Enriquerubio.net El blog del Dr. Enrique Rubio

26 mayo 2020

INMUNNIDAD EN LOS VIRUS .

Filed under: INMUNIDAD,MICROSBIOS — Enrique Rubio @ 21:03

INMUNNIDAD EN LOS VIRUS

Cortes histológicos que muestran que en presencia de la proteína viral (izq.) se inhibe una infiltración de células inmunes (puntos oscuros) y mayor inflamación que en ausencia de ella (dcha.). (CSIC)
«Los virus conocen cómo funciona el sistema inmune. «, La magia de la biología, nos lleva a pensar que los virus conocen la inmunidad y están facultados para luchar contra ella.

La revista Nature Communications, publica un trabajo realizado en ratones, han utilizardo el modelo de la viruela, que causó la muerte de millones de personas antes de su erradicación y es la primera enfermedad infecciosa erradicada mediante un programa global de vacunación en 1980.
Los autores descubren que los poxvirus utilizan una estrategia única. Producen una copia de los receptores celulares del factor de necrosis tumoral (TFN) para inhibir la respuesta inmune»,
El TFN está implicado en el inicio y la coordinación de la respuesta inflamatoria y tras unirse a receptores específicos activa células inmunes necesarias para la defensa ante las infecciones. Cuando esta molécula se produce de forma incontrolada y causa una activación crónica de la respuesta inflamatoria, da lugar a enfermedades autoinmunes.
Se sabia que se pueden utilizar versiones solubles de los receptores de TFN en la clínica para tratar enfermedades autoinmunes como la artritis reumatoide.
Los virus también bloquean la respuesta inmune y para ello optimización de los receptores celulares del TFN añadiendo un nuevo dominio, denominado Secret. Este nuevo dominio interacciona con otras moléculas inmunes conocidas como quimiocinas, que controlan la migración de las células inmunes a los sitios de infección e inflamación. Al bloquear las quimioquinas, los virus consiguen que las células inmunes no se dirijan a los tejidos infectados y de esta forma inhiben una respuesta inflamatoria.
El mecanismo combinado contra quimiocinas y el factor de necrosis tumoral, ideado por estos virus, hace que al eliminar la proteína viral pierda la batalla contra el sistema inmune y el virus sea incapaz de causar la enfermedad. De esta forma, el efecto antiinflamatorio de los receptores del TFN se ve potenciado.
La estrategia viral se podría trasladar al campo de la medicina clínica añadiendo el dominio Secret a los receptores del TFN que se utilizan actualmente como medicamentos para frenar una respuesta inmune excesiva y tratar enfermedades autoinmunes. «Es interesante comprobar cómo el conocimiento básico de las estrategias ‘secretas’ utilizadas por el virus de la viruela para evadir nuestras defensas podría utilizarse ahora para mejorar medicamentos que pueden curar enfermedades y mejorar nuestra calidad de vida».
También se han detectado puntos de control en células inmunes que regulan su respuesta a virus, según trabajo del
El CIC bioGUNE, con la Universidad de Vermont, ha identificado puntos de control en la células CD8 que regulan su capacidad de respuesta a agentes infecciosos, en el virus de la gripe.
La proteína mitocondrial MCJ regula el metabolismo de las células CD8 durante las diferentes fases de su respuesta cuando se enfrentan a infecciones: tanto la activación, como la generación de memoria, una vez que el agente infeccioso ha desaparecido. Cuando no existe esa proteína, aparecen muchas más células de memoria inmunitaria.
Este trabajo tiene también la posibilidad de regular el desarrollo de este tipo de células durante la vacunación. Si se pudiera controlar la cantidad de MCJ en las células se podría, por tanto, mejorar teóricamente la eficacia de las células y, con ello, la eficiencia de vacunas que las activan.
El trabajo ha sido dirigido por el grupo de Mercedes Rincón, profesora en el Departamento de Medicina de la Universidad de Vermont, junto con el equipo de Juan Anguita, en el CIC bioGUNE, y se publica en la revista Immunity.
que pertenecen al sistema inmune adaptado y son especialmente aptas para la lucha frente a las infecciones por virus.
El metabolismo y su regulación son claves en el control de la actividad celular. «El objetivo es desarrollar herramientas para el control de la actividad de MCJ que permita acelerar o frenar el metabolismo celular, dependiendo de las necesidades específicas de la patología a la que se quiera hacer frente y que puede implicar células inmunes u otros tipos celulares involucrados en cánceres o enfermedades infecciosas», señala Juan Anguita, investigador Ikerbasque y director del estudio en CIC bioGUNE.
Rincón y Anguita, desde 2007, estudia en MCJ la respuesta de macrófagos -células del sistema inmune innato que se encargan del reconocimiento y destrucción de agentes infecciosos- y células T.
En los dos comentarios que hago sobre los trabajos publicados, en el primero se intente regular la auto imunidad y del segundo incrementado la respuesta de los macrófagos. Esta dualidad forma parte de nuestro tiempo y podría abreviarse diciendo; La inmunidad es un producto delicado que surge de la vitud, ni mucho ni poco, lo suficiente
Bibliografia

ESTUDIO DEL CSIC EN ‘NATURE COMMUNICATIONS’
Madrid | 03/05/2018 19:15

Juan Anguita, investigador del CIC BioGUNE y uno de los autores del trabajo. Antonio Alcamí del CSIC V en el Centro de Biología Molecular Severo Ochoa (centro mixto del CSIC y la Universidad Autónoma de Madrid).

20 mayo 2020

ASÍ SE ENSAYA UNA VACUNA

Filed under: General,INMUNIDAD — Enrique Rubio @ 21:18

ASÍ SE ENSAYA UNA VACUNA

Analisis de la Covid-19 durante la crisis sanitaria de coronavirus (Xavier Cervera)
La carrera por la vacuna contra la Covid-19 supone un desafío mayúsculo a escala planetaria. Sin duda, el mayor reto de la ciencia ahora mismo. Desde el momento en que se empieza a estudiar un potencial medicamento para una enfermedad hasta el día en el que está efectivamente disponible para los pacientes pueden pasar muchos años, unos diez o quince en condiciones normales. En algunos casos, se ha tardado hasta tres décadas. En otros, como en la vacuna del VIH, la ciencia lleva 40 años investigando sin dar aún con la vacuna. Pero con más de 4,7 millones de infectados en el mundo y más de 319.000 muertos no estamos en una carrera normal, sino en la prueba de los 100 metros lisos de los Juegos Olímpicos. Los científicos se han puesto manos a la obra y en poquísimas semanas se han dado pasos de gigante y se han saltado fases que en otros momentos hubieran tardado entre dos y cuatro años. Según la Organización Mundial de la Salud (OMS), existen casi 120 vacunas candidatas para tratar la Covid-19. De estas, ocho se encuentran en fase 1 o 2 de los ensayos clínicos. El resto, 110, se encuentran en fase preclínica.
Investigación básica
Toda vacuna requiere primero una fase de exploración en laboratorio. El objetivo inicial es la búsqueda de antígenos (naturales o sintéticos), compuestos capaces de inducir una respuesta del sistema inmunológico. Los antígenos pueden estar constituidos por virus, bacterias y otros agentes infecciosos debilitados. En el caso de los coronavirus ya había investigaciones en curso de patógenos similares al de la Covid-19, como el SARS-CoV y el MERS-CoV.
Fase preclínica

En este paso, el objetivo es evaluar la capacidad de los antígenos seleccionados para causar la respuesta inmune que se busca, así como su seguridad. Para ello, se prueban estas potenciales vacunas tanto en cultivos celulares (lo que se llaman experimentos in vitro) como en animales (pruebas in vivo). En esta fase también se busca medir la dosis óptima que sea eficaz y a la vez más segura e identificar los métodos para hacer más eficaz la respuesta inmunitaria generada. En esta fase se prepara un dossier sobre la vacuna candidata, una especie de DNI sobre la sustancia que se llama IMPD (Dossier de Producto de Investigación Medicinal, por sus siglas en inglés), que se va actualizando en cada fase y que tiene un formato muy reglamentado. Toda la documentación se tiene que enviar a EudraCT, una base de datos de la Agencia Europea del Medicamento (EMA) para los ensayos clínicos. La fase preclínica suele durar uno o dos años, y la mayoría de las sustancias no suelen superarla. Aun así, muchos laboratorios en el mundo casi han completado ya esta fase para la vacuna de la Covid-19 y están a punto de pasar a la siguiente con algunos de sus candidatos. Esto se debe sobre todo a dos motivos: por un lado, gracias al secuenciamiento temprano del virus y también por los conocimientos previos sobre los coronavirus, desde el principio ha sido posible identificar rápidamente dianas (antígenos) para posibles vacunas.
Ensayos en unas docenas voluntarios sanos
Después de las pruebas en animales se pasa a las pruebas en humanos. Dentro este proceso, se distinguen varias subfases. En la subfase 1 se realiza un primer estudio con un pequeño grupo de voluntarios adultos sanos (algunas decenas) que suele durar unos cuantos meses. Normalmente, los participantes reciben una dosis muy baja del medicamento con el objetivo de evaluar (de nuevo) la seguridad del medicamento estudiado y la reacción del organismo al nuevo fármaco. En el caso de la vacuna, se busca estudiar el
Pruebas en unos cientos de pacientes. En esta subfase 2 se empieza a testear en todo tipo de pacientes, no solo en voluntarios sanos. Ya no serán solo unas pocas docenas, sino varios cientos. El objetivo principal de esta fase es valorar si la dosis que se ha establecido, además de no ser tóxica, es eficaz frente a un fármaco de referencia o a un placebo. A menudo se utiliza la técnica del doble ciego: a unos pacientes se les suministra un placebo y/o el fármaco de referencia, y a otros, el fármaco, y ni los pacientes ni los médicos saben quién pertenece a qué grupo hasta el final. Si un porcentaje significativo de los pacientes medicados muestra mejoras, el medicamento está listo para la siguiente fase, que también dura entre seis y ocho meses y en la cual ya se emplean millares de pacientes.
Pruebas más amplias y aleatorias
En esta nueva subfase, la tres, el número de voluntarios es ampliamente superior. Pueden incluir a miles de personas en un país o varios países, monitoreados desde varios centros. De esta forma se pueden detectar efectos secundarios que en las fases previas con grupos pequeños pueden no manifestarse. Las pruebas de este período son aleatorias y siguen siendo de doble ciego. Esta suele ser la fase más cara de la investigación. Se trata a los voluntarios en condiciones que se asemejan lo más posible a la realidad. Una vez acabada esta subfase los investigadores tienen que explicar cuáles son los métodos de fabricación del medicamento y las instalaciones donde se podría llevar a cabo y presentarlo a las autoridades. La EMA en el caso de Europa es la que decide si la información recopilada es suficiente para comercializar o no. En España, la encargada de autorizar el uso en humanos es la Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), adscrita al Ministerio de Sanidad.
Estudios posteriores
Existe una última fase de experimentación clínica, con el medicamento ya en las farmacias y hospitales y utilizado a gran escala. Se trata de monitorizar los efectos secundarios del fármaco, sobre todo los más raros, que pueden observarse solo cuando el medicamento es utilizado a gran escala.

