Enriquerubio.net El blog del Dr. Enrique Rubio

29 noviembre 2018

Elías Metchnikoff

Filed under: INMUNIDAD,NOTABLES — Enrique Rubio @ 21:00

Elías Metchnikoff

Elías Metchnikoff (16 de mayo de 1845, Járkov, Ucrania – 16 de julio de 1916, París, Francia)
Del maravillosos libro de Paul de Kruif, “Cazadores de microbios”, se extrae conocimiento suficiente para explicar acontecimientos biológicos de nuestros días.
Ni que decir tienen que toeo esto que escribo esta extraído de el.

Metchnikoff, fue más bien uno de esos personajes histéricos que aparecen en las novelas de Dostoievski.
Sí autodefinió cómo : Tengo cabeza, capacidad y talento natural. Mi ambición es llegar a ser un investigador notable».
Intervino en política y se libro por poco de ser deportado, sus ideas políticas lo expusieron a las minas de Siberia. Predicaba el ateísmo a sus camaradas quienes le pusieron el apodo de «Dios no existe». Un poco antes del final de curso, se aprendía precipitadamente las lecciones descuidadas durante los meses anteriores, y gracias a su prodigiosa memoria, que más que cerebro humano parecía una grabadora, obtenia el primer lugar y ganado una medalla de oro.
Metchnikoff siempre enviaba trabajos a las revistas científicas, que escribía después de atropellados exámenes obtenidos impetuosamente poco después de examinar, bajo el microscopio, cualquier sabandija o escarabajo. Al observar al día siguiente el mismo bicho, se encontraba con que aquello de que había estado tan seguro el día anterior había cambiado, y apresuradamente enviaba una carta al editor de la revista:
Metchnikoff se quejaba porque sus profesores no valolraban su talento. El Origen de las especies, de Darwin, fue para él un hallazgo y a partir del aquel momento la Evolución se convirtió en su religión, hasta que por su propia cuenta empezó a fundar nuevas religiones científicas. Atrás quedaron sus proyectos de suicidio. A diferencia de Koch y de Leeuwenhoek, que fueron grandes porque supieron cómo interrogar a la Naturaleza, Metchnikoff leía libros sobre la Evolución, se inspiraba, exclamando: «¡Sí, así es!»; algunas veces tuvo razón y muchas, sin razones.
Metchnikoff no sabía ni una sola palabra sobre los microbios, pero su manía por demostrar la supervivencia del más apto lo conducía hacia una teoría propia, fantástica y, hasta cierto punto, acertada, de cómo la humanidad resiste los embates de los gérmenes dañinos.
Los primeros treinta y cinco años de la vida de Metchnikoff fueron tumultuosos, y una casi desastrosa búsqueda por la fama, hacía experimentos sobre el desarrollo de las cantáridas, esponjas, gusanos y escorpiones, tratando de hacer algún descubrimiento sensacional que le proporcionara una cátedra bien remunerada…
«No sobreviven los mejores, sino los más hábiles», era su tesis o una de ellas. Su esposa Ludmilla tras sufrir una malvada tuberculosis de la que el no se preocupo demasiado, Metchnikoff, que se había adicionado a la droga, viajo por España y llegar a Ginebra, tomando cada vez dosis mayores del estupefaciente. ¿Para qué seguir viviendo? e ingirió una dosis mortal de morfina pero que, por excesiva, le produjo náuseas y vómito.
—¿Para qué seguir viviendo? — exclamó de nuevo; y después de tomar un baño caliente se lanzó al aire frío de la calle, con el propósito de que una pulmonía pusiese fin a su vida; pero, al parecer, los dioses sabios e ingeniosos que modelan a los investigadores, le tenían reservado otro destino. Aquella misma noche se detuvo, asombrado, ante el espectáculo de una nube de insectos revoloteando alrededor de un farol.
—Estos insectos sólo viven unas cuantas horas —se dijo—. ¿Cómo es posible aplicarles la teoría de la supervivencia del más apto? —y se enfrascó, de nuevo, en sus experimentos.
Dos años después de la muerte de Ludmilla, conoció a Olga, inteligente muchacha de quince años, poco después se casaron.
Eto hizo que Metchnikoff fuera algo mas feliz. La idea del suicidio ya no lo obsesionaba, siempre aplicó su religión, que era la ciencia, de su vida.

