Enriquerubio.net El blog del Dr. Enrique Rubio

19 mayo 2018

TRANSPORTE ESENCIAL EN NUESTRA CÉLULAS

Filed under: ANATOMIA,INMUNIDAD — Enrique Rubio @ 20:20

UN SISTEMA DE TRANSPORTE ESENCIAL EN NUESTRA CÉLULAS
Cada célula es una fábrica que produce y exporta moléculas. Estas moléculas se transportan en pequeños paquetes llamados vesículas. Se han han descubierto los principios moleculares que permiten que el transporte en la célula se lleve al lugar y momento adecuado.

“Dentro de la célula los receptores “viajan” en rutas, que están juntas pero no mezcladas, hasta la membrana plasmática para localizar y activar una amplia variedad de complejos proteicos. Se produce una compartimentalización de vesículas cargadas de moléculas tanto para aquellas que permanecen dentro de la célula como para las que son exportadas al exterior,” explica Fernández Salguero. Las vesículas se asocian y fusionan con diferentes membranas celulares, y son ellas las que trasladan la carga entre compartimentos intracelulares o hacia el medio exterior si se unen a la membrana celular externa. Esto es de gran importancia, ya que desencadena la activación de las neuronas en el caso de que las sustancias liberadas sean neurotransmisores, o controla el metabolismo, en el caso de las hormonas. “A través de las rutas de secreción, la célula envía proteínas al medio intracelular o las capta de zonas extracelulares. Un caso muy característico es la liberación de neurotransmisores a la hendidura sináptica durante la transmisión del impulso nervioso. Los neurotransmisores se secretan y acumulan en regiones concretas de las neuronas pre sinápticas, cuando llega el impulso nervioso hay una acumulación de vesículas de neurotransmisores en regiones cercanas a la membrana que siguen una ruta de secreción concreta, y actúan para señalizar”, continua el investigador.

Este transporte celular también está implicado en la señalización por insulina y en la captación de glucosa por la célula para obtener energía. “Hay una ruta de secreción concreta por la que los receptores que introducen la glucosa en la célula viajan en vesículas cuya trayectoria las dirige a la membrana plasmática para captar la glucosa. En la diabetes, sobre todo de tipo II, esa ruta de secreción está alterada, de forma que las vesículas no transportan correctamente las moléculas de receptor hasta la membrana, constituyendo una de las causas de este tipo de diabetes”, comenta Fernández Salguero.

Sin embargo, los estudios del transporte celular no son sólo de aplicación en enfermedades metabólicas o neurodegenerativas, también son de interés en la investigación del cáncer. Oncogenes que pertenecen a la misma familia se mueven dentro de la célula por rutas vesiculares distintas. Según el investigador de la UEx, se cree que cuando este tráfico sucede de manera irregular puede contribuir a diferentes tipos de tumores, donde una forma concreta de oncogén sigue una ruta de movilización anómala dentro de la célula. Conocer esas rutas de movimiento vesicular de proteínas puede explicar por qué ciertos tipos de cánceres se ven afectados en mayor o menor medida por un oncogén y no por otros de la misma familia.

El tráfico vesicular interno es también importante para la captación de moléculas fuera de la célula. En inmunología, interviene en la entrada viral y en la liberación de moléculas y su distribución para que reconozcan los antígenos y los linfocitos.

Tres científicos, galardonados con los Premios Nobel 2013 , han aclarado cómo la célula organiza su sistema de transporte” interno y han detallado “los principios moleculares” que explican por qué este sistema es capaz de entregar las moléculas precisas “en el lugar adecuado, en el momento adecuado”.
El Comité Nobel del Karolinska les otorgó este galardón por “sus descubrimientos de la maquinaria que regula el tráfico vesicular, un sistema de transporte esencial en nuestra células”.
Se trata de los estadounidenses James E. Rothman y Randy W. Schekman y el alemán Thomas C. Südhof fueron premiados con el Nobel de Medicina por sus estudios sobre el transporte de moléculas dentro de las células, que puede tener utilidad para tratamientos contra la diabetes, el tétanos y otras enfermedades.