CIENTÍFICOS DEL CSIC BUSCAN ANTICUERPOS EN EL SISTEMA INMUNE DE DROMEDARIOS

Madrid, 19 may (EFE).- Investigadores del Consejo Superior de Investigaciones Científicas (CSIC) buscan anticuerpos contra la COVID-19 a partir del sistema inmune de los dromedarios, ya que los camélidos producen un tipo de anticuerpos más eficaces en el reconocimiento de la superficie de los virus y las bacterias.
Los científicos tratan de encontrar nanoanticuerpos que sean capaces de bloquear la entrada del coronavirus SARS-CoV-2 a las células y que, por tanto, pudieran emplearse para reducir la infección en pacientes con COVID-19.
El CSIC ha informado este martes de que para producirlos están generando una nueva colección de nanoanticuerpos específicos frente a la COVID-19 a partir de muestras de dromedarios que se han inmunizado frente a ese virus.
Además, el equipo está rastreando una colección con más de mil millones de nanoanticuerpos que han construido en su laboratorio.
Los investigadores del CSIC, que trabajan en colaboración con la Facultad de Veterinaria de la Universidad de las Palmas de Gran Canaria, esperan tener los primeros candidatos en tres meses.
«Los anticuerpos de humanos y animales están formados por dos cadenas de proteína diferentes, que se asocian para crear la zona de unión al antígeno (virus o bacterias) y poder así bloquearlo e impedir su entrada en las células», ha explicado el investigador del CSIC Luis Ángel Fernández, que dirige el grupo de ingeniería bacteriana del Centro Nacional de Biotecnología (CNB-CSIC).
Pero hay una excepción a esta regla, ya que los camélidos (como dromedarios, llamas o alpacas) producen un tipo de anticuerpos especial capaces de reconocer al antígeno con una sola cadena de proteína.
Así, la zona de reconocimiento del antígeno en estos anticuerpos es de menor tamaño, lo que les permite alcanzar regiones inaccesibles de otro modo en la superficie de virus y bacterias, ha explicado el investigador Luis Ángel Fernández en una nota de prensa de este organismo.
«La zona de unión de estos anticuerpos se puede aislar (clonar) en el laboratorio rápidamente, produciendo fragmentos de anticuerpos de pequeño tamaño, conocidos como nanoanticuerpos, con gran capacidad de bloquear a virus y bacterias», ha precisado.
Esos nanoanticuerpos tienen secuencias muy similares a las de los anticuerpos humanos y se podrían utilizar directamente en terapia sin generar rechazo, según señala Fernández.
El grupo de ingeniería bacteriana del CNB-CSIC lleva años trabajando con nanoanticuerpos en diferentes proyectos de investigación y ha desarrollado metodologías propias para su aislamiento y producción.
Durante los últimos años este grupo ha construido una colección con más de mil millones de nanoanticuerpos, que ahora están rastreando para localizar los que puedan ser útiles contra el SARS-CoV-2.
Y además están generando una nueva colección específica frente a COVID-19, derivada de la inmunización de dos dromedarios con la región de la proteína que este coronavirus emplea para entrar a las células, ha explicado el investigador.
Para conseguir esas inmunizaciones, el grupo colabora con el doctor Juan Alberto Corbera Sánchez, profesor de la Facultad de Veterinaria de la Universidad de las Palmas de Gran Canaria.
Los investigadores colaboran además con otros grupos del Centro Nacional de Biotecnología; entre ellos con el del doctor José María Casasnovas, para la producción del antígeno viral en células de mamífero; y con los doctores Luis Enjuanes e Isabel Sola para los ensayos de neutralización del virus.
Todas estas investigaciones se enmarcan en el proyecto COVID-19 del CNB-CSIC y está financiado por el CSIC con la ayuda económica recibida desde el Ministerio de Ciencia y Tecnología. EFE

JOSEP CORBELLA, BARCELONA
19/05/2020 13:33
Científicos del CSIC buscan anticuerpos en el sistema inmune de dromedarios
19/05/2020 12:02

Vacuna genética contra el Covid

Filed under: General,INMUNIDAD — Enrique Rubio @ 15:05

VACUNA GENÉTICA CONTRA LA COVID
Una vacuna contra el coronavirus SARS-CoV-2 basada en una nueva tecnología genética ha mostrado eficacia y seguridad en su primer ensayo en personas, por la compañía estadounidense Moderna.
La vacuna genera una respuesta inmunitaria tan potente como la de los pacientes que han superado la enfermedad. Quienes reciben la vacuna generan anticuerpos neutralizantes contra el coronavirus, el tipo de anticuerpos que bloquea directamente el virus e impide que infecte células humanas.
Estos resultados, están basados en los primeros 45 voluntarios que han recibido la vacuna,
. “Estamos invirtiendo en aumentar la producción para maximizar el número de dosis y ayudar a proteger a tantas personas como podamos frente al SARS-CoV-2”.
Si los resultados de los próximos ensayos clínicos son positivos, la compañía podría empezar a distribuir la vacuna a gran escala a finales de este año o principios de 2021, ha informado Tal Zaks, director médico de la compañía, a The New York Times .
Moderna ha informado que tendrá capacidad de producir millones de dosis mensuales en el 2021 y espera poder aumentarla a decenas de millones en el 2022. “En el contexto de una pandemia, esperamos que la demanda supere con creces a la oferta”, ha admitido Zaks en declaraciones recogidas por Reuters. El Gobierno de Washington ha aportado 483 millones de dólares a la compañía para aumentar su capacidad de producción, por lo que está en condiciones de pedir que la distribución de la vacuna priorice Estados Unidos.
Por primera vez se inoculan instrucciones genéticas para estimular la inmunidad
Hay en estos momentos otras once vacunas en desarrollo contra el virus SARS-CoV-2 que se han empezado a ensayar en personas en Estados Unidos, Canadá, Europa y China. En Europa, la más adelantada es la de la Universidad de Oxford (el Reino Unido), que ha inmunizado macacos con éxito y que se ensayará en miles de voluntarios este verano.
La que ha desarrollado Moderna, llamada por ahora mRNA-1273, se basa en una tecnología distinta a la de cualquiera de las vacunas actualmente disponibles. En lugar de inocular virus para inducir una respuesta inmunitaria como hacen las vacunas tradicionales, o de inocular directamente las proteínas que generarán esta inmunidad, esta nueva vacuna inocula instrucciones genéticas. Son estas instrucciones, codificadas en moléculas de ARN, las que producirán las proteínas para estimular la inmunidad contra el virus.
El equipo científico de Moderna inició el desarrollo de la vacuna en cuanto China publicó el genoma del SARS-CoV-2 el 10 de enero. Se centró en la proteína S del virus (del inglés Spike, o pincho), que sobresale de su membrana y le da apariencia de corona al observarlo en un microscopio (de ahí el nombre de coronavirus). Esta es la proteína que el virus utiliza a modo de gancho para amarrarse a las células a las que infectará. Por ello, los anticuerpos que la neutralicen privarán al virus de su capacidad de infección.
Los investigadores de Moderna produjeron las primeras dosis de la vacuna, formadas por moléculas de ARN con las instrucciones para producir la proteína S, el 7 de febrero. Cinco semanas más tarde, el 16 de marzo, tras realizarse varias pruebas de seguridad, la vacuna se inoculó por primera vez a una persona. Nunca antes se había tenido a punto una vacuna para ensayar en personas solo 66 días después de descubrirse un nuevo patógeno.
En el primer ensayo clínico, liderado por el Instituto Nacional de Alergia y Enfermedades Infecciosas de Estados Unidos, han participado 45 voluntarios de entre 18 y 55 años. La prioridad, como es norma en los ensayos clínicos de fase I, ha sido determinar a qué dosis se puede administrar la vacuna sin que cause efectos secundarios inaceptables.
Los voluntarios se han dividido en tres grupos que han recibido dosis distintas de la vacuna: 25, 100 y 250 microgramos. Han recibido dos inoculaciones con cuatro semanas de diferencia con el objetivo de potenciar la inmunidad. Se ha empezado por quienes debían recibir dosis más bajas para comprobar que no hubiera efectos secundarios graves y se ha aumentado después a dosis más altas, por lo que aún no se dispone de los resultados de la segunda inoculación en el grupo de 250 miligramos.
La compañía Moderna espera producir millones de dosis mensuales en el 2020
Según los datos presentados ayer, todos los participantes tienen anticuerpos detectables contra el SARS-CoV-2 dos semanas después de recibir la primera inoculación de la vacuna. Cuanto más alta es la dosis, más fuerte es la respuesta
inmunitaria.
Dos semanas después de recibir la segunda inoculación, los voluntarios del grupo de 25 microgramos –la dosis más baja– tienen tantos anticuerpos como las personas que han superado la Covid. Los voluntarios del grupo de 100 microgramos tienen incluso más. La compañía Moderna no ha detallado qué cantidad tienen exactamente ni si la respuesta de todas las personas que reciben la vacuna es igualmente satisfactoria, o bien hay voluntarios en quienes la respuesta es débil.
En el resultado más alentador presentado ayer por Moderna se ha detectado la presencia de anticuerpos neutralizantes –los más potentes contra el virus– dos semanas después de recibir la segunda dosis tanto en el grupo de 25 microgramos como en el de 100. El análisis de anticuerpos neutralizantes es técnicamente complejo y solo se ha realizado en cuatro voluntarios de cada grupo. Pero en los ocho se han encontrado este tipo de anticuerpos, que son los que hacen prever que la vacuna será eficaz para prevenir la infección.
Otro resultado que sugiere que la vacuna será eficaz es que, en ratones a los que se ha inoculado el coronavirus tras administrarles la
vacuna de Moderna, se ha conseguido evitar que el virus se multiplicara en los pulmones. Los niveles de anticuerpos neutralizantes que han protegido a los ratones son equivalentes a los que se han registrado en las personas que han recibido la vacuna.
“Estos datos sustancian nuestra creencia de que mRNA-1273 tiene el potencial de prevenir la Covid-19”, declara Tal Zaks en el comunicado de Moderna.
Según la compañía, no se han registrado efectos secundarios significativos entre quienes recibieron las dosis de 25 o 100 microgramos, con la excepción de una persona que sufrió un enrojecimiento de la piel calificado de grave (de grado 3) en la zona de la inyección. En el grupo que recibió dosis de 250 microgramos, sí se han registrado efectos secundarios graves en un 20% de los participantes después de la segunda dosis.
El compuesto estimula la producción de los anticuerpos más potentes contra el virus
Tras estos resultados, Moderna ha decidido eliminar la dosis más alta en el ensayo clínico de fase II que tiene previsto iniciar en junio con 600 voluntarios. Subirá la dosis baja de 25 a 50 microgramos y mantendrá otro grupo con una dosis de 100 microgramos. Los resultados ayudarán a decidir la dosis final del ensayo clínico de fase 3.
JOSEP CORBELLA, BARCELONA
19/05/2020 13:33