Fue en 1883 Metchnikoff se transformó en cazador de microbios. Y empezó a estudiar la digestión de los alimentos en las esponjas y en las estrellas de mar, mucho tiempo antes había descubierto en el interior de estos animales unas células errantes que formaban parte de sus cuerpos, pero que eran independientes, por así decirlo, puesto que se movían de un lado para otro y alargaban una parte de ellas mismas, tales eran aquellas células que se movían fluyendo, exactamente como los pequeños animales llamados amebas.
Ni mas ni menos que descubrió la inmunología. Esas células errantes del cuerpo de las larvas de las estrellas de mar comen los alimentos, engloban las partículas de carmín, pero también deben de comerse los microbios. Nuestras células errantes, los glóbulos blancos de nuestra sangre, deben ser las que nos protegen contra los microbios invasores, son seguramente la causa de nuestra inmunidad a las enfermedades, son las que impiden que la raza humana sucumba ante los bacilos maléficos.
-Aquí está la explicación de por qué los animales resisten los ataques de los microbios, el doctor Virchow, el mismo que había recibido fríamente a Koch, creyó en Metchnikoff.
Necesito un nombre científico para esas células que comen microbios, un nombre griego. iFagocitos! Fagocito significa en griego célula que come. Tal es el nombre que debe usted darles.
A partir de aquel momento predicó fagocitos, se llenó de enemigos a causa de ellos, y no cabe duda de que contribuyó con ellos a la declaración de guerra de 1914, por las relaciones tirantes que con tal motivo había creado entre Francia y Alemania.
Metchnikoff necesitaba una prueba evidente de su teoría, y la encontró muy clara, por cierto, en las pulgas de agua. Busca pulgas de agua en acuarios y charcos; este ingenioso utilizó estos bichos, porque las larvas de las estrellas de mar, son transparentes, y podía, por tanto, ver perfectamente lo que ocurría en su interior. Metchnikoff pudo observar cómo las células errantes de la pulga de agua, sus fagocitos, se precipitaron contra las peligrosas agujas, rodeándolas, comiéndoselas, haciéndolas desaparecer. Cuando los fagocitos no daban batalla a las esporas, los invasores se transformaban rápidamente en fermentos vivos que a su vez se comían a la pulga de agua, envenenándolas y acabando con ella. En esta ocasión Metchnikoff presenció un espectáculo emocionante; una lucha a muerte en pequeña escala.
Hbia descubierto la manera, hasta entonces completamente misteriosa, cómo ciertos organismos vivos se defienden de los que quieren ser sus asesinos.
«La inmunidad de la pulga de agua, debida a la ayuda que le prestan sus fagocitos, es un ejemplo de inmunidad natural porque, cuando las células errantes no engloban y digieren las esporas de los fermentos en el preciso momento en que penetran en su cuerpo, los fermentos se desarrollan y segregan un veneno que no sólo rechaza a los fagocitos, sino que los mata, disolviéndolos por completo».
Los rusos se entusiasmaron con la proeza de Pasteur de salvar la vida a dieciséis de sus compatriotas mordidos por un lobo rabioso; Odesa y los campesinos del Zernstvo montaron un laboratorio en Odesa, olvidando momentáneamente que era judío, lle ofrecieron a Metchnikoff y este aceptó el cargo de director de tal laboratorio .
Fue presentado a Pasteur, y sin más preámbulos, Metchnikoff se entregó a largas explicaciones acerca de su teoría de los fagocitos, representando una verdadera película con la batalla entre las células y los microbios. Pasteur dijo Desde un principio he estado al lado de usted, profesor Metchnikoff, porque me ha llamado la atención la lucha entre los diversos microorganismos que he tenido ocasión de observar. Creo que está usted en el buen camino.
Tiene usted aquí un puesto para mí —preguntó Metchnikoff a Pasteur—. No deseo otra cosa que trabajar en sus laboratorios sin remuneración alguna— suplicó.
—No sólo puede usted venir a trabajar con nosotros, sino que tendrá un laboratorio para usted solo.
Metchnikoff abandonó Odesa y se fue al Instituto Pasteur e inauguró un espectáculo que duró veinte años.
Somos inmunes a consecuencia de una batalla librada entre nuestros fagocitos y los microbios merodeadores, este cuento de la buena pipa, había causado enorme sensación entre todos los investigadores europeos. «La mayor parte de los bacteriólogos de Alemania y Austria no creían en esa historia, por su sencillez, la rechazaban con extraordinaria violencia, poniendo en evidencia a Metchnikoff en los Congresos científicos y por la vía experimental. Por un momento se tambaleó Metchnikoff—, casi se desmayaba, pasaba las noches en claro, pensó en volver al paliativo de la morfina y hasta llegó a pensar de nuevo en el suicidio.
Insistio con todo su tesón —He demostrado que el suero de las ratas mata al bacilo del carbunco. Es la sangre de los animales, y no sus fagocitos, lo que los hace inmunes a los microbios gritaba Emil Behring, y todos los enconados enemigos de Metchnikoff asentían a coro.
—Son los fagocitos los que se comen los microbios y nos defienden de esa manera— rugía Metchnikoff, y daba a conocer experimentos ingeniosos, demostrando que los bacilos del carbunco se desarrollaban con exuberancia en la sangre de ovejas inmunizadas con la vacuna de Pasteur.
—Multiplico mis experimentos para apoyar mí teoría de los fagocitos— solía decir.

Para el Congreso de Londres de 1891. Metchnikoff vacunó unos cuantos conejillos de Indias con bacilos parecidos a los del cólera, y una semana después, o cosa así, inyectó en el vientre de los animales vacunados una nueva dosis de los mismos bacilos, vivos y virulentos. En las horas, que siguieron, cada diez minutos introducía unos finos tubos de cristal en el vientre de los pobres animales, y extraía unas cuantas gotas de líquido, que colocaba bajo la lente más o menos empañada del microscopio, para ver si los fagocitos de los animales inmunes se comían a los bacilos, así fue, las células errantes estaban atiborradas de microbios. «Ahora voy a demostrar que estos microbios, que los fagocitos llevan dentro, siguen estando vivos»—exclamó Metchnikoff, y para ello mató los conejos de Indias, y con otros tubos de cristal extrajo parte del sedimento gris de las células errantes, que se había acumulado en el vientre de los animales, para darse un banquete de microbios. Los fagocitos murieron al momento, porque son muy delicados cuando se trata de conservarlos vivos fuera del cuerpo, y al abrirse dejaron escapar los bacilos «vivos» que habían engullido; con gran presteza inyectó Metchnikoff estos bacilos, estos microbios que habían sido comidos por los fagocitos, a otros conejos de Indias no inmunizados, que murieron prontamente.
Un millar de investigadores habían acechado a los fagocitos en el acto de engullir gérmenes maléficos, y aunque esto no explicaba en modo alguno por qué muere un hombre de pulmonía, mientras otro rompe a sudar y mejora, no cabe duda de que en algunas ocasiones los fagocitos se comen y hacen desaparecer a los microbios de la pulmonía. Metchnikoff, pensó que un genio de la experimentación, `resolvería el enigma de por qué los fagocitos unas veces engullen microbios y otras no, y hasta, quién sabe, pudiera enseñar a los fagocitos a tener siempre apetito.

