Enriquerubio.net El blog del Dr. Enrique Rubio

13 septiembre 2019

ENFERMEDADES MENTALES E INMUNIDAD

Filed under: psiconeuroinmunologia — Enrique Rubio @ 14:26

¿Como no iba a intervenir en las enfermedades mentales la inmunidad?. Era de esperar, el sistema inmunitario defiende lo que debe y también de manera arbitraria lo que no debe.
El trabajo que publica Enrique Mezquita. Valencia, 6 agosto, 2019, nos ilusiona porque se puede predecir el brote de psicosis de manera sencilla, viendo en sangre periférica la relacion linfocitos/neutofilos.

Un resumen de la acción del sistema inmunitario en las enfermedades mentales, nos ayuda a comprender el porque de un equilibrio entre células inmunitarias, puede predecir un brote de psicosis y ofrecernos cantidad de posibilidades de mitigarlo

Los primeros estudios sobre la interacción mente-cuerpo datan de la primera mitad del siglo XX, cuando el fisiólogo Walter Cannon acuñó el término homeostasis en su trabajo «The wisdom of the body»1. Allí describió los mecanismos fisiológicos que intervienen en un equilibrio físico-químico esencial para el organismo y demostró cómo el estado emocional de un animal (ansiedad, estrés, rabia) puede acompañarse de la detención de movimientos del estómago. Por otro lado, Hans Selye desarrolló el concepto de síndrome general de adaptación, un conjunto de cambios psicofisiológicos que padecían ratas expuestas a diferentes agentes nocivos en el laboratorio2 como una reacción del organismo ante condiciones nuevas, y que años después acabaría acuñando el término estrés3. En 1975, con los trabajos del psicólogo Robert Ader y el inmunólogo Nicholas Cohen se acuñó el término psiconeuroinmunología a partir de estudios que demostraban que una señal aversiva canalizada a través del sistema nervioso condicionaba respuestas en el sistema inmune4. Debido a que frecuentemente los factores inmunológicos se asocian con factores endocrinológicos, y en ocasiones se habla del término psiconeuroendocrinoinmunología. Este campo de interés científico estaría dedicado al estudio tanto de los aspectos hormonales e inmunológicos de los trastornos mentales, como al de las manifestaciones psiquiátricas de enfermedades hormonales, inmunológicas y asociadas a tratamientos hormonales o inmunológicos.
Síntomas psiquiátricos en enfermedades autoinmunes
La implicación de factores inmunológicos en los trastornos psiquiátricos parte de diferentes observaciones. Por un lado, existen enfermedades autoinmunes (p.ej., lupus eritematoso sistémico [LES], encefalitis por anticuerpos anti-NMDA) que cursan con una elevada prevalencia de síntomas psiquiátricos. Por otro lado, estudios previos en los que se han administrado moduladores del sistema inmunológico a animales o humanos han objetivado síntomas psiquiátricos. En modelos animales, la inyección de citoquinas proinflamatorias (IL-1β y TNF-α) produce un comportamiento similar al aislamiento social8. En humanos, la administración de endotoxinas induce anhedonia y desactiva el núcleo estriado ventral, región implicada en los circuitos de respuesta cerebral a la recompensa14. Otro dato reconocido es que el tratamiento de la hepatitisC con IFN-α induce síntomas depresivos con elevada frecuencia15.
Algunas enfermedades autoinmunes y síntomas psiquiátricos.
Lupus eritematoso sistémico (LES)
Hasta un 75% de los pacientes con LES tienen afectación cerebral16, apareciendo los síntomas psiquiátricos típicamente en los primeros años de la enfermedad, incluyendo ansiedad, depresión y psicosis. Si bien la clínica afectiva puede tener un componente adaptativo en el contexto de padecer la enfermedad sistémica y sus limitaciones, en otros casos existen manifestaciones psicopatológicas asociadas a la enfermedad, coincidiendo con el al aumento de parámetros de actividad inmunológica (anticuerpos ANA y anti-DNA). La psicosis lúpica, considerada un criterio diagnóstico del LES, se asocia frecuentemente a anticuerpos positivos contra el ribosoma-P, aunque metaanálisis recientes sugieren que no sería específico de psicosis, asociándose también a ansiedad o depresión17. Si consideramos la afectación cognitiva asociada al LES, hasta un 80% de los pacientes presentan síntomas cognitivos leves o moderados, y un 3-5% severos16. Los dominios más afectados son la atención, la memoria visual y verbal, las funciones ejecutivas y la velocidad de procesamiento de la información. Estudios de neuroimagen con resonancia cerebral estructural han demostrado la presencia de atrofia cortical, lesiones en la sustancia blanca subcortical y cambios difusos en la sustancia gris18,19.