13 mayo 2020

ANTICUERPOS

Filed under: INMUNIDAD — Enrique Rubio @ 20:10

Lee ANTICUERPOS POLICLONALES VS MONOCLONALES
Los anticuerpos, también conocidos como inmunoglobulinas, son secretados por los linfocitos B para neutralizar antígenos de bacterias y virus. La representación clásica de un anticuerpo es una molécula en forma de Y compuesta por cuatro polipéptidos: dos cadenas pesadas y dos cadenas ligeras. Cada punta de la “Y” contiene un parátopo (una estructura análoga a una cerradura) que es específica para un epítope particular (similarmente este análogo sería una llave) en un antígeno, lo que permite que estas dos estructuras se unan con precisión. La capacidad de unirse a un antígeno ha llevado a un uso habitual en una variedad de experimentos en el ámbito de las ciencias de la vida y la biomedicina. Estos anticuerpos se pueden clasificar en dos tipos de anticuerpo primario: los monoclonal y los policlonales. Cada uno de ellos tiene un papel importante en el sistema inmunológico, en las pruebas diagnósticas y en los tratamientos.
ANTICUERPOS POLICLONALES Y MONOCLONALES: DIFERENCIAS EN LA PRODUCCIÓN

The process to generate the polyclonal antibody
Los anticuerpos policlonales (pAbs) son una mezcla heterogénea de anticuerpos que generalmente son producidos por diferentes clones de células B en el cuerpo. Pueden reconocer y unirse a muchos epítopos diferentes de un solo antígeno.
Los anticuerpos policlonales se producen inyectando un inmunógeno en un animal. Después de ser inyectado con el antígeno específico para provocar una respuesta inmune primaria, al animal se le administra una segunda inmunización, e incluso una tercera… con el fin de producir títulos más altos de anticuerpos contra el antígeno en concreto. Después de la inmunización, los anticuerpos policlonales pueden obtenerse directamente del suero o purificarse para obtener una solución que esté libre de otras proteínas séricas.
Los anticuerpos monoclonales (mAbs) son generados por células B idénticas que son clones de una sola célula madre. Esto significa que los anticuerpos monoclonales tienen afinidad monovalente y solo reconocen el mismo epítopo de un antígeno.
A diferencia de los anticuerpos policlonales, que se producen en animales vivos, los anticuerpos monoclonales se producen en modelos ex vivo utilizando cultivo celular. El proceso comienza con una inyección del antígeno deseado en un animal, a menudo un ratón. Una vez que el animal desarrolla una respuesta inmune, los linfocitos B se aíslan del bazo del animal y se fusionan con una línea celular de mieloma, creando hibridomas inmortalizados de células B y mielomas. Los hibridomas, que son capaces de crecer continuamente en cultivo mientras producen anticuerpos, se seleccionan para el anticuerpo monoclonal deseado.

ANTICUERPOS POLICLONALES: PROS Y CONTRAS
Las ventajas y desventajas de los anticuerpos policlonales se deben principalmente a su especificidad multiepítopos. Las principales ventajas y desventajas se enumeran a continuación:
Ventajas:
Su coste es bajo y son relativamente rápidos de producir (+/- 3 meses).
Mayor afinidad contra el antígeno debido al reconocimiento de múltiples epítopos.
Posee una alta sensibilidad para detectar proteínas que se encuentran en cantidades bajas.
Alta capacidad para capturar la proteína diana (se recomienda su uso en el anticuerpo de captura en un ELISA tipo sándwich).
La afinidad del anticuerpo da como resultado una unión más rápida al antígeno objetivo (recomendado para ensayos que requieren la captura rápida de la proteína; por ejemplo, IP o ChIP).
Uso indicado si nuestro objetivo es la detección de una proteína nativa.
Fácil de acoplar con fluoroforos ya que es poco probable que afecte a la capacidad de unión.
Desventajas:
Variabilidad entre lotes (debido a que se producen en diferentes animales y a diferente momento).
Elevada posibilidad de reactividad cruzada debido al reconocimiento de múltiples epítopos (los anticuerpos purificados por afinidad muestran una reactividad cruzada mínima).
ANTICUERPOS MONOCLONALES: PROS Y CONTRAS
Ventajas:
Reproducibilidad lote a lote (alta homogeneidad).
Posibilidad de producir grandes cantidades de anticuerpos idénticos (una ventaja para la fabricación de diagnóstico y el desarrollo terapéutico de fármacos).
Alta especificidad para un solo epítopo reflejado en baja reactividad cruzada.
Más sensible en los ensayos que requieren la cuantificación de los niveles de proteína.
Bajo ruido de fondo.
Desventajas:
Más caro de producir. Es necesario producir un conjunto de varios anticuerpos monoclonales.
Requiere significativamente más tiempo para producir y desarrollar el clon hibridado (+/- 6 meses).
Más susceptible a los cambios de unión cuando está unido a fluorocromo.
CONCLUSIONES
Los anticuerpos policlonales se producen utilizando varias células inmunes diferentes. Tendrán la afinidad por el mismo antígeno pero diferentes epítopos, mientras que los anticuerpos monoclonales se fabrican utilizando células inmunes idénticas que son todos clones de una célula parental específica (Figura 1).

Para aplicaciones como el desarrollo de fármacos terapéuticos que requieren grandes volúmenes de anticuerpos idénticos específicos para un solo epítopo, los anticuerpos monoclonales son una mejor solución. Sin embargo, para aplicaciones de investigación general, las ventajas de los anticuerpos policlonales generalmente superan las pocas ventajas que proporcionan los anticuerpos monoclonales. Con la purificación por afinidad del suero contra dianas de antígenos pequeños, las ventajas de los anticuerpos policlonales se amplían aún más.

9 mayo 2020

ANTICUERPOS POLICLONALES VS MONOCLONALES

Filed under: INMUNIDAD — Enrique Rubio @ 13:48

Antígeno

ANTÍGENO ANTICUERPO POLICLONALES VS MONOCLONALES

La base de la inmunidad la constituyen la reacción de un antígeno y un anticuerpo

UN ANTÍGENO es una molécula ajena o tóxica para el organismo que, una vez dentro del cuerpo, induce en este una respuesta inmunitaria, provocando la formación de anticuerpos

ANTICUERPO Sustancia segregada por los linfocitos de la sangre para combatir una infección de virus o bacterias que afecta al organismo.
«las vacunas introducen en el organismo antígenos que provocan la creación de los anticuerpos necesarios para inmunizarlo contra una infección determinada»
Anticuerpo monoclonal
Por lo general, los anticuerpos monoclonales son grandes proteínas utilizadas por el sistema inmunitario para identificar y neutralizar objetos extraños, como bacterias, virus, etc.
En el caso concreto de los anticuerpos monoclonales (mAbs) se trata de glicoproteínas producidas por el clon de una célula híbrida (creada a partir de la fusión de una sola célula madre del sistema inmune y una célula plasmática tumoral) y diseñada para atacar a un antígeno concreto. Suele aplicarse al tratamiento de enfermedades como el cáncer o la artritis reumatoide.

.