Metchnikoff había sonsacado a algunos ricos rusos, en estudiar la plaga venérea, intentando contagiarla a monos, tratando de descubrir el hasta entonces virus misterioso, prevenirla y curarla, si era posible: pero, sobre todo, lo que Metchnikoff quería era estudiar como la sífilis endurece las arterias. Con aquel dinero compraron monos; los gobernadores franceses del Congo tuvieron que enviar negros a dar una batida por las selvas en busca de esos animales, y poco después unas grandes salas del Instituto Pasteur resonaban con el babel de chillidos de chimpancés y orangutanes. Roux y Metchnikoff hicieron casi en seguida un importante hallazgo; sus experimentos eran ingeniosos y tenían una cierta seriedad y precisión extrañamente antimetchnikoffiana.
El laboratorio empezó a ser frecuentado por hombres desgraciados, recientemente contaminados de sífilis, con uno de estos inocularon a un mono, primer experimento que fue un éxito, pues el chimpancé adquirió la enfermedad. De ahí en adelante, y durante más de cuatro años, siguieron trabajando, transmitiendo la enfermedad de un mono a otro, buscando el oculto microbio sin lograr encontrarle, viendo la manera de atenuar el virus, como había hecho Pasteur con el germen desconocido de la rabia, con el fin de descubrir una vacuna preventiva.
Con Roux al lado, siempre meticuloso e insistiendo en experimentos bien comprobados, después de tanto teorizar acerca de la inmunidad, realizó uno de los ensayos más profundamente prácticos de toda la microbiología: inventó el ungüento gris a base de calomelanos, que en la actualidad está extirpando la sífilis de los ejércitos del mundo entero. Eligió dos monos, los inoculó con virus sifilítico recién extraído de un hombre, y una hora más tarde frotó con ungüento gris las escarificaciones hechas a uno de los monos, pudiendo comprobar que en el mono no tratado aparecieron todos los horribles síntomas de la enfermedad, mientras que no llegaron a aparecer en el mono tratado con ungüento. Después de esto, Metchnikoff convenció a un joven estudiante de Medicina, Maisonneuve de nombre, para que se prestase voluntariamente a ser inoculado de sífilis procedente de un enfermo. Ante la Comisión de los médicos franceses más ¡lustres, se presentó el valiente Maisonneuve para recibir seis largas incisiones, en las que fue depositado el peligroso virus; inoculación más grave que la que cualquier persona pudiera recibir naturalmente, y cuyos resultados podían haberle convertido en un despojo humano o haberle enviado, loco, a la muerte. Una hora estuvo aguardando Maisonneuve, pasada la cual, Metchnikoff plenamente confiado, le frotó las heridas con un ungüento gris, sin hacer la misma operación con las incisiones que, al mismo tiempo que al estudiante, había hecho a un chimpancé y a otro mono. El resultado fue soberbio, porque Maisonneuve no presentó el menor signo de ulcera maligna, mientras que, treinta días más tarde, la enfermedad hizo su aparición en los simios: no cabía duda acerca de la excelencia del remedio.

Metchnikoff, entretanto, seguía soñando y discurriendo que otras cosas podían contribuir al endurecimiento de las arterias, y de pronto inventó otra causa, y digo inventar, pues nadie puede asegurar que la descubrió.
La causa del endurecimiento de las arterias, lo que nos hace envejecer prematuramente, es seguramente la autointoxicación. el envenenamiento producido en nuestro intestino grueso por los microbios de la putrefacción— exclamó. El ideó pruebas químicas, horribles muchas de ellas, para comprobar si el cuerpo era envenenado por la vía intestinal.
—Viviríamos más tiempo si no tuviéramos intestino grueso. Hay datos de dos personas a quienes ha sido extirpado el intestino grueso y que continúan viviendo perfectamente sin él.
no fue a verlo, pero lo creyó, y la leyenda añadía que el alimento principal de aquellas gentes era la leche agria o «yogurt ».
Encargó a sus discípulos más jóvenes que estudiasen el microbio que agriaba la leche, con lo que al poco tiempo el célebre bacilo búlgaro ocupó un puesto preeminente entre las filas de medicamentos específicos.
—Este bacilo —explicaba Metchnikoff—, al producir ácido láctico, elimina los bacilos venenosos del intestino.
Y él mismo empezó a beber grandes cantidades de Yogurt, y más tarde, durante años enteros, se atracó de cultivos de bacilo búlgaro. Escribió copiosos tratados acerca de esta nueva teoría suya, que un periódico inglés serio calificó de como uno de los tratados científicos más importantes aparecidos después de «El origen de las especies» de Darwin. El bacilo búlgaro hizo furor; se fundaron Compañías para prepararlo, cuyos consejeros se enriquecieron vendiendo el estúpido microbio.
Metchnikoff vivió austeramente durante casi veinte años, siguiendo al pie de la letra su teoría, sin probar bebidas alcohólicas, sin fumar y sin permitirse otras extralimitaciones, haciéndose reconocer frecuentemente por los especialistas más notables de aquel tiempo. Las tostadas para el desayuno eran servidas envueltas en sacos de papel esterilizado, para evitar la contaminación por los bacilos autointoxicadores; constantemente hacía analizar sus diversos jugos y secreciones, y durante aquellos años tragó un sin fin de litros de leche agria y engulló billones de benéficos bacilos búlgaros.
Y después de todo esto, murió a los setenta y un años.

