Enriquerubio.net El blog del Dr. Enrique Rubio

24 enero 2020

Fagocitosis

Filed under: INFECCIONES E INFLAMACION — Enrique Rubio @ 21:24

Fagocitosis
La fagocitosis es una forma específica de endocitosis por la que las células asimilan partículas sólidas, entre las que se incluyen los patógenos microbianos. Si bien todas las células pueden fagocitar, son los fagocitos profesionales del sistema inmunitario, como los macrófagos, neutrófilos y células dendríticas inmaduras, los que realmente destacan en este proceso. En estas células, el mecanismo de la fagocitosis puede contener a los microorganismos, acabar con ellos y procesarlos para la presentación de antígeno, y representa un aspecto fundamental de la respuesta inmunitaria innata frente a los patógenos, a la vez que desempeña un papel esencial en el inicio de la respuesta inmunitaria adaptativa.

El proceso de la fagocitosis comienza con la unión de opsoninas (p.ej. moléculas de complemento o anticuerpos) y/o moléculas específicas de la superficie del patógeno (denominados patrones moleculares asociados a patógenos [PAMPs, por sus siglas en inglés]) a receptores de la superficie del fagocito, lo que provoca agrupamiento de receptores y activación de la fagocitosis. En este momento, la membrana celular se extiende alrededor del patógeno, al que finalmente envuelve y pinza para formar un fagosoma separado. Esta vesícula puede madurar y acidificarse a través de la fusión con endosomas tardíos y lisosomas para formar un fagolisosoma, en el que la degradación del contenido puede tener lugar mediante la acción de hidrolasas lisosomales.