ANTICUERPOS POLICLONALES VS MONOCLONALES
Los anticuerpos, también conocidos como inmunoglobulinas, son secretados por los linfocitos B para neutralizar antígenos de bacterias y virus. La representación clásica de un anticuerpo es una molécula en forma de Y compuesta por cuatro polipéptidos: dos cadenas pesadas y dos cadenas ligeras. Cada punta de la “Y” contiene un parátopo (una estructura análoga a una cerradura) que es específica para un epítope particular (similarmente este análogo sería una llave) en un antígeno, lo que permite que estas dos estructuras se unan con precisión. La capacidad de unirse a un antígeno ha llevado a un uso habitual en una variedad de experimentos en el ámbito de las ciencias de la vida y la biomedicina. Estos anticuerpos se pueden clasificar en dos tipos de anticuerpo primario: los monoclonal y los policlonales. Cada uno de ellos tiene un papel importante en el sistema inmunológico, en las pruebas diagnósticas y en los tratamientos.
ANTICUERPOS POLICLONALES Y MONOCLONALES: DIFERENCIAS EN LA PRODUCCIÓN

The process to generate the polyclonal antibody
Los anticuerpos policlonales (pAbs) son una mezcla heterogénea de anticuerpos que generalmente son producidos por diferentes clones de células B en el cuerpo. Pueden reconocer y unirse a muchos epítopos diferentes de un solo antígeno.
Los anticuerpos policlonales se producen inyectando un inmunógeno en un animal. Después de ser inyectado con el antígeno específico para provocar una respuesta inmune primaria, al animal se le administra una segunda inmunización, e incluso una tercera… con el fin de producir títulos más altos de anticuerpos contra el antígeno en concreto. Después de la inmunización, los anticuerpos policlonales pueden obtenerse directamente del suero o purificarse para obtener una solución que esté libre de otras proteínas séricas.
Los anticuerpos monoclonales (mAbs) son generados por células B idénticas que son clones de una sola célula madre. Esto significa que los anticuerpos monoclonales tienen afinidad monovalente y solo reconocen el mismo epítopo de un antígeno.
A diferencia de los anticuerpos policlonales, que se producen en animales vivos, los anticuerpos monoclonales se producen en modelos ex vivo utilizando cultivo celular. El proceso comienza con una inyección del antígeno deseado en un animal, a menudo un ratón. Una vez que el animal desarrolla una respuesta inmune, los linfocitos B se aíslan del bazo del animal y se fusionan con una línea celular de mieloma, creando hibridomas inmortalizados de células B y mielomas. Los hibridomas, que son capaces de crecer continuamente en cultivo mientras producen anticuerpos, se seleccionan para el anticuerpo monoclonal deseado.

ANTICUERPOS POLICLONALES: PROS Y CONTRAS
Las ventajas y desventajas de los anticuerpos policlonales se deben principalmente a su especificidad multiepítopos. Las principales ventajas y desventajas se enumeran a continuación:
Ventajas:
Su coste es bajo y son relativamente rápidos de producir (+/- 3 meses).
Mayor afinidad contra el antígeno debido al reconocimiento de múltiples epítopos.
Posee una alta sensibilidad para detectar proteínas que se encuentran en cantidades bajas.
Alta capacidad para capturar la proteína diana (se recomienda su uso en el anticuerpo de captura en un ELISA tipo sándwich).
La afinidad del anticuerpo da como resultado una unión más rápida al antígeno objetivo (recomendado para ensayos que requieren la captura rápida de la proteína; por ejemplo, IP o ChIP).
Uso indicado si nuestro objetivo es la detección de una proteína nativa.
Fácil de acoplar con fluoroforos ya que es poco probable que afecte a la capacidad de unión.
Desventajas:
Variabilidad entre lotes (debido a que se producen en diferentes animales y a diferente momento).
Elevada posibilidad de reactividad cruzada debido al reconocimiento de múltiples epítopos (los anticuerpos purificados por afinidad muestran una reactividad cruzada mínima).
ANTICUERPOS MONOCLONALES: PROS Y CONTRAS
Ventajas:
Reproducibilidad lote a lote (alta homogeneidad).
Posibilidad de producir grandes cantidades de anticuerpos idénticos (una ventaja para la fabricación de diagnóstico y el desarrollo terapéutico de fármacos).
Alta especificidad para un solo epítopo reflejado en baja reactividad cruzada.
Más sensible en los ensayos que requieren la cuantificación de los niveles de proteína.
Bajo ruido de fondo.
Desventajas:
Más caro de producir. Es necesario producir un conjunto de varios anticuerpos monoclonales.
Requiere significativamente más tiempo para producir y desarrollar el clon hibridado (+/- 6 meses).
Más susceptible a los cambios de unión cuando está unido a fluorocromo.
CONCLUSIONES
Los anticuerpos policlonales se producen utilizando varias células inmunes diferentes. Tendrán la afinidad por el mismo antígeno pero diferentes epítopos, mientras que los anticuerpos monoclonales se fabrican utilizando células inmunes idénticas que son todos clones de una célula parental específica (Figura 1).

Para aplicaciones como el desarrollo de fármacos terapéuticos que requieren grandes volúmenes de anticuerpos idénticos específicos para un solo epítopo, los anticuerpos monoclonales son una mejor solución. Sin embargo, para aplicaciones de investigación general, las ventajas de los anticuerpos policlonales generalmente superan las pocas ventajas que proporcionan los anticuerpos monoclonales. Con la purificación por afinidad del suero contra dianas de antígenos pequeños, las ventajas de los anticuerpos policlonales se amplían aún más.

25 abril 2020

La carga viral del COVID 19 es un marcador útil para evaluar la gravedad y el pronóstico

Filed under: General,INMUNIDAD,MICROSBIOS — Enrique Rubio @ 20:34

La carga viral del COVID 19 es un marcador útil para evaluar la gravedad y el pronóstico
Los pacientes graves con COVID-19 tienden a tener una alta carga viral y un largo período de eliminación del virus

Federico Pérez
23 de marzo 2020. 3:10 pm
La dinámica viral en casos leves y graves de COVID 19 ha sido el objeto de estudio de un grupo de investigadores del Hospital of Nanchang University que publican los resultados en The Lancet Infectious Diseases. El estudio concluye que la carga viral de SARS-CoV-2 podría ser un marcador útil para evaluar la gravedad y el pronóstico de la enfermedad
Anteriormente estos autores ya habían realizado estudios del mismo tipo en pacientes con Síndrome Respiratorio Agudo (SARS) encontrando que la carga viral del coronavirus del síndrome respiratorio agudo severo (SARS-CoV-2) alcanza su punto máximo dentro de la primera semana del inicio de la enfermedad.
Los resultados de febrero de 2020 indicaron que el espectro clínico de esta enfermedad puede ser muy heterogéneo.
En este nievo estudio, Yang Liu, y su equipo de colaboradores investigan la dinámica viral analizando los patrones de ARN viral observados en pacientes con COVID-19 leve y grave.
Los autores incluyeron en el estudio 76 pacientes ingresados en el Primer Hospital Afiliado de la Universidad de Nanchang (Nanchang, China) del 21 de enero al 4 de febrero de 2020. Se confirmó que todos los pacientes tenían COVID-19 en el momento del ingreso por determinación con RT-PCR, y se analizaron las cargas virales obtenidas de muestras recogidas con torunda nasofaríngea.
Liu indica que se clasificó a los pacientes como “casos graves” aquellos que tenían cualquiera de las siguientes características en el momento de la admisión: dificultad respiratoria (≥30 respiraciones por minuto); saturación de oxígeno en reposo ≤93%; relación entre la presión parcial de oxígeno arterial y la concentración parcial de aire inspirado en oxígeno ≤300 mm Hg; o complicaciones graves de la enfermedad (p. ej., insuficiencia respiratoria, necesidad de ventilación mecánica, shock séptico o insuficiencia orgánica no respiratoria).
46 (61%) individuos fueron clasificados como casos leves y 30 (39%) fueron clasificados como casos severos. Los datos demográficos básicos y los síntomas clínicos iniciales de estos pacientes no difirieron significativamente entre los grupos, excepto que los pacientes en el grupo severo eran significativamente mayores que los del grupo leve, como se esperaba, señalan los investigadores
Ningún paciente murió por la infección. El 77 por ciento de los casos graves recibieron tratamiento en la unidad de cuidados intensivos (UCI), mientras que ninguno de los casos leves requirió tratamiento en la UCI.
Todas las muestras fueron recolectadas de acuerdo con las pautas de la OMS.
La carga viral media de los casos graves fue alrededor de 60 veces mayor que la de los casos leves, lo que sugiere que las cargas virales más altas podrían estar asociadas con resultados clínicos graves.
Liu y su equipo también estudiaron muestras en serie de 21 casos leves y diez casos graves, encontrando que los casos leves tenían un aclaramiento viral temprano, con el 90% de estos pacientes que dieron repetidamente resultados negativos en RT-PCR al cabo de 10 después del inicio. Por el contrario, todos los casos graves todavía dieron positivo en el día 10 después del inicio. “En general, nuestros datos indican que es similar al SARS en 2002–03” según los autores.
Los pacientes con COVID-19 grave tienden a tener una alta carga viral y un largo período de eliminación del virus. Este hallazgo sugiere que la carga viral de SARS-CoV-2 podría ser un marcador útil para evaluar la gravedad y el pronóstico de la enfermedad.