22 junio 2018

Enfermedad de Parkinson e Inmunidad

Filed under: General,INMUNIDAD,SINUCLEOPATIAS — Enrique Rubio @ 19:37

La enfermedad de Parkinson y la inmunidad :
Fue descrita por primera vez en 1817 por James Parkinson en su Ensayo sobre la Parálisis Temblorosa. SJames Parkinson in his Essay on the Shaking Palsy.
La enfermedad de Parkinson es una enfermedad crónica caracterizada principalmente por una pérdida progresiva de la capacidad de coordinar los movimientos. Esto se debe a la degeneración y muerte progresiva de unas células nerviosas (neuronas) situadas principalmente en una pequeña parte del cerebro conocida como sustancia negra. Dichas neuronas se encargan de producir la dopamina, una sustancia que permite que las células cerebrales implicadas en el control del movimiento se puedan comunicar entre sí. Cuando los niveles de dopamina bajan, dicha comunicación no se desarrolla correctamente, provocando patrones anormales de activación nerviosa lo que se traduce en temblor, rigidez, lentitud de movimiento y trastornos posturales, síntomas comunes en la enfermedad de Parkinson. Otra de las características de la enfermedad de Parkinson es la acumulación de formas defectuosas de la proteína alfa-sinucleína y la formación de los así llamados cuerpos de Lewy en las neuronas productoras de dopamina.
Cada vez hay más indicios de que reacciones desreguladas del sistema inmune y la inflamación crónica en el sistema nervioso central pueden contribuir al avance de esta enfermedad.
Aunque tradicionalmente el sistema nervioso central (SNC) se consideró como un tejido “inmunoprivilegiado”, en el que el sistema inmune periférico no podía acceder, evidencias clínicas y experimentales han demostrado la relación interactiva entre estos dos sistemas. El sistema inmune es responsable de la protección del SNC ante infecciones o el daño cerebral. Cuando las células microgliales, que representan las células del sistema inmune innato más importantes en el cerebro, detectan agentes infecciosos y restos de células dañadas, se activan y liberan citóquinas proinflamatorias y otras sustancias que inducen un proceso inflamatorio, aumentando la permeabilidad de la barrera entre los vasos sanguíneos y el sistema nervioso central (barrera hematoencefálica) y permitiendo la entrada de linfocitos T en el SNC. Hay evidencias de que no sólo agentes infecciosos y restos celulares pueden inducir una respuesta por parte del sistema inmune innato y adaptativo, sino también las proteínas modificadas en el cerebro como la alfa-sinucleína que mencionamos al principio.
En condiciones normales, esta reacción es esencial para eliminar el tejido dañado y restablecer el equilibrio y las funciones normales del SNC. Sin embargo, una inflamación persistente y una activación incontrolada de células del sistema inmune puede ser perjudicial para el SNC y puede iniciar o amplificar la neurodegeneración. Es por ello que es importante regular estos procesos en la enfermedad de Parkinson.
Parkinson familiar y demencia con cuerpos de Lewy: un estudio de secuenciación y vinculación de genoma completo

La mayoría de los pacientes con enfermedad de Parkinson, demencia por enfermedad de Parkinson y demencia con cuerpos de Lewy no portan mutaciones en genes conocidos que causan enfermedades. El objetivo de este estudio fue identificar un nuevo gen implicado en el desarrollo de estos trastornos.
Nuestro estudio se realizó en tres etapas. Primero, hicimos un análisis de ligamiento genómico de una familia italiana con enfermedad de Parkinson dominantemente heredada para identificar el locus de la enfermedad. En segundo lugar, secuenciamos el gen candidato en una serie internacional multicéntrica de probandos no emparentados que fueron diagnosticados clínica o patológicamente con la enfermedad de Parkinson, la demencia de la enfermedad de Parkinson o la demencia con cuerpos de Lewy. Como control, utilizamos datos de secuenciación de genes de individuos con aneurismas aórticos abdominales (que no fueron examinados neurológicamente). En tercer lugar, inscribimos una serie independiente de pacientes diagnosticados clínicamente con enfermedad de Parkinson y controles sin signos o antecedentes familiares de enfermedad de Parkinson, demencia por enfermedad de Parkinson o demencia con cuerpos de Lewy de centros en Portugal, Cerdeña y Taiwán, y los seleccionó para variantes específicas. También realizamos estudios de mRNA y patología cerebral en tres pacientes de la serie internacional multicéntrica portadora de variantes asociadas a la enfermedad, e hicimos estudios de proteínas funcionales en modelos in vitro, incluidas las neuronas de células pluripotentes inducidas de tallo.
Los estudios moleculares se realizaron entre el 1 de enero de 2008 y el 31 de diciembre de 2017. En el parentesco inicial de diez individuos italianos afectados (edad media de aparición de la enfermedad 59 · 8 años [SD 8 · 7]), detectamos un vínculo significativo de la enfermedad de Parkinson al cromosoma 14 y nominado LRP10 como el gen causante de la enfermedad. Entre las series internacionales de 660 probandos, identificamos ocho individuos (cuatro con enfermedad de Parkinson, dos con demencia por enfermedad de Parkinson y dos con demencia con cuerpos de Lewy) que portaban LRP10 diferente, raro y potencialmente patogénico .variantes; un portador se encontró entre 645 controles con aneurismas aórticos abdominales. En la serie independiente, se detectaron dos de estas ocho variantes en tres probandos adicionales de la enfermedad de Parkinson (dos de Cerdeña y uno de Taiwán) pero en ninguno de los controles. De los 11 probandos de las cohortes internacionales e independientes con variantes de LRP10 , diez tenían un historial familiar positivo de la enfermedad y el ADN estaba disponible de diez familiares afectados (en siete de estas familias). Las variantes de LRP10 estuvieron presentes en nueve de estos diez parientes, proporcionando evidencia independiente, aunque limitada, de co-segregación con la enfermedad. Estudios post-mortem en tres pacientes con LRP10 distintovariantes mostraron patología corporal de Lewy severa. De nueve variantes identificadas en total (una en la familia inicial y ocho en la etapa 2), tres severamente afectadas expresión de LRP10 y estabilidad del mRNA (1424 + 5delG, 1424 + 5G → A, y Ala212Serfs * 17, mostradas por análisis de cDNA), cuatro la estabilidad de la proteína afectada (Tyr307Asn, Gly603Arg, Arg235Cys y Pro699Ser, mostrada por cycloheximide-chase experimentos), y dos localización de la proteína afectada (Asn517del y Arg533Leu, demostrado por inmunocitoquímica), apuntando a la pérdida de la función LRP10 como mecanismo patogénico común.
La Interpretación de nuestros hallazgos implican defectos del gen LRP10 en el desarrollo de formas heredadas de α-sinucleinopatías. La elucidación futura de la función de la proteína LRP10 y las vías podría ofrecer nuevos conocimientos sobre los mecanismos, biomarcadores y objetivos terapéuticos.
En Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, programa ZonMw-Memorabel, programa conjunto de la UE Neurodegenerative Disease Research (JPND), Parkinson’s UK, Avtal om Läkarutbildning och Forskning (ALF) y Parkinsonfonden (Suecia), Lijf y Leven foundation, y concesión transfronteriza de Alzheimer Netherlands-Ligue Européene Contre la Maladie d’Alzheimer (LECMA).
REGULACIÓN DE LOS CANALES DE CALCIO
Redacción. Madrid | 2018-06-13 12:42:59
Eliminar los desechos de proteínas que afectan a las neuronas, potencial clave para Parkinson
Científicos de la UGR y el CSIC han llegado a la conclusión de que nuevos métodos que favorezcan la eliminación de los agregados de proteínas que los enfermos de Parkinson acumulan podrían constituir una estrategia terapéutica prometedora contra esta patología.

