetes puede ser un factor de riesgo para el desarrollo de una enfermedad neurodegenerativa. “Sin embargo, es importante señalar que este es un factor de riesgo modificable, ya que, como sabemos, un estilo de vida saludable disminuye el riesgo de padecer diabetes tipo 2 y ayuda a controlarla mejor”, concluyen Rafael Valentí y María Rosario Luquin, investigadores del Cima y de la Clínica Universidad de Navarra.

La amilina, polipéptido amiloide de los islotes o IAPP ) es una hormona peptídica de 37 residuos secretada por las células beta pancreáticas al mismo tiempo que la insulina (alrededor de la razón 1:100 amilina a insulina).1

El polipéptido amiloide insulinoma (IAPP, o amilina) es comúnmente encontrado en los islotes pancreáticos de pacientes sufriendo de diabetes mellitus tipo 2, o albergando un insulinoma. Mientras que la asociación de la amilina con el desarrollo de la diabetes tipo 2 se conoce desde ya algún tiempo,2 ha sido más difícil establecer una función causante directa para la amilina. Resultados recientes sugieren que la amilina, como el relacionado beta-amiloide (Abeta) asociado con la enfermedad de Alzheimer, puede inducir muerte celular apoptótica en células beta que producen insulina, un efecto que podría ser relevante en el desarrollo de la diabetes tipo 2.3 Finalmente, un estudio reciente informó un efecto sinérgico para la pérdida de peso con la coadministración de leptina y amilina en ratas obesas al restaurar la sensibilidad hipotalámica a la leptina.4
Función]
La amilina funciona como parte del páncreas endocrino y contribuye al control glucémico. El péptido es secretado de los islotes pancreáticos hacia el torrente sanguíneo y es eliminado por las peptidasas en el riñón. No se encuentra en la orina. La función metabólica de la amilina es caracterizada como un inhibidor de la aparición de nutrientes (especialmente la glucosa) en el plasma sanguíneo.5 Por lo tanto funciona como un compañero sinérgico a la insulina, y es cosecretado por las células beta pancreáticas en respuesta a las comidas. El efecto en general de la amilina de reducir la velocidad de aparición (Ra) de una comida es mediada a través de una reducción coordinada de la ingesta de alimentos, disminución del vaciamiento gástrico, inhibición de la secreción digestiva (ácido gástrico, enzimas pancreáticas y eyección de bilis). La aparición de glucosa nueva es frenada vía la inhibición de la secreción de la hormona gluconeogénica glucagon. Estas acciones, que son mayoritariamente mediadas vía una parte del tronco cerebral sensible a la glucosa, el área postrema, podrían ser anuladas durante la hipoglucemia. Ellos reducen colectivamente la demanda total de insulina.6 La amilina también actúa en el metabolismo óseo, junto con los péptidos relacionados calcitonina y péptido relacionado con el gen de la calcitonina.5
El bloqueo de genes de la amilina en roedores son conocidos por no lograr alcanzar la anorexia normal luego del consumo de comida. Debido a que es un péptido amidado, como muchos neuropéptidos, se cree que es responsable de los efectos anorexígenos.
Estructura
Secuencia de aminoácidos de la amilina con los puentes disulfuro y sitios de clivaje de la enzima degradante de insulina indicadas con flechas.
La forma humana de la IAPP tiene la secuencia de aminoácidos KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY, con un puente disulfuro entre los residuos de la cisteína 2 y 7. Ambos el C-terminal y el puente disulfuro son necesarios para la actividad biológica completa de la amilina.7 La IAPP es capaz de formar fibrillas amiloides in vitro. Dentro de la reacción de fibrilación, las estructuras prefibrilares son extremadamente tóxicas para los cultivos de células beta e insulinomas.7 Las estructuras amiloides fibrilares también parecen tener un efecto citotóxico en cultivos celulares. Estudios han demostrado que las fibrillas son el producto final y no son necesariamente la forma más tóxica de amiloide proteico/peptídico en general. Un péptido que no forma fibrillas (1-19 residuos de una amilina humana) es tan tóxico como el péptido de longitud completa pero el segmento respectivo de una amilina de rata no lo es.8910 También fue demostrado por espectroscopia de resonancia magnética nuclear que los fragmentos 20-29 de la amilina humana fragmentan membranas.11 Las ratas y ratones tienen seis sustituciones (tres que son sustituciones prolinas en las posiciones 25, 28, y 29) que se cree que previenen la formación de fibrillas amiloides. La IAPP de ratas no es tóxica para las células beta, incluso sobreexpresadas.
Farmacología[editar]
Un análogo sintético de la amilina humana con sustituciones prolinas en las posiciones 25, 26, y 29, o pramlintida (nombre de marca Symlin), fue recientemente aprobada para el uso de pacientes adultos con ambos diabetes mellitus tipo 1 and diabetes mellitus tipo 2. La insulina y pramlintida, inyectadas separadamente pero ambas antes de una comida, trabajan juntas para controlar la excursión de glucosa después de comer.14
La amilina es en parte degradada por la enzima degradante de insulina.15
Parece que hay por lo menos tres complejos de receptores que se unen a la amilina con alta afinidad. Los tres complejos contienen un receptor de calcitonina en su núcleo, más una de tres proteínas modificantes de la actividad receptora, RAMP1, RAMP2, o RAMP3.16.
Mi deducción.
En las enfermedades neurodegenerativas, tales como el Parkinson y Alzheimer, se precipitan una serie de proteínas entre ellas, la alfa sinucleína, y la amilina . Y afectan estructuras nerviosas y de otros parénquimas como puede ser el páncreas. Y lesióna estas regiones .
Lo que creo es que su falta un desencadenante, posiblemente un germen sobre el que se precipitan proteínas, con actividad de macrófagos..
Es muy posible que en las enfermedades neurodegenerativas se repita este patrón “ germen, macrófagos en forma de placas que inutiliza varios parénquimas al mismo tiempo o de forma sucesiva y lesiona severamente la estructuras nerviosas y no nerviosas sobre las que asienta.