COVID-19

Filed under: General,INMUNIDAD — Enrique Rubio @ 14:08

COVID-19

La inmunidad después de cualquier infección puede variar de total y para toda la vida o a ser casi inexistente.
Hasta ahora, sin embargo, solo se dispone de los primeros indicios de datos sobre la inmunidad al SARS-CoV-2, el coronavirus que causa la enfermedad COVID-19.
El médico danés Peter Panum se distinguió por descifrar esto en el caso del sarampión cuando visitó las islas Feroe (ubicadas entre Escocia e Islandia) durante un brote en 1846 y descubrió que los residentes mayores de 65 años que habían vivido el brote anterior en 1781 estaban protegidos.
La inmunidad a los coronavirus
Ocasionalmente un gran grupo de virus pasan de los animales huéspedes a los humanos: el SARS-CoV-2 es la tercera epidemia de coronavirus más importante que afecta a los humanos en los últimos tiempos, después del brote del Síndrome Respiratorio Agudo Grave (SRAG) de 2002-2003 y el brote de Síndrome Respiratorio por Coronavirus del Oriente Medio (SROM), que comenzó en 2012.
Los coronavirus cada año causan infecciones respiratorias que van desde un resfriado común hasta la neumonía.
Se infectaron a dos grupos de voluntarios humanos con un coronavirus estacional y alrededor de un año después les inocularon el mismo virus o uno similar para observar si habían adquirido inmunidad.

En el primer estudio, los investigadores seleccionaron a dieciocho voluntarios que desarrollaron resfriados después de que se les inoculó una cepa de coronavirus en 1977 o 1978. A seis de los sujetos se les volvió a aplicar la prueba de tolerancia un año más tarde con la misma cepa, y ninguno se infectó, se cree que gracias a la protección adquirida con su respuesta inmune a la primera infección. Los otros doce voluntarios fueron expuestos a una cepa ligeramente diferente de coronavirus un año después y su protección fue solo parcial.

Segundo estudio en 1990, se inoculó a quince voluntarios con un coronavirus; diez se infectaron. Catorce regresaron para que se les inoculara la misma cepa un año después: mostraron síntomas menos graves y sus cuerpos replicaron menos el virus que después de la prueba de tolerancia inicial, en especial aquellos que habían mostrado una fuerte respuesta inmunitaria la primera vez.
No se han efectuado pruebas de tolerancia en humanos como esas para estudiar la inmunidad al SRAG ni al SROM. Sin embargo, las mediciones de anticuerpos en la sangre de las personas que han sobrevivido a esas infecciones indican que estas defensas persisten durante algún tiempo: dos años para el SRAG, y casi tres años para el SROM. Sin embargo, la capacidad neutralizadora de estos anticuerpos —una medida de lo bien que inhiben la replicación del virus— ya estaba disminuyendo durante los periodos de estudio.
Estos estudios forman la base para una estimación bien fundamentada de lo que podría pasar con los pacientes de la COVID-19.

Después de ser infectados con SARS-CoV-2, la mayoría de los individuos tendrán una respuesta inmune, algunos mejor que otros. La respuesta ofrecerá cierta protección a mediano plazo, por lo menos un año, y luego su eficacia podría disminuir.
Otras pruebas apoyan este modelo. Un reciente estudio arbitrado, dirigido por un equipo de la Universidad Erasmus, en los Países Bajos, publicó datos de doce pacientes que mostraban que habían desarrollado anticuerpos después de una infección con SARS-CoV-2. Análisis estadísticos de muchos casos de coronavirus estacionales en Estados Unidos con un modelo matemático para inferir que es probable tener inmunidad durante un año más o menos para los dos coronavirus estacionales más estrechamente relacionados con el SARS-CoV-2, lo cual puede ser un indicio de cómo podría comportarse también la inmunidad al SARS-CoV-2.
LA infección crea inmunidad en la mayoría o en todos los individuos y que la protección dura un año o más, entonces la infección de un número cada vez mayor de personas en una población determinada llevará a la acumulación de lo que se conoce como inmunidad de grupo. A medida que más y más personas se vuelven inmunes al virus, un individuo infectado tiene cada vez menos posibilidades de entrar en contacto con una persona susceptible de infección. Al final, la inmunidad de grupo se vuelve tan dominante que, en promedio, una persona infectada contagia a menos de una persona; en ese punto, el número de casos comienza a disminuir. Si la inmunidad de grupo está lo suficientemente extendida, entonces, incluso en ausencia de medidas diseñadas para frenar la transmisión, el virus puede contenerse, al menos hasta que la inmunidad disminuya o nazcan suficientes personas nuevas susceptibles de contraer la enfermedad.
Por el momento, los casos de la COVID-19 se han subestimado debido a las pruebas limitadas, tal vez por un factor de diez en algunos lugares, como Italia a finales del mes pasado. Si el subconteo es más o menos el mismo también en otros países, entonces la mayoría de la población del mundo (si no es que toda) todavía es susceptible a la infección, y la inmunidad de grupo es un fenómeno menor en este momento. El control del virus a largo plazo depende de que la mayoría de las personas se vuelvan inmunes, ya sea mediante la infección y la recuperación o mediante la vacunación; la magnitud de la mayoría depende de otros parámetros de la infección que aún desconocemos.
Una de las preocupaciones tiene que ver con la posibilidad de reinfección. Los Centros para el Control y la Prevención de Enfermedades de Corea del Sur informaron recientemente que 91 pacientes que se habían contagiado de SARS-CoV-2 y que luego dieron negativo para el virus salieron positivos en una prueba posterior. Si algunos de estos casos eran, en efecto, reinfecciones, pondrían en duda la fuerza de la inmunidad que los pacientes habían desarrollado.
Una posibilidad alternativa, que muchos científicos creen que es más probable, es que estos pacientes tuvieron un resultado de falso negativo en medio de una infección en curso, o que la infección había cedido provisionalmente y luego resurgió. Los Centros para la Prevención y el Control de Enfermedades de Corea del Sur está trabajando ahora para evaluar el mérito de todas estas explicaciones. Al igual que con otras enfermedades para las que puede ser difícil distinguir una nueva infección de un nuevo brote de una vieja infección, como es el caso de la tuberculosis, la cuestión podría resolverse comparando la secuencia del genoma viral del primer y segundo periodo de infección.
Por ahora, es razonable suponer que solo una minoría de la población mundial es inmune al SARS-CoV-2, incluso en las zonas más afectadas. ¿Cómo podría evolucionar este cuadro provisional a medida que se obtengan mejores datos? Los primeros indicios sugieren que podría cambiar en cualquier dirección.
Es posible que se hayan producido muchos más casos de la COVID-19 de los que se han notificado, incluso después de tener en cuenta las pruebas limitadas. Un estudio reciente (que aún no es examinado) indica que en lugar de, digamos, diez veces el número de casos detectados, Estados Unidos podría realmente tener más de cien o incluso mil veces la cifra oficial. Esta estimación es una inferencia indirecta de las correlaciones estadísticas. En emergencias, tales evaluaciones indirectas pueden ser una evidencia temprana de un hallazgo importante, o casualidades estadísticas. Pero si lo anterior es correcto, entonces la inmunidad de grupo al SARS-CoV-2 podría estar construyéndose más rápido de lo que indican las cifras comúnmente reportadas.
Por otra parte, otro estudio reciente (que tampoco ha sido examinado hasta ahora) indica que no todos los casos de infección pueden estar contribuyendo a la inmunidad de grupo. De 175 pacientes chinos con síntomas leves de la COVID-19, el 70 por ciento desarrolló fuertes respuestas de anticuerpos, pero cerca del 25 por ciento desarrolló una respuesta baja y cerca del 5 por ciento no desarrolló ninguna respuesta detectable. Dicho de otro modo, la enfermedad leve no siempre puede crear protección. De manera similar, será importante estudiar las respuestas inmunitarias de las personas con casos asintomáticos de infección por SARS-CoV-2 para determinar si los síntomas, y lo graves que sean, predicen si una persona se vuelve inmune.
El equilibrio entre estas incertidumbres se hará más claro cuando se realicen más estudios serológicos o análisis de sangre para detectar anticuerpos en un gran número de personas. Tales estudios apenas comienzan y deberían mostrar resultados pronto. Por supuesto, mucho dependerá de cuán sensibles y específicas sean las diversas pruebas: cuán bien detecten los anticuerpos del SARS-CoV-2 cuando estos estén presentes y si pueden evitar las señales espurias de los anticuerpos contra los virus relacionados.
Aún más difícil será entender lo que significa una respuesta inmunitaria para el riesgo de reinfección de un individuo y su contagio a otros. Basándose en los experimentos de los voluntarios con coronavirus estacionales y los estudios de la persistencia de los anticuerpos para el SRAG y el SROM, se podría esperar una fuerte respuesta inmunitaria al SARS-CoV-2 para protegerse completamente contra la reinfección y una más débil para protegerse contra la infección grave y así seguir frenando la propagación del virus.
No obstante, diseñar estudios epidemiológicos válidos para averiguar todo esto no es fácil: muchos científicos, incluidos varios equipos de los que formo parte, están trabajando en el tema en este momento. Una dificultad es que las personas con una infección previa pueden diferir de las personas que aún no se han infectado de muchas otras formas que podrían alterar su riesgo futuro de infección. Analizar el lugar que ocupa la exposición previa en otros factores de riesgo es un ejemplo del clásico problema que los epidemiólogos llaman “ la variable o factor de confusión”, y en la actualidad se vuelve más difícil debido a los rápidos cambios en las condiciones de la pandemia del SARS-CoV-2 que aún se está propagando.
Sin embargo, entenderlo lo más pronto posible es en extremo importante: no solo para calcular el alcance de la inmunidad de grupo, sino también para averiguar si algunas personas pueden reincorporarse a la sociedad de forma segura, sin volver a infectarse o servir de vector, y propagar el virus a los demás. Lo importante de este estudio es averiguar cuánto tiempo dura la protección.
La evidencia experimental y estadística indica que la infección por un coronavirus puede ofrecer algún grado de inmunidad contra coronavirus distintos pero relacionados. Aún no se sabe si algunas personas corren un riesgo mayor o menor de infección por el SARS-CoV-2 debido a un historial previo de exposición a coronavirus.
Y además está la cuestión de los factores que fortalecen la inmunoamplificación: a través de una variedad de mecanismos, la inmunidad a un coronavirus puede en algunos casos exacerbar una infección en lugar de prevenirla o mitigarla. Este fenómeno problemático se conoce mejor en otro grupo de virus, los flavivirus, y puede explicar por qué la administración de una vacuna contra el dengue —una infección por flavivirus— puede a veces empeorar la enfermedad.
Tales mecanismos todavía se están estudiando en el caso del coronavirus, pero la preocupación de que puedan estar en juego es uno de los obstáculos que ha frenado el desarrollo de las vacunas experimentales contra el SRAG y el SROM. La protección contra la inmunoamplificación también será uno de los mayores desafíos que enfrentan los científicos que tratan de desarrollar vacunas para la COVID-19. La buena noticia es que la investigación sobre los otros dos coronavirus ha comenzado a aclarar cómo funciona la inmunoamplificación, sugiriendo formas de evitarla, y se está llevando a cabo una extraordinaria gama de esfuerzos para encontrar una vacuna para la COVID-19, utilizando múltiples enfoques.
Se necesita más ciencia en casi todos los aspectos de este nuevo virus, pero en esta pandemia, como en las anteriores, se deben tomar decisiones con consecuencias muy importantes antes de que se disponga de datos definitivos. Dada esta urgencia, el método científico tradicional —formular hipótesis informadas y probarlas mediante experimentos y una cuidadosa epidemiología— es hiperacelerado. Dada la atención del público, ese trabajo está inusualmente en exhibición. En estas difíciles circunstancias, solo puedo esperar que este artículo muy pronto luzca desactualizado, ya que se descubra mucho más sobre el coronavirus de lo que se conoce ahora.
Marc Lipsitch (@mlipsitch) es profesor en los departamentos de Epidemiología e Inmunología y Enfermedades Infecciosas de la Escuela de Salud Pública T. H. Chan de la Universidad de Harvard, donde también dirige el Centro de Dinámica de Enfermedades Transmisibles. Credit…Santi Palacios/Associated Press…21 de abril de 2020

