Enriquerubio.net

26 Junio 2017

EL CONECTOMA

Archivado en: ANATOMIA — Enrique Rubio @ 13:25

99eb8d33ca915c748a2d3ee8bfeaf3261EL CONECTOMA
Un conectoma es un mapa de las conexiones entre las neuronas del cerebro. La producción y el estudio de los conectomas se conoce como conectómica.
La necesidad de dar forma al mundo que nos rodean se convierte en un principio vital, sin el cual no podemos partes.
Una forma y una función son condiciones imprescindibles para respuesta. Esto con un pensamiento clásico, no sabemos si en un futuro y a partir de la física cuántica, no será necesario. Lo cierto es que la compleja estructura del sistema nervioso, necesita una disposición para que sea útile. Hasta ahora el concepto de focalidad que describiera broca hace casi un siglo y medio, explicaba con cierta claridad cómo nuestras facultades estaban localizadas en alguna parte de nuestro cerebro. Sin embargo es todo no siempre ha sido así. La cirugía de los gliomas cerebrales, que demuestra que no siempre que se reseca una área expresiva, aparece un déficit. Las áreas expresivas suele estar multiplicada y permiten la persistencia de la función de puede ser mutiladas al menos parcialmente.
Que necesitamos un buen conocimiento anatómico de las neuronas y su comunicaciones no es discutible, pero su gran número imposibilita marcadamente el conocimiento.
En nuestra biología todo es un conjunto de forma, química y función y así con séptimo comprender parcialmente la interpretación de los órganos de los sentidos y elaborar una respuesta, que en principio son groseras. Pero intentar entender lo psíquico, lo espiritual del General lo no contable se hace enormemente complejo. No obstante el conocimiento del mapa cerebral de la neurona y sus conexiones es imprescindible. Pero no solo del punto de vista orgánico sino funcional. Topografíar un cilindro de la corteza cerebral, de 1,5 milímetros de diámetro no solamente supone un esfuerzo enorme aun con los ordenadores que conocemos. Necesitamos ordenadores más potentes que sean capaces de descifrar, por medio de la simulación el ordenamiento del conectoma. Pero la segunda parte es saber cómo funciona esto.
.
En 2005, Olaf Sporns, de la Universidad de Indiana, en el artículo The Human Connectome, a structural description of the human brain (El conectoma humano, una descripción funcional del cerebro humano)1 y Patric Hagmann, del Hospital Universitario de Lausana, en la tesis doctoral From diffusion MRI to brain connectomics (De la IRM de difusión a la conectómica cerebral),2 propusieron simultánea e independientemente el término connectome para referirse a un plano de las conexiones neuronales en un cerebro. El vocablo expresa el conjunto de las conexiones, del mismo modo que genoma expresa el conjunto de los genes.
Según Hagmann, “para comprender el funcionamiento de una red se deben conocer sus elementos y sus interconexiones El conectoma aumentará considerablemente nuestra comprensión de los procesos emergentes funcionales a partir de las estructuras cerebrales y proporcionará nuevas ideas sobre los mecanismos que utiliza el cerebro si las estructuras cerebrales están dañadas.”
Gracias al gusano Caenorhabditis elegans , se han podido reconstruir las conexiones neurales. White et al., 1986; Varshney et al., 2011), lnlclaron el Proyecto Conectoma Humano de los Institutos Nacionales de Salud (NHI) de los Estados Unidos, para construir un mapa de las redes neurales del cerebro humano adulto y sano.
Bock y otros han obtenido 12TB de datos que están disponibles públicamente en Open Connectome Project (Proyecto Conectoma Abierto).
Un conectoma óptimo sería la cartografía precisa de las conexiones de cada neurona, lo que resulta técnicamente muy largo y costoso y necesitaría el almacenaje y la utilización de una enorme cantidad de datos. Un cerebro humano contiene al menos 1010 neuronas unidas por 1014 conexiones sinápticas. Para fines de comparación, el número de bases del genoma humano es de 3×109.
A escala microscópica, el conectoma describe la disposición de las neuronas y de las sinapsis entre ellas en el interior de una parte del sistema nervioso.
Mientras que en el siglo XX se buscaba descubrir la secuencia completa del ADN, proyecto denominado “genoma humano”, actualmente se están desarrollando esfuerzos para obtener una descripción completa de la conectividad a gran escala (en cada una de las regiones de interés caben al menos 109 neuronas) de distintas regiones del cerebro, proyecto denominado “conectoma humano” (http://humanconnectome.org; véase la Figura 1). Este proyecto se propone estudiar tanto las redes estructurales del cerebro, construidas a partir de medidas de asociación física (p.ej., número de fibras axonales), como las redes funcionales, derivadas de medidas de dependencia estadística (p.ej., covarianza; Sporns, 2011). Si bien se han realizado importantes hallazgos en cuanto al cerebro humano en estadios prenatales (Miller, Ding y Sunkin, 2014), aún no es posible establecer completamente el conectoma adulto.
Se utilizan diversas técnicas para medir la conectividad cerebral. La conectividad estructural, es decir, el conjunto de conexiones físicas (anatómicas) que unen los elementos neuronales, se mide tanto mediante técnicas invasivas como el trazado de vías (“tract tracing”), que permite rastrear las proyecciones de una parte del sistema nervioso hacia otra (p.ej., mediante microesferas fluorescentes), como técnicas no invasivas, principalmente las imágenes por resonancia magnética (MRI por sus siglas en inglés) y las imágenes de tensor de difusión (DTI). Las MRI proporcionan información sobre la estructura y composición del cerebro, mientras que la técnica de DTI, al ser sensible a la forma tridimensional de la difusión de moléculas de agua, permite trazar las fibras de axones de la materia blanca.