San
Figura 1. (Imagen superior) Tres etapas de la fagocitosis; unión al receptor y formación de una copa fagocítica, pinzamiento y formación de un fagosoma separado y fusión con lisosomas. (Imagen inferior izquierda) Macrófago humano fagocitando Candida albicans. Los fagosomas están teñidos para actina (rojo) y calreticulina, un marcador de retículo endoplásmico (verde). (Imagen inferior derecha) Macrófagos de ratón tratados con IFN-γ infectados con Mycobacterium bovis BCG (rojo) y teñidos para el marcador lisosomal CD69 (LAMP3, verde).
Los macrófagos son una de las poblaciones celulares más pleiotrópicas del sistema inmune. Ellos son efectores de la respuesta innata y están involucrados en el inicio y la regulación de las respuestas adaptativas. Esta revisión describe cómo la definición seminal de la activación del macrófago (AM) evolucionó hasta el desarrollo de un modelo de dos clases de macrófagos activados. Los macrófagos activados clásicamente (M1) inducidos por IFN-γ y/o TNF-α muestran un fenotipo tipo Th1, son efectores proinflamatorios y tienen funciones bactericidas, mientras que los macrófagos activados alternativamente (M2), que incluye por lo menos tres fenotipos diferentes solapados (M2a, b, c), exhiben un fenotipo tipo Th2 y están involucrados en la resolución de la inflamación y la curación del tejido. Aunque este modelo clasifica los fenotipos de activación observados, es importante considerar que subestima la complejidad in vivo, donde existe una alta diversidad de estados de macrófagos activados que emergen en respuesta a diferentes estímulos y ambientes, son influenciados por su heterogeneidad y conforman un continuum de activación. Profundizando acerca de los mecanismos que definen estos fenotipos, será posible entender mejor la influencia y el papel de los macrófagos activados alternativamente en las respuestas inmunes reguladas por ellos y en la patogénesis de diferentes enfermedades asociadas con el desarrollo de este grupo de macrófagos.
En la fagocitosis hay numerosos receptores implicados. Los receptores de complemento y los receptores de Fc son especialmente importantes para el reconocimiento y fagocitosis de microbios opsonizados y otros materiales sólidos. Otros receptores, como los receptores de tipo Toll (TLRs, por sus siglas en inglés), los receptores scavenger o basureros (SR, por sus siglas en inglés) y las lectinas (como DC-SIGN, dectina-1 y el receptor de manosa), son también importantes en la captación de muchos microorganismos patógenos. La fagocitosis es un proceso dinámico que exige la reorganización del citoesqueleto, e implica a proteínas de unión a actina y a moléculas de señalización.
Además, la fagocitosis puede verse influida por numerosas moléculas asociadas a patógenos y moléculas endógenas, como el lipopolisacárido (LPS) y las citocinas. En particular, el TNF-α y el IFN-γ impulsan la formación y maduración de los fagosomas. Este proceso activa al fagocito para producir citocinas, las cuales actúan como quimioatrayentes para potenciar la migración y la activación de otras células inmunitarias al lugar de infección.
Algunos patógenos intracelulares, como la bacteria Mycobacterium tuberculosis, han desarrollado estrategias para inhibir la maduración del fagosoma y pueden sobrevivir y replicarse dentro del fagosoma inmaduro. Otros patógenos, como las bacterias Escherichia coli y Neisseria meningitides, han desarrollado mecanismos para fijar, desprenderse y/o degradar opsoninas con el fin de prevenir la activación de la respuesta inmunitaria y eludir así la vigilancia inmunológica y la fagocitosis.
Polarización de macrófagos Tanto el GM-CSF como el M-CSF contribuyen a la supervivencia y a la proliferación celular. Sin embargo, ejercen acciones diferentes durante la polarización de los macrófagos. Mientras que el GM-CSF promueve la generación de macrófagos ¿clásicos¿, o M1 (que se caracterizan por ser productores de citoquinas pro-inflamatorias, además de por una alta capacidad presentadora de antígeno y actividad tumoricida), el M-CSF produce macrófagos ¿alternativos¿, o M2, que liberan IL-10 en respuesta a agentes patógenos, poseen una alta capacidad fagocítica y actividad pro-tumoral. En la periferia, la serotonina (5-hidroxitriptamina, 5-HT) se sintetiza por células enterocromafinas del intestino y se libera a la circulación donde será almacenada por las plaquetas. Existen siete tipos de receptores de serotonina (5-HTR1-7), seis de los cuales pertenecen a la superfamilia de receptores acoplados a proteína G (5-HTR1, 5-HTR2, 5-HTR4, 5-HTR5, 5-HTR6, 5-RHT7,). Fuera del sistema nervioso central, 5-HT juega un papel importante como un factor de crecimiento, así como de regeneración y reparación de tejidos, o inmuno-modulador. Las inmunoglobulinas intravenosas (IVIg) es una preparación de inmunoglobulinas policlonales y poliespecíficas (principalmente IgG) derivado a partir del plasma de miles de donantes sanos. IVIg ejerce una acción inmunomoduladora potente en síndromes de inmunodeficiencia, enfermedades autoinmunes y procesos infecciosos. Además, estudios anteriores han demostrado que la IVIg inhibe la diseminación metastásica en carcinomas de ratón, y contribuye a la regresión del tumor en pacientes con cáncer. Sin embargo, las bases moleculares de la acción inmunomoduladora IVIg, así como el mecanismo de su efecto anti-tumoral, aún no se ha aclarado por completo. Este trabajo demuestra que los receptores 5-HTR2B y 5-HTR7 están diferencialmente expresados en macrófagos M2 generados in vitro. La 5-HT inhibe la liberación de citoquinas pro-inflamatorias (IL-12p40 y TNF¿) en respuesta LPS sin afectar la producción de IL-10 a través de la activación de 5-HTR7. Además, provoca un aumento en la expresión de genes asociados a polarización M2 y una reducción de genes asociados a polarización M1 mediada por ambos receptores 5-HTR2B y 5-HTR7. El bloqueo farmacológico de ambos receptores durante la diferenciación in vitro de monocitos a macrófagos en presencia de M-CSF mostró una alteración en la adquisición de genes asociados a polarización M2. El análisis del perfil de la expresión génica dependiente de 5HT en los macrófagos humanos demostró que el eje 5-HTR7 -AMPc-PKA es mayoritariamente responsable la expresión de genes dependientes de 5-HT. Además, la 5-HT a través del receptor de 5-HTR2B, regula la expresión de los genes sensibles a IFN de tipo I. Por lo tanto, 5-HT modula la polarización de macrófagos y contribuye al mantenimiento de un estado anti- inflamatoria a través de 5-HTR2B y 5-HTR7, cuya identificación como marcadores funcionalmente relevantes para macrófagos anti-inflamatorios/homeostáticos humanos M2 sugiriendo su potencial valor terapéutico en patologías inflamatorias. El equilibrio entre los estados de polarización contribuye a la resolución de la inflamación, y su bajo su alteración subyacen patologías inflamatorias y el cáncer. En este trabajo demostramos como IVIg es capaz de inhibir ciertas actividades de los macrófagos M1, como la secreción de citoquinas inflamatorias, mientras que en macrófagos M2 lo que produce es un cambio de polarización de un estado M2 a uno M1, tanto funcional como transcriptómico. Esta re-polarización macrófagos es mediada parcialmente en humanos por CD16 y SyK, mientras que en macrófagos de ratón es dependiente también de CD-16 y de Fcer1g. Además, IVIg inhibe el crecimiento tumoral en modelos de ratón y altera la polarización de las células CD11b+ asociada a tumores de una manera CD16 /Fcer1g y macrófago dependiente.