13 abril 2020

Los inmunomoduladores evitan las complicaciones por coronavirus»

Filed under: General,INMUNIDAD,MICROSBIOS — Enrique Rubio @ 20:34

Los inmunomoduladores evitan las complicaciones por coronavirus»

________________________________________
El doctor Manel Juan (1964), jefe de la sección de Inmunología Clínica del Servicio de Inmunología del Hospital Clínic de Barcelona, desgrana en esta entrevista cómo los inmunomoduladores podrían ayudar a contener la “excesiva” respuesta del sistema inmunitario al coronavirus SARS-CoV-2 y evitar el desarrollo de complicaciones.
¿En qué estado se encuentra el Hospital Clínic?
Por los datos que recibimos, está en un nivel de presión alto, pero no creciente.
¿Cree que es momento para empezar a “desescalar” el confinamiento o cree que es necesario todavía un confinamiento total como estas dos semanas?
Me parece lógico mantener estas condiciones, aunque no soy epidemiólogo.
En las medidas de desconfinamiento, tiene un papel importante la inmunidad de la población. ¿Cuánto tiempo podría durar la inmunidad una vez el paciente ha superado la infección?
No lo sabemos exactamente, pero es de esperar que serían bastantes meses. Es lo que se espera, es posible que incluso puedan ser años. Es una infección que podemos extrapolar a otras que parece que de promedio tienen un número de meses importante de protección, pero no se puede concretar nada porque el virus ha aparecido a finales de diciembre. Por ahora, parece que los pacientes que se infectaron en China están protegidos.
Si, a priori, no muta excesivamente, ¿puede ayudar?
Sin duda, es un elemento importante para mantener la respuesta.
Hay muchos proyectos en marcha para encontrar una vacuna. ¿Cuándo cree que podrían estar a punto?
Esperamos una vacuna en los próximos meses, en uno o dos. Después, lo que tardemos en demostrar la efectividad, que se podría extender hasta finales de año o principios de siguiente.
Y los tratamientos, ¿cuándo cree que podrá encontrarse alguno efectivo?
El tratamiento es para que los pacientes no empeoren y se están haciendo avances. De todas las maneras, lo determinante es que llegue la vacuna o haya inmunidad. Se están intentando también antivirales, pero en el momento que se dan los síntomas ya está cayendo la carga vírica.
¿Cuál es el motivo por el que la enfermedad genera complicaciones?
Se supone que hay motivos de base genética, pero sobre todo parece que hay una experiencia antigénica previa que condiciona al sistema inmunitario, que es el responsable de estas complicaciones. Pero no se conoce exactamente cuál, y es lo que estamos tratando de investigar. El problema que tenemos con esta infección no es tanto la infección en sí, que también, sino que, como consecuencia de intentar eliminarla, el sistema inmunitario tiene una respuesta muy exagerada y eso es lo que genera la inflamación de los pulmones -neumonía- e impide poder respirar. Este exceso de respuesta en la mayoría de los casos es suficiente para eliminar el virus, pero hay a quien le produce problemas respiratorios. Por tanto, hay que buscar la manera de bajar la respuesta en aquellos que desarrollan complicaciones.
¿La detección precoz puede evitar el desarrollo de complicaciones?
Para evitar las complicaciones, por ahora, no parece. Si hay tratamiento, sí que podría ayudar. Pero es sobre todo para que no haya expansión de la enfermedad. La detección precoz permite confinar a la gente y que no afecte a más gente.
¿Durante cuánto tiempo una persona asintomática que da positivo puede ser contagiosa?
Desde la infección pueden ser unos 14 días, es lo más razonable. En algunos casos menos.
Desde el punto de vista del sistema inmunitario, y a la vista del mayor número de fallecimientos en la población de mayores, ¿qué diferencia hay entre personas jóvenes y personas mayores de 60 años?
Básicamente el problema está en la experiencia antigénica. Es decir, el contacto previo que ha habido con elementos infecciosos es lo que acaba generando esto. A lo largo de la vida vamos acumulando contactos con elementos extraños, que generan enfermedades. Estos contactos, que van variando –hay microorganismos diversos-, cambian nuestro funcionamiento. Es un campo no perfectamente conocido. Con el envejecimiento sabíamos que hay una tendencia a perder respuesta, pero también sabemos que se generan estructuras que hacen que pueda haber hiper respuesta. De hecho, la mayoría de estas enfermedades, que se llaman autoinmunes –por exceso de respuesta contra algo que es propio- aparecen tarde en la edad, y te indican que cuando eres joven controlas la respuesta inmune. Este exceso de respuesta no sabemos exactamente por qué es, pero está relacionado con el envejecimiento y esto es lo que explicaría que este grupo de pacientes no solo sean más débiles porque son personas mayores, sino que además tienen en el sistema inmune una respuesta menos controlada.
¿Y hay alguna manera de bajar la respuesta y evitar las complicaciones?
Están los inmunomoduladores, que buscan bajar, modular y controlar esta respuesta. Han aparecido diferentes vías. Por un lado, vías muy generales, con las que se intenta bajar la respuesta de manera global con fármacos más genéricos. Por otro, vías extraordinariamente específicas, con las que se intenta bajar uno de los elementos que produce el exceso de respuesta. Entre los elementos más característicos que provocan este exceso de respuesta están las citocinas, que son como pequeñas hormonas que funcionan de transmisión de información entre las células del sistema inmunitario.
¿Qué tipo de tratamientos hay?
Para estas citocinas tenemos desde hace tiempo fármacos biológicos, que son anticuerpos monoclonales en la mayoría de casos. Los anticuerpos son muy específicos y se pueden generar para bloquear una citocina. Si se bloquea esta citocina o su receptor, bloqueas toda la información de esta citocina que llega al sistema inmunitario y haces que frene en su respuesta. La pregunta es, ¿con una sola citocina bloqueada de todas las que hay se puede conseguir bajar este exceso de respuesta, esta inflamación? Y la respuesta es que, mayoritariamente, sí. De hecho, el freno de esta respuesta puede ser suficiente. Con el freno del sistema inmunitario también hay un problema, y es que el sistema inmunitario se activa porque quieres eliminar el virus, y si lo frenas antes de que elimine el virus, el virus volverá a crecer. Por eso, los inmunomoduladores más específicos pueden ser los mejores. Los inmunomoduladores más genéricos, como los corticoides, pueden permitir que el virus crezca y por eso solo se están reservando para los casos más graves, cuando se dan situaciones en las que hay una persona que puede morir por la inflamación generada por la respuesta del sistema inmunitario o se puede recuperar, aunque incremente el virus.
¿Ya se están aplicando estos fármacos?
Sí. Hay muchas líneas de investigación, se están haciendo ensayos clínicos. También es verdad que estos fármacos se usan para enfermedades habituales, pero no muy frecuentes, y no son como la aspirina: ya no solo por el precio, sino por la disposición. Y lo que está pasando es que tenemos tantos pacientes que se nos han acabado. La complicación es que se fabrica solo en determinados países, y estos países han de permitir su exportación para que lleguen al resto. Quizás nos deberíamos replantear si en lugar de solo comprar, también deberíamos desarrollar capacidad para fabricarlos.
¿Tienen efectos secundarios?
Los inmunomoduladores “selectivos” –fármacos biológicos- se están aplicando porque son muy seguros y no tienen prácticamente efectos secundarios. Los más “genéricos”, como los corticoides, sí que afectan y tienen efectos secundarios.
¿Y los antivirales son efectivos? Antes explicaba que cuando aparecen los síntomas es cuando ya está cayendo la carga vírica.
El mejor momento para dar antivirales sería cuando no hay síntomas -entre cuatro y siete días después del contacto-. El problema es a quién dar antivirales porque la mayoría de la gente no sabe si ha estado en contacto con un contagiado. Es una situación complicada. Lo que se está haciendo ahora es dar antivirales justo cuando empiezan los síntomas para ver si se puede reducir la carga y mejorar el estado de las personas, pero los resultados son medios, tirando a débiles. Pero bueno, sí que aporta.
Se han generado algunas dudas sobre si las personas asintomáticas pueden desarrollar la misma inmunidad que los sintomáticos.
Por lo que sabemos, en general, del sistema inmunitario sería falso. Sería el primer caso que una infección no genera inmunidad. Los inmunólogos no tenemos constancia de infecciones asintomáticas en que no haya una respuesta inmunitaria. En este caso, los datos que nos aportan van en el mismo sentido, que sería falso, pero no se puede descartar que no aparezca algún día alguien que se ha infectado, ha sido asintomático y después se ha vuelto a infectar.
¿La virulencia del virus también remitiría si alguien se reinfecta?
En principio, sí. Sería igual que cuando se dan los antivirales al inicio, cuando todavía no hay síntomas y así evitas desarrollarlos. De hecho, ya se ha demostrado que parece que es efectivo dar un preventivo antiviral, aunque generan efectos secundarios. En estos casos, las personas se infectan, pero no generan ninguna sintomatología porque el virus desaparece. Pues de manera similar, el sistema inmunitario de un inmunizado, cuando se infecta, de inmediato da una respuesta y elimina el virus. Para que haya un cuadro clínico debe de haber un crecimiento del virus sin respuesta: cuando hay mucha carga vírica, la respuesta empieza a producirse –porque si se hubiera producido antes no hubiera crecido el virus-, se descontrola y, cae la carga vírica, pero se da el problema respiratorio.
ContactoEquipoPolítica de privacidad
REFERENCIA
Manel Juan, jefe de la sección de Inmunología Clínica del Servicio de Inmunología del Hospital Clínic de Barcelona/
Javier Gallego | BARCELONA
Última actualización:12-04-2020 | 13:26 H/