La conectividad funcional, es decir, los patrones de coactivación entre las unidades neuronales distribuidas, se mide mediante técnicas invasivas como los electroencefalogramas intracraneales (iEEG), que registran la actividad eléctrica directamente de la corteza cerebral, y mediante técnicas no invasivas como las imágenes por resonancia magnética funcional (fMRI), la magnetoencefalografía (MEG) y la electroencefalografía (EEG). La fMRI sirve para identificar las regiones cerebrales que se activan mientras se ejecuta una tarea determinada, la MEG para registrar la actividad cerebral mediante la captación de campos magnéticos y la EEG para medir la actividad bioeléctrica cerebral en distintas condiciones basales (Sporns, 2010).
Recientemente, las investigaciones del proyecto conectoma se han extendido al campo de la psiquiatría, teniendo como objeto de estudio no sólo a cerebros “normales”, sino también “patológicos”. Al respecto, se han desarrollado algunas hipótesis que intentan explicar determinados trastornos neuropsiquiátricos, tales como la esquizofrenia, formulándolos en términos de problemas “económicos” de conectividad cerebral (Bulmmore y Sporns, 2012). A estas investigaciones subyacen dos supuestos: (i) el cerebro tiene costos metabólicos, ligados tanto al cableado de redes como a su funcionamiento, los cuales aumentan proporcionalmente a la distancia entre regiones conectadas; (ii) el cerebro realiza elecciones de “costo-beneficio”, dado que la organización de sus redes es el resultado de una “negociación económica” entre el costo físico de la red cerebral y el valor adaptativo de su topología: el cerebro está organizado para producir mayor valor por menor costo.
Al implicar costos metabólicos, el cerebro es altamente vulnerable a cualquier condición que afecte su suministro de energía. Si una red cerebral no puede afrontar los costos metabólicos de su actividad, los nodos centrales (“hubs”) resultarán especialmente susceptibles, y se producirá un problema funcional. Por ello, se predice que en los trastornos cerebrales asociados a alteraciones metabólicas se manifestarán anormalidades en sus componentes de alto costo (nodos centrales y conexiones de larga distancia), los cuales son centrales para la cognición y las conductas adaptativas.
Desde esta perspectiva, las causas funcionales en la esquizofrenia se entienden como un cambio anormal en las propiedades topológicas y los costos metabólicos del cerebro. De hecho, existe evidencia, generada a partir de MRI y fMRI, de un aumento anormal en la distancia de las conexiones neuronales, así como también un mayor número de conexiones de larga distancia (respecto a personas sanas; Bulmmore y Sporns, 2012). Si estas hipótesis resultasen adecuadas, podrían traducirse en nuevos modos de intervención basadas en los principios económicos del cerebro.
Trabajar a partir del concepto de red representa una ventaja respecto a los enfoques actuales de clasificación de trastornos (generalmente reduccionistas) que niegan la naturaleza interconectada de muchos de ellos. Esto tiene el potencial de replantear la forma en que se definen los trastornos, incorporando clasificaciones, definiciones de vulnerabilidad y predicciones e identificación de estrategias terapéuticas individualizadas. Asimismo, resultaría más coherente con los conocimientos actuales que poseemos respecto a los trastornos psiquiátricos, que indican que rara vez poseen una única causa, sino que más bien son producto de una multicausalidad compleja (Kendler, 2012).
Se espera que los estudios futuros sobre el conectoma humano amplíen de manera significativa nuestro conocimiento sobre el cerebro: sus redes funcionales y estructurales, su desarrollo, envejecimiento y sus alteraciones en diversas patologías, tales como la esquizofrenia, el autismo y el Alzheimer. Pero si bien el proyecto es prometedor, es preciso realizar algunas advertencias. Por un lado, existen al menos dos tipos de limitaciones: técnico-instrumentales, como la dificultad para obtener imágenes de alta resolución “in vivo”, y teóricas, dada la enorme complejidad del objeto de estudio y la perspectiva exclusivamente biologicista de este proyecto, la cual asume a priori que la raíz de los trastornos psiquiátricos se encuentra en el cerebro, desestimando aspectos importantes como el medio externo o el cuerpo. Por otro lado, hay que reconocer que la evidencia empírica obtenida hasta el momento, al menos para la esquizofrenia, no resulta concluyente. Por todas estas razones, es posible que transcurra aún un tiempo antes de que este proyecto aporte resultados con aplicaciones clínicas directas.
Referencias
Bullmore, E., y Sporns, O. (2012). The economy of brain network organization. Neuroscience, 13, 336-49.
Kendler, K. S. (2012). The dappled nature of causes of psychiatric illness: Replacing the organic–functional/hardware–software dichotomy with empirically based pluralism. Molecular Psychiatry, 17, 377–388.
Miller, J. A., Ding, S. L., y Sunkin, S. M. (2014) Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199-206.
Sporns, O. (2011). The human connectome: A complex network. Annals of the NY Academy of Sciences, 1224, 109-125.
Sporns, O. (2010). Networks of Brain. MIT Press.

No hay comentarios »

Aún no hay comentarios.

Canal RSS de los comentarios de la entrada. URL para Trackback

Deja un comentario

Gestionado con WordPress