Etapas de la fagocitosis en el sistema inmunológico]
Quimiotaxis]
Se inicia con la adherencia de células al endotelio vascular. Las células irán al lugar de la amenaza. Estas son células especializadas, que pueden ser macrófagos o neutrófilos. Los mismos serán estimulados para que produzcan citoquinas (IL-1, TNF, IFN). Es todo lo que se encuentra aquí activado por las citocinas, a través de uniones moleculares de baja afinidad entre receptores en el leucocito y selectinas sobre la superficie endotelial (selectina E y selectina P, por ejemplo).
El flujo sanguíneo laminar empuja a los leucocitos así adheridos en dirección de la corriente sanguínea. El fagocito se despega de las interacciones corriente-arriba y sus ligandos de membrana se unen a nuevas selectinas corriente-abajo. El resultado es un movimiento neto a lo largo de la superficie endotelial. Otras moléculas que participan en esta movilización son las moléculas de adhesión vascular (VCAM-1) presentes en el endotelio, cuyos ligandos correspondientes muestran preferencia por los linfocitos T y eosinófilos.
En un punto específico, determinado por la presencia y activación de quimiocinas, los fagocitos movilizados establecen interacciones intercelulares de gran afinidad con el endotelio por medio de integrinas y otros ligandos endoteliales. En especial las moléculas endoteliales VCAM-1 e ICAM-1 se adhieren a ligandos específicos sobre los fagocitos, entre ellos LFA-a, CR3 y VLA-4. La expresión de estos ligandos sobre la superficie del fagocito es regulada por proteínas inflamatorias, como el TNF y la IL-1.
Es en ese punto de movilización lenta cuando los fagocitos, atraídos por gradientes de concentración de las quimiocinas, atraviesan el epitelio vascular hacia el foco de infección patógena.
Adherencia]
Otros receptores sobre la membrana de los leucocitos y otros fagocitos actúan como mecanismos de adherencia sobre los microorganismos, sea a productos microbianos específicos o sobre opsoninas del sistema inmune del hospedador.
Receptor de manosa. Este receptor tiene afinidad por los componentes de manosa presentes en las glucoproteínas y glucolípidos de las paredes celulares microbianos.
Scavenger. Estos receptores se unen directamente a microorganismos y a moléculas de LDL modificadas.
CD14. Es un ligando con preferencia específica al lipopolisacárido presente en ciertas bacterias y está asociado a un receptor tipo Toll.
Transmembrana de 7 hélices alfa. Es un receptor recientemente descubierto, cuya función está asociada a señales de quimiocinas y ciertos péptidos microbianos.
Receptores para los fragmentos Fc de los anticuerpos opsonizantes IgG2 e IgG3.
Ingestión[
La unión a receptores de adherencia promueve señales de comunicación intracelular que resultan en la evaginación de la membrana del fagocito rodeando al receptor y su ligando patogénicos. Al rodear por completo al complejo receptor:molécula, la membrana se une en sus extremos y libera al interior de la célula un fagosomas. Esto puede ocurrir en más de un punto de la membrana celular.
Digestión
Una vez que el fagosoma está en el citoplasma comienza la desintegración del mismo, proceso que se realiza por mecanismos dependientes o independientes de oxígeno. El primero se da tras activarse rutas metabólicas que consumen oxígeno, lo cual produce la liberación de radicales libres del oxígeno, que son tóxicos para los microorganismos. En el segundo caso es donde intervienen los lisosomas, los cuales se unen al fagosoma conformando un fagolisosoma, y liberando enzimas hidrolíticas que destruirán al antígeno.
Excreción]
En el proceso de digestión queda una vesícula que contiene desechos (o el mismo antígeno, ya que no siempre puede ser desintegrado), por lo que debe estar fuera de la célula para no traer futuros inconvenientes. La forma de deshacerse de estos residuos es mediante la exocitosis.

Referencia

(https://www.inmunologia.org/index.phpY Download Fagocitosis (Phagocytosis).pdf (185.02 KB)
James Harris, Trinity College Dublin, Irlanda

Eduardo Arranz, Universidad de Valladolid e Instituto de Biología y Genética Molecular, Valladolid, España
Revisión: Jesús Gil, Instituto de Biología Molecular, Mainz, Alemania Autores: Mateo de Las Casas Engel
Directores de la Tesis: Ángel L. Corbí López (dir. tes.)
Lectura: En la Universidad Complutense de Madrid ( España ) en 2014

No hay comentarios »

No comments yet.

RSS feed for comments on this post. TrackBack URL

Leave a comment

Powered by WordPress