Cada tipo de vesícula debe enviar su carga especializada al destino correcto entre el intrincado laberinto de compartimentos que pueblan el citoplasma de las células de los animales complejos.
Ya antes Randy W. Schekman, de la Universidad de California, obtuvo su doctorado trabajando en Stanford en el departamento de Alfred Kornberg, también ganador del premio Nobel en 1959 por su identificación de la encima clave en la síntesis del ADN. Este científico no perdió el tiempo, en la Universidad de California, identificó 50 genes involucrados en el movimiento vesicular y determinó el orden y papel que cada uno de los productos proteínicos de los genes desempeña en el transporte de las moléculas en la célula.
Posteriormente los descubrimientos de Schekman fueron confirmados en organismos complejos, como los humanos. En la actualidad estudia si la acumulación de la proteína amiloide en los enfermos de Alzheimer se debe a un problema en la secreción de la célula.
Por su parte, Thomas C. Südhof, nacido en 1955 en Gotinga (norte de Alemania) y actualmente profesor de la Universidad de Stanford, se graduó en Medicina por la Universidad de Gotinga en 1982. En 1983 se trasladó a Dallas para trabajar como posdoctorado en el Centro Médico de la Universidad de Texas y tres años después puso en marcha su propio laboratorio en la Universidad Técnica del Suroeste, dependiente de esa misma universidad.
Allí comenzó una investigación de la neurona presináptica, de la que hasta entonces sólo se sabía que los iones de calcio estimulaban la liberación de neurotransmisores desde la vesícula hasta la sinapsis. Esta operación requiere de una fusión de las vesículas con la membrana plasmática, pero hasta los trabajos de Südhof no se sabía cómo se producía ésta.
El científico alemán mostró que el calcio conecta las proteínas de las membranas, estimulando el desencadenamiento de neurotransmisores.
En trabajos más recientes Südhof investigó cómo las alteraciones en las proteínas perjudican la química del cerebro, pudiendo causar la esquizofrenia o el autismo.