Creada:12-04-2020

Inmunidad de rebaño

Filed under: General,INMUNIDAD — Enrique Rubio @ 20:29

INMUNIDAD «DE REBAÑO» O «DE MANADA

El concepto de inmunidad colectiva se refiere a una situación en la que suficientes personas de una población adquieren inmunidad contra una infección.
La inmunidad colectiva se refiere a una situación en la que suficientes personas de una población adquieren inmunidad contra una infección para poder detener eficazmente la propagación de dicha enfermedad.
Para la inmunidad de grupo no importa si proviene de la vacunación o de personas que han tenido la enfermedad. Lo crucial es que sean inmunes.
Con la nueva infección por coronavirus, llamada COVID-19, a medida que se infecten más gente y que se recupere, será inmune a futuras infecciones.
«Cuando alrededor del 70% de la población se haya infectado y recuperado, las posibilidades de que se produzcan brotes de la enfermedad son mucho menores porque la mayoría de las personas son resistentes a la infección», según Martin Hibberd, profesor de Enfermedades Infecciosas Emergentes de la Escuela de Higiene y Medicina Tropical de Londres.
El brote de la enfermedad causada por el nuevo coronavirus ha puesto sobre la mesa un concepto conocido como inmunidad «de rebaño» o «de manada», también conocida como inmunidad colectiva o de grupo, y ha hecho que muchos se pregunten si podría desempeñar un papel en la progresión de la pandemia.
Con el nuevo brote de coronavirus, los datos actuales sugieren que una persona portadora del virus infecta de media a entre dos y tres personas más. Esto significa que, si no se toman otras medidas, la inmunidad de grupo se activaría cuando entre el 50% y el 70% de la población sea inmune.
Matthew Baylis, profesor del Instituto de Infecciones, Ciencias Veterinarias y Ecológicas de la Universidad de Liverpool. Dice que * Al reducirse el número de personas que infecta una persona, gracias a medidas de distanciamiento social como el cierre de escuelas, el teletrabajo, el lavado frecuente de manos y evitando las grandes aglomeraciones, se puede bajar el umbral en el que la inmunidad de grupo se pone en marcha.
«Desde un punto de vista epidemiológico, el truco es reducir el número de personas con las que estamos en contacto (…) para disminuir el número de contactos que infectamos y que la inmunidad de grupo comience antes.
El punto óptimo, añadió, es cuando una persona infectada infecta, de media, a una o menos de una persona.
Referencia
Martin Hibberd, profesor de Enfermedades Infecciosas Emergentes de la Escuela de Higiene y Medicina Tropical de Londres

29 marzo 2020

La inflamación en el coronavirus

Filed under: General,INFECCIONES E INFLAMACION,INMUNIDAD — Enrique Rubio @ 15:16

LA INFLAMACIÓN EN LOS VIRUS DEL COVID 19
El coronavirus nos han sorprendido como lo han hecho a lo largo de la historia las distintas epidemia que han paralizado y diezmado el mundo.
Incluso los que somos muy mayores no habíamos visto nunca nada parecido.
La epidemia de gripe de 1918, fue tan mortificante y letal que yo a nivel personal pensaba que marcaba el límite entre las enfermedades infecciosas y las degenerativas. Después de esta epidemia, los gérmenes tendrán poca cabida en las enfermedades. Pues no es así, los gérmenes siguen mandando y para ello tenemos pocas terapias efectivas salvo las técnicas de prevenir una epidemia o mitigarla antes de que termine con el mundo.
¿Como algo tan pequeño como un virus puede tener tanta capacidad lesiva.
Hasta tal punto es agresivo, que la única terapia que tenemos contra él, es aislarnos y aislarlo, y para ello hay que parar el mundo.
Los virus, actúan en una primera fase invadiendo al organismo y de una segunda fase que es la reacción inflamatoria de rechazo, que en ocasiones es más severa y dañina.
Esta forma de actuar es inespecífica y una serie de condiciones son necesarias en la actuación de los virus, que son difíciles de explicar, así:
Los españoles y los italianos morimos por el Covid 19, mucho más que en otros países, y esto se debe a que somos genéticamente idénticos italianos y españoles y diferentes a los demás
Hay una diferencia en nuestros genes que los hace más sensible a los Covid 19. Después de la invasión del virus el organismo los sufre primero, como una invasión y segundo reacciona con el sistema inmunitario la inflamación.
Porque la mortalidad entre los españoles y los italianos, es diferente, y lo es porque nuestro sistema inmunológico es muy fuerte
El virus produce sobre el afectado dos tipo de enfermedades que son .:
Síndrome de activación macrofágica
Y síndrome anti fosfolípidos
Que son reacciones inflamatorias importante que se tratan con antiinflamatorio, concretamente con interleucinas dando lugar a una reacción inflamatoria tan potente que se le llama se llama ” tormentas de citoquinas “
De forma pues que algo tan débil como un virus es capaz de desencadenar una reacción inflamatoria enorme que termina con la vida del paciente y lo hace fundamentalmente por una obstrucción inflamatoria de los pulmones que impiden la ventilación
El autor principal de la maldad que esta enfermedad es el macrófago, al que hay que tratar lo más precozmente posible y ante el que se desencadenen la tormenta de citoquinas con corticoides y anticoagulantes
Los síndromes inflamatorios no son específicos de los de los virus. Y una serie de procesos infecciosos y no infeccioso son capaces de desencadenar una reacción inflamatoria a veces con resultados fatales.
Explosión de inflamación o TORMENTA DE CITOCINAS
Reacción inmunitaria grave por la que el cuerpo libera muy rápidamente demasiadas citocinas en la sangre. Las citocinas cumplen una función importante en las respuestas inmunitarias normales, pero son dañinas cuando el cuerpo produce de una vez cantidades grandes de ellas. La tormenta de citocinas puede ser consecuencia de una infección, una afección autoinmunitaria u otra afección. A veces también ocurre después del tratamiento con algunos tipos de inmunoterapia. Los signos y síntomas incluyen fiebre alta, inflamación (enrojecimiento e hinchazón), cansancio intenso y náuseas. Algunas veces, la tormenta de citocinas es grave y en peligro la vida por fallo multiorgánicos ,dos de ellos son de los mas frecuentes: se el
Síndrome de activación macrofágica en adultos con enfermedad reumática

El síndrome de activación macrofágica (SAM) es una reacción patológica inflamatoria sistémica, frecuentemente fatal y comúnmente no diagnosticada, que se acompaña de una falla multiorgánica y puede desencadenarse asociada a enfermedades reumáticas, neoplásicas, infecciosas o a drogas. Más descrita en niños que en adultos, probablemente en muchas ocasiones se relaciona con alteraciones genéticas aún no descritas. Sus síntomas y signos han sido definidos. El no sospecharlo conlleva a no diagnosticarlo y como consecuencia a un incremento importante del riesgo de mortalidad en el paciente; es por esto que el diagnóstico es un reto y el tratamiento debe de ser temprano y agresivo.