La investigadora de la UGR Pilar Rivero Ríos, en el centro de la imagen, junto a su equipo.
Conseguir fármacos que ataquen la causa del Parkinson y no se limiten solo a aliviar sus síntomas es el objetivo final de la investigación de Pilar Rivero Ríos, doctoranda de la Universidad de Granada que realiza su tesis en el grupo de Sabine Hilfiker, en el Instituto López-Neyra del CSIC, en Granada. Para ello, los científicos han llegado a la conclusión de que nuevas aproximaciones para promover la eliminación de los agregados de proteínas que los enfermos de Parkinson acumulan podrían constituir una estrategia terapéutica prometedora contra esta patología, según publican en Messenger.

El Parkinson es la segunda enfermedad neurodegenerativa más común, ya que afecta al 1 por ciento de la población mayor de 65 años. Uno de sus rasgos característicos es la presencia de agregados de proteínas que, en circunstancias normales, deberían ser desechados, y que se acumulan hasta provocar la muerte de las neuronas. «Este hecho apunta a la existencia de alteraciones en los lisosomas, que podrían compararse con el ‘aparato digestivo’ de la célula»,
LRRK2 en el lisosoma
Los científicos analizan los mecanismos mediante los cuales LRRK2, principal determinante genético del Parkinson, provoca dicha enfermedad al afectar a los canales de calcio que se encuentran en el lisosoma, impidiendo que este realice su función de eliminación de los desechos que finalmente provocan la muerte celular. Conocer los mecanismos responsables de la enfermedad es el primer paso para el desarrollo de fármacos eficaces para tratarla.
«Los tratamientos frente al Parkinson de los que disponemos en la actualidad presentan el problema de que se limitan a aliviar los síntomas, pero no atacan a la causa y por tanto no curan. De ahí la importancia de conocer cuáles son los procesos que están afectados en la célula, lo que permitirá desarrollar fármacos que corrijan esos procesos y realmente curen la enfermedad en lugar de simplemente atacar los síntomas. La investigación sería un primer paso para el desarrollo de fármacos frente al Parkinson», Rivero.
La acumulación en las neuronas de desechos celulares, los llamados cuerpos de Lewy, es uno de los rasgos característicos de la enfermedad de Parkinson. La investigadora explica que «el desarrollo de fármacos que regulen la actividad de estos canales de calcio que se encuentran alterados en el Parkinson podría corregir el mal funcionamiento del lisosoma y combatir la patología». En definitiva, se atacarían las causas del Parkinson y no simplemente sus síntomas.
Sin embargo, alerta de la complejidad del proceso de creación de nuevos fármacos: «Solo un 1 por ciento de los fármacos de nueva creación superan los controles de eficacia, seguridad en laboratorio y los ensayos clínicos. Puede pasar una década desde el desarrollo del fármaco hasta que está disponible para las personas que lo necesitan».
Resumen
lLa enfermedad de Parkinson es crónica y se caracterizada principalmente por una pérdida progresiva de la capacidad de coordinar los movimientos. Esto se debe a la degeneración y muerte progresiva de las neuronas situadas principalmente en una pequeña parte del cerebro conocida como sustancia negra. Dichas neuronas se encargan de producir la dopamina, una sustancia que permite que las células cerebrales implicadas en el control del movimiento se puedan comunicar entre sí. Cuando los niveles de dopamina bajan, dicha comunicación no se desarrolla correctamente, provocando patrones anormales de activación nerviosa lo que se traduce en temblor, rigidez, lentitud de movimiento y trastornos posturales, síntomas comunes en la enfermedad de Parkinson.
Otra de las características de la enfermedad de Parkinson es la acumulación de formas defectuosas de la proteína alfa-sinucleína y la formación de los así llamados cuerpos de Lewy en las neuronas productoras de dopamina
La acumulación en las neuronas de desechos celulares, los llamados cuerpos de Lewy, es uno de los rasgos característicos de la enfermedad de Parkinson. Un eje de un
La mayoría de los pacientes con enfermedad de Parkinson, demencia por enfermedad de Parkinson y demencia con cuerpos de Lewy no portan mutaciones en genes conocidos que causan enfermedades.
La YLRRK2, principal determinante genético del Parkinson, provoca dicha enfermedad al afectar a los canales de calcio que se encuentran en el lisosoma, impidiendo que este realice su función de eliminación de los desechos que finalmente provocan la muerte celular
Referencia:
R. Lee Mosley, Jessica A. Hutter-Saunders, David K. Stone, and Howard E. Gendelman. Inflammation and Adaptive Immunity in Parkinson’s Disease. Cold Spring Harb Perspect Med. Jan 2012; 2(1): a009381.
REGULACIÓN DE LOS CANALES DE CALCIO
Redacción. Madrid | 2018-06-13 12:42:59
Eliminar los desechos de proteínas que afectan a las neuronas, potencial clave para Parkinson
Parkinson familiar y demencia con cuerpos de Lewy: un estudio de secuenciación y vinculación de genoma completo

19 mayo 2018

TRANSPORTE ESENCIAL EN NUESTRA CÉLULAS

Filed under: ANATOMIA,INMUNIDAD — Enrique Rubio @ 20:20

UN SISTEMA DE TRANSPORTE ESENCIAL EN NUESTRA CÉLULAS
Cada célula es una fábrica que produce y exporta moléculas. Estas moléculas se transportan en pequeños paquetes llamados vesículas. Se han han descubierto los principios moleculares que permiten que el transporte en la célula se lleve al lugar y momento adecuado.