Encefalitis autoinmunes
Las encefalitis autoinmunes se caracterizan por un inicio agudo con crisis epilépticas del lóbulo temporal, síntomas conductuales o manifestaciones psiquiátricas y afectación cognitiva. Se han implicado autoanticuerpos contra autoantígenos a nivel sináptico o intracelular que pueden asociarse o no a un origen paraneoplásico20. Estos anticuerpos pueden estar dirigidos contra subunidades del receptor NMDA, canales voltaje-dependientes de potasio, complejos y contactina asociados a proteína2 (CASPR2), subunidades GluR1 y GluR2 del receptor del ácido amino-3-hidroxi-5-metil-l-4-isoxazolepropiónico (AMPAR) y subunidades B1 de los receptores B del ácido γ-aminobutírico (GABABR)7.
Las manifestaciones psiquiátricas pueden preceder a los síntomas neurológicos o incluso dominar el cuadro clínico en fases iniciales y comprenden síntomas afectivos, psicosis de tipo esquizofreniforme, o incluso sintomatología catatoniforme21. Así, hasta dos tercios de los pacientes con una encefalitis autoinmune por anticuerpos anti-NMDAR consultan inicialmente con dispositivos asistenciales de salud mental.
Trastorno autoinmune neuropsiquiátrico asociado a estreptococo (PANDAS)
El trastorno autoinmune neuropsiquiátrico asociado a estreptococo (PANDAS) es un síndrome pediátrico raro descrito en niños que, tras padecer una infección por estreptococo del grupo A β-hemolítico, desarrollan tics, movimientos involuntarios y síntomas obsesivo-compulsivos22. Se han descrito tanto inicios como exacerbaciones de la sintomatología obsesivo-compulsiva tras este tipo de infecciones. Se sugiere la existencia de una reactividad cruzada entre los anticuerpos antiestreptococo y proteínas (autoantígenos) de los ganglios basales cerebrales, entre los que figuran unas enzimas (aldolasas, enolasas), implicadas en la neurotransmisión, el metabolismo neuronal y la señalización celular, y que muestran una estructura similar a proteínas estreptocócicas. La seropositividad para anticuerpos contra los ganglios basales en pacientes con trastorno obsesivo-compulsivo (TOC) se ha asociado con niveles elevados de glicina en el líquido cefalorraquídeo, sugiriendo que estos contribuyen al incremento del tono glutamatérgico que se ha descrito en pacientes con TOC7. La mejoría de los síntomas obsesivo-compulsivos con terapias inmunológicas apoya el papel de estos autoanticuerpos en la patogenia del TOC, o al menos en un subgrupo de pacientes que asocian los síntomas con el PANDAS23.
El sistema inmunológico y los trastornos psiquiátricos primarios
Existe evidencia clínica y datos de laboratorio que demuestran que alteraciones en la inmunidad celular y humoral son más prevalentes en pacientes con trastornos mentales comparados con individuos sanos.
Estrés y carga alostática
El estrés puede definirse como una amenaza para la integridad psicológica o fisiológica de un individuo. Ante el estrés agudo, se liberan catecolaminas y cortisol desde la médula y la corteza suprarrenal, respectivamente. Esta respuesta fisiológica juega un papel protector a corto plazo, aunque si el estrés se mantiene de forma crónica o existe una disregulación de la secreción hormonal puede llegar a ser perjudicial para el organismo24. A este aspecto se refiere el modelo de carga alostática. El organismo tiende a buscar el equilibrio de sistemas regulatorios fisiológicos (homeostasis) mediante respuestas de adaptación (alostasis) que implican al sistema nervioso simpático y neuroendocrino, especialmente al eje HPA25. Cuando existe un estrés crónico y la carga alostática sobrepasa un límite, se objetiva una disregulación crónica de los mediadores de alostasis y una respuesta maladaptativa que se ha relacionado con diferentes condiciones médicas, entre las que se encuentran trastornos mentales (depresión unipolar26, trastorno bipolar27, eszquizofrenia28), neurodegenerativos (deterioro cognitivo29) o endocrino-metabólicos (obesidad y síndrome metabólico30).