Puede haber insuficiencia orgánica múltiple que podría desencadenarse en asociación con enfermedades y / o fármacos reumáticos, neoplásicos o infecciosos. Se ha informado más en niños que en adultos, probablemente porque a menudo se asocia con anomalías genéticas no descritas aún, no descritas, anomalías genéticas. En la mayoría de los casos, el defecto genético no se reconoce en adultos o tiene una etiología diferente. Se han definido los signos y síntomas del síndrome de activación de macrófagos. No sospechar su presencia puede llevar a no hacer el diagnóstico y, por lo tanto, a un aumento de la mortalidad. El diagnóstico es un desafío, el tratamiento debe iniciarse temprano y ser agresivo para reducir la alta tasa de mortalidad.
El (SAM) no se suele buscar en el adulto y como consecuencia los resultados resultados suelen ser fatales. Requiere identificación y tratamiento temprano para reducir el riesgo de mortalidad. Todavía necesita ser estudiado para definir el defecto genético u otras causas que pueden ser responsables del desarrollo del síndrome.
Como es frecuente en las enfermedades raras recibe varios nombres que ayudan a la confusión, así desde el Síndrome de activación de macrófagos, se pasa a la Hemofagocitosis linfohistiocítica reactiva que suele ser familiar

La linfocitosis familiar es una activación inmune patológica con signos y síntomas de inflamación severa, que fue reconocida en 1952 como una enfermedad de la niñez. En 1977, el síndrome de activación macrofágica (SAM) se reporta en casos aislados que presentan insuficiencia hepática y coagulopatía de consumo1, posteriormente el SAM es descrito como un problema relacionado con artritis reumatoide juvenil2. En 1993, se describe en detalle y de forma específica en 24 niños 3. Hoy en día está bastante bien caracterizado constituyéndose como una entidad clínica asociada o desencadenada por drogas, infecciones, cáncer o enfermedades reumáticas o existiendo como una enfermedad aislada sin desencadenante4. El SAM ha sido descrito más frecuentemente en niños que en adultos, pero ha habido un incremento de pacientes adultos reportados5.
El SAM es un cuadro clínico similar a los síndromes hemofagocíticos, que por una deficiencia primaria o por un defecto en la apoptosis de macrófagos activados ocurre una perpetuación de la respuesta inflamatoria. Este defecto primario ha sido descrito en muchos casos, en otros su etiología aún está por definirse. El SAM ocurre cuando existe una función macrofágica mal controlada, una actividad celular citotóxica reducida y una disminución de los linfocitos T tóxicos y células asesinas naturales. Algunas citoquinas y amplificaciones de respuesta inflamatoria han sido descritas6. La apoptosis de macrófagos activados se logra por la vía de la perforina poro-granzima B serina proteasa. La reducción del número o función de células NK o una anormalidad genética del camino de la granzima-perforina llevan a un SAM.
En artritis idiopática juvenil (AIJ), lupus eritematoso y otras enfermedades reumáticas existe un incremento de la incidencia del SAM7,8. El SAM, frecuentemente se confunde con la inflamación de la sepsis o con la exacerbación de la enfermedad subyacente9. El síndrome ha sido descrito por 2 grupos diferentes, la Sociedad de Histiocitosis y por los reumatólogos pediatras. Las guías para el diagnóstico han sido publicadas por las 2 tendencias y están en proceso de definición para el lupus eritematoso sistémico (LES) y la AIJ sistémica10,11. Recientemente, los 2 grupos se reunieron y han definido la nomenclatura, así como los criterios diagnósticos12–14. El diagnóstico se basa en la presencia de criterios clínicos y criterios de laboratorio, ya establecidos por la Sociedad de Hemofagocitosis Linfohistiocítica15. Ravelli et al., elaboraron los criterios para SAM asociado a AIJ11.

Descripción: el SAM tiene un comienzo agudo y sus manifestaciones clínicas son: fiebre elevada y persistente (94%), cambios neuropsiquiátricos, esplenomegalia (59%), hepatomegalia (88%), linfadenomegalia (48%), eritema en la piel (65%), disminución del número células de 2 o 3 líneas celulares a nivel de sangre periférica, anemia (82%), trombocitopenia (88%), (>150.000 plaquetas); leucopenia (56%), enzimas hepáticas (transaminasas) elevadas (46%), fibrinógeno bajo por consumo (100%), hipertrigliceridemia (80%), tiempo de protrombina y trombina prolongados y ferritina muy elevada (100%) (en paréntesis están los porcentajes de estas características que están descritos en los criterios para SAM asociado a la AIJ por A. Ravelli11). En un artículo reciente, se reconoce la linfocitosis hemofagocítica como un desorden en incremento de diagnóstico en el adulto16.
Recientemente se ha sugerido que los niveles séricos (determinados por ELISA) del receptor específico recogedor de desperdicios (scavenger) de macrófagos el sCD163 soluble, es un marcador específico para macrófago en pacientes que tienen una activación macrofágica inadecuada, estando muy elevados y sirviendo su determinación para el seguimiento de la activación y de la actividad de la enfermedad17,18. De igual manera, la determinación de niveles del receptor soluble para el receptor de interleucina-2 (sIL-2R), se ha usado como marcador18.
En lo concerniente a la imaginología se han descrito cambios para varios sistemas y estructuras relacionadas con la respuesta inflamatoria excesiva en los órganos afectados19. La radiología de tórax demuestra un compromiso intersticial que es compatible con inflamación local o puede estar relacionado con una hemorragia intersticial. En la resonancia de cráneo se pueden ver imágenes de alta densidad o de falta de tejido en casos con compromiso del cerebro, estos hallazgos se han descrito en pacientes con síndrome de inmunodeficiencia adquirida, los hemos visto en nuestros pacientes.
A pesar de estar establecidos los criterios, aún requieren ser validados, para enfermedades diferentes a la AIJ sistémica. Se presentan situaciones que complican hacer el diagnóstico, entre otras, al comienzo de la enfermedad pudiera o no existir actividad fagocítica en la médula ósea, hígado o bazo (estos dos últimos no se consideran para las biopsias). La hemofagocitosis puede no detectarse en estas etapas tempranas y puede ser no específica en caso de una transfusión de sangre. Se puede confundir con actividad de la enfermedad subyacente o con sepsis. La elevación de triglicéridos, la determinación de células asesinas naturales y la citotoxidad de las células T, o los CD163 o los receptores para interleucina-2, no son procedimientos que se hacen de rutina en los laboratorios. La ferritina, tampoco es una prueba de rutina, ni se realiza de urgencia y pueden pasar varios días antes de obtenerse los resultados. Lo que hace que sea importante considerar el diagnóstico de SAM, como se podrá notar en los casos a continuación.
La mortalidad del SAM es alta, de 32 a 80% dependiendo de la serie revisada. La falta de conocimiento de la existencia de este síndrome, el retraso en el diagnóstico y el comienzo tardío de medidas terapéuticas pueden ser las responsables de esta alta mortalidad. Silva, presentó un número pequeño de pacientes donde coincide la alta mortalidad con el retraso en el diagnóstico, de allí la necesidad de un diagnóstico temprano20.
El virus de Epstein Barr es uno de los más descritos y hasta se lo ha responsabilizado como desencadenante. El National Institute of Health tiene una página web donde están citados los casos asociados a infecciones. Por otra parte, las enfermedades subyacentes, el carcinoma, la leucemia, la enfermedad linfoproliferativa, el LES, la dermatomiositis juvenil, la AIJ y la artritis reumatoide (AR), se asocian al SAM. Puede ocurrir con cualquier medicamento como desencadenante, la aspirina u otros antiinflamatorios no esteroideos, la segunda inyección de sales de oro, la sulfasalazina, el metotrexate21 y los anticonvulsivantes. Llama la atención que el SAM esté asociado a los biológicos anti factor de necrosis tumoral, el infliximab, etanercept o los antiinterleucina-1, el anakinra, ya que estas son las citoquinas que se disparan en los procesos de inflamación y esta última se utiliza hoy en día en muchos centros, como la terapia de elección del síndrome. Teóricamente los anti-TNF podrían ser considerados como terapia, por la misma descripción fisiopatológica del proceso, pero se ha despertado una gran discusión en ese aspecto por la paradójica respuesta descrita con estos tratamientos, algunos pacientes tuvieron la inducción del SAM con terapia anti-TNF22,23. Por otra parte, una dramática respuesta a etanercept ocurrió en un niño de 7 años de edad con AIJ24. Se describe el paciente EG, en nuestra serie que desarrolla el síndrome después de iniciado el tratamiento con anti-TNF como medicamento único25.
El tratamiento está dirigido ante todo a la eliminación de la causa que indujo el síndrome. Luego se comienza el tratamiento con pulsos de metilprednisolona a la dosis de 30mg por kg de peso o hasta un gramo al día durante 3 a 5 días, dependiendo de la gravedad del SAM y de la respuesta a las dosis iniciales. Se puede usar prednisona por vía oral a razón de uno o 2mg por kg de peso por día, en dosis única o dividida para más efecto, según la gravedad de la enfermedad. Se puede repetir el pulso en caso de respuesta insuficiente. La ciclosporina se ha usado con éxito por su efecto estabilizador de la membrana del macrófago o su función sobre los linfocitos ayudadores26,27. También se han utilizado las inmunoglobulinas y el etopósido (este último, sobre todo por la Sociedad de Hemofagocitosis). Hoy en día es muy utilizado el anakinra, que es un antagonista al receptor humano de interleucina-1 (IL-1Ra). El tocilizumab, es un anticuerpo monoclonal humanizado recombinado contra el receptor anti interleukina-6 (IL-6), se usa en el tratamiento de algunos pacientes que no toleran la interleucina-1 o no les es accesible).

Pero los casos del Covid 19 la solución en la fase de neumonía, es la de poner dosis altas de corticoides, usando como indicador la Ferritina, marcador de la inflamación y heparina de bajo peso molecular a dosis anticoagulante

De forma pues que tenemos una serie de enfermedades poco frecuentes que se caracteriza por la explosión de citoquinas e inflamación del parénquima sobre todo de vías respiratorias. Que probablemente son responsables de la alta mortalidad de esta epidemia del coronavirus.

Probablemente las unidades de cuidados intensivos tienen esto muy en cuenta, pero conviene no olvidar que la alta letalidad de estos pacientes se debe a la neumonía. Inflamatoria

Older Posts »

Powered by WordPress