“Dentro de la célula los receptores “viajan” en rutas, que están juntas pero no mezcladas, hasta la membrana plasmática para localizar y activar una amplia variedad de complejos proteicos. Se produce una compartimentalización de vesículas cargadas de moléculas tanto para aquellas que permanecen dentro de la célula como para las que son exportadas al exterior,” explica Fernández Salguero. Las vesículas se asocian y fusionan con diferentes membranas celulares, y son ellas las que trasladan la carga entre compartimentos intracelulares o hacia el medio exterior si se unen a la membrana celular externa. Esto es de gran importancia, ya que desencadena la activación de las neuronas en el caso de que las sustancias liberadas sean neurotransmisores, o controla el metabolismo, en el caso de las hormonas. “A través de las rutas de secreción, la célula envía proteínas al medio intracelular o las capta de zonas extracelulares. Un caso muy característico es la liberación de neurotransmisores a la hendidura sináptica durante la transmisión del impulso nervioso. Los neurotransmisores se secretan y acumulan en regiones concretas de las neuronas pre sinápticas, cuando llega el impulso nervioso hay una acumulación de vesículas de neurotransmisores en regiones cercanas a la membrana que siguen una ruta de secreción concreta, y actúan para señalizar”, continua el investigador.

Este transporte celular también está implicado en la señalización por insulina y en la captación de glucosa por la célula para obtener energía. “Hay una ruta de secreción concreta por la que los receptores que introducen la glucosa en la célula viajan en vesículas cuya trayectoria las dirige a la membrana plasmática para captar la glucosa. En la diabetes, sobre todo de tipo II, esa ruta de secreción está alterada, de forma que las vesículas no transportan correctamente las moléculas de receptor hasta la membrana, constituyendo una de las causas de este tipo de diabetes”, comenta Fernández Salguero.

Sin embargo, los estudios del transporte celular no son sólo de aplicación en enfermedades metabólicas o neurodegenerativas, también son de interés en la investigación del cáncer. Oncogenes que pertenecen a la misma familia se mueven dentro de la célula por rutas vesiculares distintas. Según el investigador de la UEx, se cree que cuando este tráfico sucede de manera irregular puede contribuir a diferentes tipos de tumores, donde una forma concreta de oncogén sigue una ruta de movilización anómala dentro de la célula. Conocer esas rutas de movimiento vesicular de proteínas puede explicar por qué ciertos tipos de cánceres se ven afectados en mayor o menor medida por un oncogén y no por otros de la misma familia.

El tráfico vesicular interno es también importante para la captación de moléculas fuera de la célula. En inmunología, interviene en la entrada viral y en la liberación de moléculas y su distribución para que reconozcan los antígenos y los linfocitos.

Tres científicos, galardonados con los Premios Nobel 2013 , han aclarado cómo la célula organiza su sistema de transporte» interno y han detallado «los principios moleculares» que explican por qué este sistema es capaz de entregar las moléculas precisas «en el lugar adecuado, en el momento adecuado».
El Comité Nobel del Karolinska les otorgó este galardón por «sus descubrimientos de la maquinaria que regula el tráfico vesicular, un sistema de transporte esencial en nuestra células».
Se trata de los estadounidenses James E. Rothman y Randy W. Schekman y el alemán Thomas C. Südhof fueron premiados con el Nobel de Medicina por sus estudios sobre el transporte de moléculas dentro de las células, que puede tener utilidad para tratamientos contra la diabetes, el tétanos y otras enfermedades.

Cada tipo de vesícula debe enviar su carga especializada al destino correcto entre el intrincado laberinto de compartimentos que pueblan el citoplasma de las células de los animales complejos.
Ya antes Randy W. Schekman, de la Universidad de California, obtuvo su doctorado trabajando en Stanford en el departamento de Alfred Kornberg, también ganador del premio Nobel en 1959 por su identificación de la encima clave en la síntesis del ADN. Este científico no perdió el tiempo, en la Universidad de California, identificó 50 genes involucrados en el movimiento vesicular y determinó el orden y papel que cada uno de los productos proteínicos de los genes desempeña en el transporte de las moléculas en la célula.
Posteriormente los descubrimientos de Schekman fueron confirmados en organismos complejos, como los humanos. En la actualidad estudia si la acumulación de la proteína amiloide en los enfermos de Alzheimer se debe a un problema en la secreción de la célula.
Por su parte, Thomas C. Südhof, nacido en 1955 en Gotinga (norte de Alemania) y actualmente profesor de la Universidad de Stanford, se graduó en Medicina por la Universidad de Gotinga en 1982. En 1983 se trasladó a Dallas para trabajar como posdoctorado en el Centro Médico de la Universidad de Texas y tres años después puso en marcha su propio laboratorio en la Universidad Técnica del Suroeste, dependiente de esa misma universidad.
Allí comenzó una investigación de la neurona presináptica, de la que hasta entonces sólo se sabía que los iones de calcio estimulaban la liberación de neurotransmisores desde la vesícula hasta la sinapsis. Esta operación requiere de una fusión de las vesículas con la membrana plasmática, pero hasta los trabajos de Südhof no se sabía cómo se producía ésta.
El científico alemán mostró que el calcio conecta las proteínas de las membranas, estimulando el desencadenamiento de neurotransmisores.
En trabajos más recientes Südhof investigó cómo las alteraciones en las proteínas perjudican la química del cerebro, pudiendo causar la esquizofrenia o el autismo.