Referencias
↑ «Entrez Gene: IAPP islet amyloid polypeptide».
↑ Hayden MR (2002). «Islet amyloid, metabolic syndrome, and the natural progressive history of type 2 diabetes mellitus». JOP 3 (5): 126-38. PMID 12221327.
↑ Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994). «Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus». Nature 368 (6473): 756-60. PMID 8152488. doi:10.1038/368756a0.
↑ Roth JD and al. (2008). «Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies». PNAS 105 (20): 7257-7262. PMC 2438237. PMID 18458326. doi:10.1073/pnas.0706473105.
↑ Saltar a:a b Pittner RA, Albrandt K, Beaumont K, et al. (1994). «Molecular physiology of amylin». J. Cell. Biochem. 55 Suppl: 19-28. PMID 7929615. doi:10.1002/jcb.240550004.
↑ Ratner RE, Dickey R, Fineman M, Maggs DG, Shen L, Strobel SA, Weyer C, Kolterman OG (2004). «Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial». Diabet Med 21 (11): 1204-12. PMID 15498087. doi:10.1111/j.1464-5491.2004.01319.x.
↑ Saltar a:a b Roberts AN, Leighton B, Todd JA, et al. (1990). «Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus». Proc. Natl. Acad. Sci. U.S.A. 86 (24): 9662-6. PMC 298561. PMID 2690069. doi:10.1073/pnas.86.24.9662.
↑ Brender JR, Lee EL, Cavitt MA, Gafni A, Steel DG, Ramamoorthy A (mayo de 2008). «Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the type-2-diabetes-related peptide». J. Am. Chem. Soc. 130 (20): 6424-9. PMID 18444645. doi:10.1021/ja710484d.
↑ Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (noviembre de 2008). «A Single Mutation in the Non-Amyloidogenic Region of IAPP (Amylin) Greatly Reduces Toxicity». Biochemistry 47 (48): 12680-8. PMC 2645932. PMID 18989933. doi:10.1021/bi801427c.
↑ Nanga RP, Brender JR, Xu J, Veglia G, Ramamoorthy A (noviembre de 2008). «Structures of Rat and Human Islet Amyloid Polypeptide IAPP1–19 in Micelles by NMR Spectroscopy». Biochemistry 47 (48): 12689-97. PMC 2953382. PMID 18989932. doi:10.1021/bi8014357.
↑ Brender JR, Dürr UH, Heyl D, Budarapu MB, Ramamoorthy A (septiembre de 2007). «Membrane Fragmentation by an Amyloidogenic Fragment of Human Islet Amyloid Polypeptide Detected by Solid-State NMR Spectroscopy of Membrane Nanotubes». Biochim. Biophys. Acta 1768 (9): 2026-9. PMC 2042489. PMID 17662957. doi:10.1016/j.bbamem.2007.07.001.
↑ Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987). «Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients». Proc Natl Acad Sci USA 84 (23): 8628-32. PMC 299599. PMID 3317417. doi:10.1073/pnas.84.23.8628.
↑ Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987). «Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells». Proc Natl Acad Sci USA 84 (11): 3881-3885. PMC 304980. PMID 3035556. doi:10.1073/pnas.84.11.3881.
↑ «SYMLIN (pramlintide acetate)». Amylin Pharmaceuticals, Inc. 2006. Consultado el 28 de mayo de 2008.
↑ Shen Y, Joachimiak A, Rosner MR, Tang WJ (octubre de 2006). «Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism». Nature 443 (7113): 870-4. PMID 17051221. doi:10.1038/nature05143.
↑ Hay DL, Christopoulos G, Christopoulos A, Sexton PM (2004). «Amylin receptors: molecular composition and pharmacology». Biochem Soc Trans 32 (5): 865-7. PMID 15494035. doi:10.1042/BST0320865.