Recientemente en la contra de la vanguardia, Randy Schekman respondio a una serie de reguntas del periodista. Estornudo a su salida del avión y le pregunta LLuis Aiguet, ¿Se encuentra usted bien ?
Sí, gracias, no es nada: un poco de fiebre de algún virus que he pillado en el avión. Los aviones son gigantescas incubadoras de virus, y cada año pillo uno nuevo.
¿Eso fortalece su sistema inmunitario? Preferiría no fortalecerlo y estar sano.
¿Por qué existen los virus? ¿Sirven para algo aparte de para matarnos?
Su sentido evolutivo ha sido y es transferir genes de un organismo a otro infectando sus bacterias. Las piezas de ADN se transmiten así de una bacteria a otra.
¿Y así generan diversidad biológica?
Sí, pero ese mecanismo también tiene efectos indeseables para nosotros. Gracias a él, muchas bacterias se intercambian genes resistentes a los antibióticos y hacen que nuestros medicamentos pierdan efectividad y dejen de curar.
Las bacterias también aprenden.
Y más rápido que nosotros. Nos precedieron y nos sobrevivirán, ¿Sabía usted que convivir con un perro cambia tu microbioma? Al cabo de un tiempo de convivencia, hay bacterias de perro viviendo en el humano y bacterias de humano viviendo en el perro. Eso demuestra que ha habido coevolución entre perros y humanos y que nuestros organismos siguen evolucionando juntos.
Pero nosotros vivimos más: ¿podremos decidir algún día cuánto queremos vivir?
Yo creo que nuestro cuerpo tiene un límite en su existencia impuesto por muchos genes que han evolucionado para tener caducidad.
Izpisúa me dijo aquí que una célula madre en buenas condiciones vivía sin límite.
No sé cuánto puede vivir una célula madre, pero sí sé que es una célula en embrión: en cuanto se transforma en una célula ya diferenciada, su reloj biológico empieza su tictac. Pero: ¿Está usted seguro de que quiere vivir para siempre?
No me importaría poder decidir cuándo dejo de vivir. ¿A usted no le parece bien?
¡Claro! Pero sólo el recambio generacional permite la evolución. Si no nos morimos, los jóvenes, nuestros hijos y nietos, no pueden madurar y tener su propia identidad y establecerse.
Esto ya me parece mas complicado entenderlo, se olvida el premio novel de la trasversalidad, hay más cosas en la evolución de las que vemos.
¿Nuestra genética actual tiene un límite?
Nuestra genética da para que vivamos alrededor de 120 años, pero no creo que el reto ahora para la biomedicina sea alargar esa edad. Esto me parece lo más interesante de la entrevista. Es de win déjala y en el icono en el buen y con tan buena hoy en España en la gran oreja de calado por hora y
Los científicos deberíamos concentrarnos en mejorar la calidad de los últimos años de vida tanto como en alargarlos. Y esto es una cosa importanteen la entrevista.prolongar los años de bienestar mas que en los de vivir mas.
Debemos enfocarnos en lograr que sean tan buenos como ahora los 40 o 50 y dar así un final rápido e indoloro a nuestras vidas: ¿por qué nuestros últimos años tienen que ser un horror? Hoy suelen ser penosos y un desgaste emocional y de recursos para la familia.
Por eso no creo en la política ni en las religiones que a menudo acaban siendo luchas egoístas de poder: sólo la ciencia nos une y mejora nuestras vidas.
Easta parte es la mas emotiva de la entrevista donde se ve al nobel dolido por la perdida de su enposa en manos de una larga enfermedad neurodegenerativa. Parkinson y demencia.
“He visto a mi mujer morirse de parkinson durante 20 años con demencia al final”.
Seguimos sin entender los procesos de nuestra neurodegeneración. Sabemos que hay genes que predisponen al Alzheimer, pero ni siquiera estamos seguros de que sea la placa de amiloides, como hoy se cree, la que lo causa.
¿Podría ser un virus?
Podría ser. También descubrimos que un virus causaba algunos cánceres. Sabemos que uno de los genes que predisponen a la neurodegeneración es parte de una lipoproteína, pero aún no conocemos su conexión con la enfermedad. Y seguimos gastando millones en producir anticuerpos contra la acumulación de amiloides, pero sin ningún resultado concreto.
¿Por qué seguimos sin progresar?
Uno de los problemas para estudiar las neurodegenerativas es que no tenemos un modelo animal para reproducirlas. Uno de los últimos avances ha sido crear pequeños organoides, acumulaciones de células humanas, simulaciones de pequeños cerebros para investigarlas.
Serguéi Brin, uno de los dos fundadores de Google, ha donado más de mil millones de dólares a mi grupo para nuestra investigación. Por buenos motivos: su madre murió de una peculiar forma de Parkinson que él ha heredado.
Hemos identificado ya 80 marcadores genéticos del parkinson, y el objetivo ahora es crear esos organoides con células plenipotenciarias (IPS) de cada uno de los pacientes con uno de esos marcadores. Así los cultivaremos en el laboratorio e iremos probando tratamientos para detener la progresión de la enfermedad.
Dice al final algo que me aliente, es positivo en ver que el cáncer , “dice se ha curado”, yo solo le permito “que estamos curando”
No estamos más lejos de curar las enfermedades neurodegenerativas de lo que estábamos no hace tanto de curar el cáncer. Y hoy gran parte de cánceres se curan. Soy optimista, pero con sólidas razones científicas.
Randy Schekman declara un boicot a las grandes revistas científicas, se ha negado a publicar más en revistas como ‘Nature’, ‘Cell’ o ‘Science’ por las políticas de esas publicaciones. El premio Nobel de Medicina opina que sólo usan criterios editoriales al seleccionar los artículos y que promueven investigaciones “de moda”.
Me parece muy bien, es mejor ponerse una vez colorado que cientos amarillos. Ya esta bien de dinero

No hay comentarios »

No comments yet.

RSS feed for comments on this post. TrackBack URL

Leave a comment

Powered by WordPress