Recientemente en la contra de la vanguardia, Randy Schekman respondio a una serie de reguntas del periodista. Estornudo a su salida del avión y le pregunta LLuis Aiguet, ¿Se encuentra usted bien ?
Sí, gracias, no es nada: un poco de fiebre de algún virus que he pillado en el avión. Los aviones son gigantescas incubadoras de virus, y cada año pillo uno nuevo.
¿Eso fortalece su sistema inmunitario? Preferiría no fortalecerlo y estar sano.
¿Por qué existen los virus? ¿Sirven para algo aparte de para matarnos?
Su sentido evolutivo ha sido y es transferir genes de un organismo a otro infectando sus bacterias. Las piezas de ADN se transmiten así de una bacteria a otra.
¿Y así generan diversidad biológica?
Sí, pero ese mecanismo también tiene efectos indeseables para nosotros. Gracias a él, muchas bacterias se intercambian genes resistentes a los antibióticos y hacen que nuestros medicamentos pierdan efectividad y dejen de curar.
Las bacterias también aprenden.
Y más rápido que nosotros. Nos precedieron y nos sobrevivirán, ¿Sabía usted que convivir con un perro cambia tu microbioma? Al cabo de un tiempo de convivencia, hay bacterias de perro viviendo en el humano y bacterias de humano viviendo en el perro. Eso demuestra que ha habido coevolución entre perros y humanos y que nuestros organismos siguen evolucionando juntos.
Pero nosotros vivimos más: ¿podremos decidir algún día cuánto queremos vivir?
Yo creo que nuestro cuerpo tiene un límite en su existencia impuesto por muchos genes que han evolucionado para tener caducidad.
Izpisúa me dijo aquí que una célula madre en buenas condiciones vivía sin límite.
No sé cuánto puede vivir una célula madre, pero sí sé que es una célula en embrión: en cuanto se transforma en una célula ya diferenciada, su reloj biológico empieza su tictac. Pero: ¿Está usted seguro de que quiere vivir para siempre?
No me importaría poder decidir cuándo dejo de vivir. ¿A usted no le parece bien?
¡Claro! Pero sólo el recambio generacional permite la evolución. Si no nos morimos, los jóvenes, nuestros hijos y nietos, no pueden madurar y tener su propia identidad y establecerse.
Esto ya me parece mas complicado entenderlo, se olvida el premio novel de la trasversalidad, hay más cosas en la evolución de las que vemos.
¿Nuestra genética actual tiene un límite?
Nuestra genética da para que vivamos alrededor de 120 años, pero no creo que el reto ahora para la biomedicina sea alargar esa edad. Esto me parece lo más interesante de la entrevista. Es de win déjala y en el icono en el buen y con tan buena hoy en España en la gran oreja de calado por hora y
Los científicos deberíamos concentrarnos en mejorar la calidad de los últimos años de vida tanto como en alargarlos. Y esto es una cosa importanteen la entrevista.prolongar los años de bienestar mas que en los de vivir mas.
Debemos enfocarnos en lograr que sean tan buenos como ahora los 40 o 50 y dar así un final rápido e indoloro a nuestras vidas: ¿por qué nuestros últimos años tienen que ser un horror? Hoy suelen ser penosos y un desgaste emocional y de recursos para la familia.
Por eso no creo en la política ni en las religiones que a menudo acaban siendo luchas egoístas de poder: sólo la ciencia nos une y mejora nuestras vidas.
Easta parte es la mas emotiva de la entrevista donde se ve al nobel dolido por la perdida de su enposa en manos de una larga enfermedad neurodegenerativa. Parkinson y demencia.
“He visto a mi mujer morirse de parkinson durante 20 años con demencia al final”.
Seguimos sin entender los procesos de nuestra neurodegeneración. Sabemos que hay genes que predisponen al Alzheimer, pero ni siquiera estamos seguros de que sea la placa de amiloides, como hoy se cree, la que lo causa.
¿Podría ser un virus?
Podría ser. También descubrimos que un virus causaba algunos cánceres. Sabemos que uno de los genes que predisponen a la neurodegeneración es parte de una lipoproteína, pero aún no conocemos su conexión con la enfermedad. Y seguimos gastando millones en producir anticuerpos contra la acumulación de amiloides, pero sin ningún resultado concreto.
¿Por qué seguimos sin progresar?
Uno de los problemas para estudiar las neurodegenerativas es que no tenemos un modelo animal para reproducirlas. Uno de los últimos avances ha sido crear pequeños organoides, acumulaciones de células humanas, simulaciones de pequeños cerebros para investigarlas.
Serguéi Brin, uno de los dos fundadores de Google, ha donado más de mil millones de dólares a mi grupo para nuestra investigación. Por buenos motivos: su madre murió de una peculiar forma de Parkinson que él ha heredado.
Hemos identificado ya 80 marcadores genéticos del parkinson, y el objetivo ahora es crear esos organoides con células plenipotenciarias (IPS) de cada uno de los pacientes con uno de esos marcadores. Así los cultivaremos en el laboratorio e iremos probando tratamientos para detener la progresión de la enfermedad.
Dice al final algo que me aliente, es positivo en ver que el cáncer , “dice se ha curado”, yo solo le permito “que estamos curando”
No estamos más lejos de curar las enfermedades neurodegenerativas de lo que estábamos no hace tanto de curar el cáncer. Y hoy gran parte de cánceres se curan. Soy optimista, pero con sólidas razones científicas.
Randy Schekman declara un boicot a las grandes revistas científicas, se ha negado a publicar más en revistas como ‘Nature’, ‘Cell’ o ‘Science’ por las políticas de esas publicaciones. El premio Nobel de Medicina opina que sólo usan criterios editoriales al seleccionar los artículos y que promueven investigaciones «de moda».
Me parece muy bien, es mejor ponerse una vez colorado que cientos amarillos. Ya esta bien de dinero

6 mayo 2018

MECANISMO DE REGULACIÓN INMUNE DE LOS VIRUS

Filed under: INMUNIDAD — Enrique Rubio @ 13:08

MECANISMO DE REGULACIÓN INMUNE DE LOS VIRUS
ESTUDIO DEL CSIC EN ‘NATURE COMMUNICATIONS’
Madrid | 03/05/2018 19:15

Cortes histológicos que muestran que en presencia de la proteína viral (izq.) se inhibe una infiltración de células inmunes (puntos oscuros) y mayor inflamación que en ausencia de ella (dcha.). (CSIC)
«Los virus conocen cómo funciona el sistema inmune. «,

El investigador Antonio Alcamí del CSIC V en el Centro de Biología Molecular Severo Ochoa (centro mixto del CSIC y la Universidad Autónoma de Madrid).
La revista Nature Communications, publica un trabajo realizado en ratones, han utilizardo el modelo de la viruela, que causó la muerte de millones de personas antes de su erradicación y es la primera enfermedad infecciosa erradicada mediante un programa global de vacunación en 1980.
Los autores descubren que los poxvirus utilizan una estrategia única. Producen una copia de los receptores celulares del factor de necrosis tumoral (TFN) para inhibir la respuesta inmune»,
El TFN está implicado en el inicio y la coordinación de la respuesta inflamatoria y tras unirse a receptores específicos activa células inmunes necesarias para la defensa ante las infecciones. Cuando esta molécula se produce de forma incontrolada y causa una activación crónica de la respuesta inflamatoria, da lugar a enfermedades autoinmunes.
Se sabia que se pueden utilizar versiones solubles de los receptores de TFN en la clínica para tratar enfermedades autoinmunes como la artritis reumatoide.
Los virus también bloquean la respuesta inmune y para ello optimización de los receptores celulares del TFN añadiendo un nuevo dominio, denominado Secret. Este nuevo dominio interacciona con otras moléculas inmunes conocidas como quimiocinas, que controlan la migración de las células inmunes a los sitios de infección e inflamación. Al bloquear las quimioquinas, los virus consiguen que las células inmunes no se dirijan a los tejidos infectados y de esta forma inhiben una respuesta inflamatoria.
El mecanismo combinado contra quimiocinas y el factor de necrosis tumoral, ideado por estos virus, hace que al eliminar la proteína viral pierda la batalla contra el sistema inmune y el virus sea incapaz de causar la enfermedad. De esta forma, el efecto antiinflamatorio de los receptores del TFN se ve potenciado.
La estrategia viral se podría trasladar al campo de la medicina clínica añadiendo el dominio Secret a los receptores del TFN que se utilizan actualmente como medicamentos para frenar una respuesta inmune excesiva y tratar enfermedades autoinmunes. «Es interesante comprobar cómo el conocimiento básico de las estrategias ‘secretas’ utilizadas por el virus de la viruela para evadir nuestras defensas podría utilizarse ahora para mejorar medicamentos que pueden curar enfermedades y mejorar nuestra calidad de vida».
También se han detectado puntos de control en células inmunes que regulan su respuesta a virus, según trabajo del CIC bioGUNE y la Universidad de Vermont que describen el papel de la proteína mitocondrial MCJ en el metabolismo de células inmunes.

)
El CIC bioGUNE, con la Universidad de Vermont, ha identificado puntos de control en la células CD8 que regulan su capacidad de respuesta a agentes infecciosos, en el virus de la gripe.
La proteína mitocondrial MCJ regula el metabolismo de las células CD8 durante las diferentes fases de su respuesta cuando se enfrentan a infecciones: tanto la activación, como la generación de memoria, una vez que el agente infeccioso ha desaparecido. Cuando no existe esa proteína, aparecen muchas más células de memoria inmunitaria.
Este trabajo tiene también la posibilidad de regular el desarrollo de este tipo de células durante la vacunación. Si se pudiera controlar la cantidad de MCJ en las células se podría, por tanto, mejorar teóricamente la eficacia de las células y, con ello, la eficiencia de vacunas que las activan.
El trabajo ha sido dirigido por el grupo de Mercedes Rincón, profesora en el Departamento de Medicina de la Universidad de Vermont, junto con el equipo de Juan Anguita, en el CIC bioGUNE, y se publica en la revista Immunity.
que pertenecen al sistema inmune adaptado y son especialmente aptas para la lucha frente a las infecciones por virus.
El metabolismo y su regulación son claves en el control de la actividad celular. «El objetivo es desarrollar herramientas para el control de la actividad de MCJ que permita acelerar o frenar el metabolismo celular, dependiendo de las necesidades específicas de la patología a la que se quiera hacer frente y que puede implicar células inmunes u otros tipos celulares involucrados en cánceres o enfermedades infecciosas», señala Juan Anguita, investigador Ikerbasque y director del estudio en CIC bioGUNE.
Rincón y Anguita, desde 2007, estudia en MCJ la respuesta de macrófagos -células del sistema inmune innato que se encargan del reconocimiento y destrucción de agentes infecciosos- y células T.
En los dos comentarios que hago sobre los trabajos publicados, en el primero se intente regular la auto imunidad y del segundo incrementado la respuesta de los macrófagos. Esta dualidad forma parte de nuestro tiempo y podría abreviarse diciendo; La inmunidad es un producto delicado que surge de la vitud, ni mucho ni poco, lo suficiente
Juan Anguita, investigador del CIC BioGUNE y uno de los autores del trabajo. (

« Newer Posts

Powered by WordPress