En la respuesta al estrés y la capacidad de tolerar la carga alostática intervienen diferentes factores incluyendo las experiencias personales, la genética y el comportamiento. Cuando el cerebro percibe una experiencia como estresante, se desencadenan respuestas fisiológicas y comportamentales, incluyendo la participación del sistema inmunitario, que inician el proceso de alostasis y adaptación. El acúmulo de alostasis, la sobreexposición a mediadores de estrés celulares, endocrinológicos e inmunológicos conducirá al desarrollo de enfermedades. Se ha relacionado la carga alostática con diferentes condiciones mentales, como el burn-out o el síndrome de fatiga crónica, así como con parámetros relacionados con el envejecimiento, como el riesgo cardiovascular, la afectación cognitiva y la mortalidad en poblaciones de edad avanzada29.
Inflamación en depresión
Los trastornos depresivos, además de los síntomas psicológicos, presentan constelaciones de síntomas somáticos o vegetativos en su expresión clínica que recuerdan a síntomas inespecíficos de enfermedades físicas sistémicas, como la astenia, la anergia, el dolor inespecífico, las alteraciones del apetito, las anomalías en el sueño y los déficits de memoria. Además, la depresión mayor con síntomas melancólicos o las depresiones bipolares presentan un curso longitudinal episódico y recurrente con períodos de remisión que recuerda al curso de varias enfermedades autoinmunes. La administración de citoquinas exógenas como el IFN-α puede inducir síntomas depresivos15,31, apoyando la relación entre el sistema inmune y la depresión.
En las últimas décadas se han descrito alteraciones en la activación de la respuesta inflamatoria a varios niveles en pacientes con depresión, en forma de disminución de linfocitosB, T, Thelper y Tsupresores32, de la actividad de las células natural killer33, de la respuesta proliferativa a mitógenos inespecíficos, así como un aumento de neutrófilos, de IL-632, IL-134, del TNF-α35, de la proteínaC-reactiva34 y de la activación de factores nucleares señalizadores de la cascada inflamatoria36. Por otro lado, se han correlacionado los niveles de estos factores con la severidad de la depresión37,38 y su respuesta al tratamiento.
Se han descrito también alteraciones en el estrés oxidativo39, existiendo una doble interacción entre este y la inflamación: moléculas oxidativas activan mediadores inflamatorios, así como la activación de la microglía produce metabolitos de estrés oxidativo. En condiciones normales, la microglía controla el inicio y el final del proceso neuroinflamatorio, condicionando su autolimitación. Sin embargo, en la exposición al estrés se puede producir una hiperactivación de la microglía que se traduciría en un exceso de inflamación que podría provocar neurotoxicidad40. Los síntomas cognitivos se consideran una dimensión nuclear en la depresión mayor, pudiendo incluso persistir tras la remisión de los síntomas afectivos. Se ha sugerido que los síntomas cognitivos de la depresión pueden resultar de la interacción compleja de factores neuroinflamatorios y neurohormonales relacionados con el eje HPA15,41,42.
Considerando lo anterior, la hipótesis neuroinflamatoria de la depresión43, junto con las alteraciones en la respuesta neurohormonal y metabólica descritas en estos pacientes, refuerzan la implicación de una alteración en los mecanismos fisiológicos de respuesta al estrés y a diversas noxas biológicas en la etiopatogenia de los trastornos depresivos. Incluso se ha descrito un subtipo de trastorno depresivo asociado a citoquinas, denominado ICAD por sus siglas en inglés (inflammatory cytokine-associated depression)44.
Inflamación en esquizofrenia
Se ha demostrado un estado proinflamatorio con un aumento de niveles de dichas citoquinas en pacientes con esquizofrenia respecto a controles sanos45. Aunque los niveles de factores inflamatorios son relativamente bajos en comparación con otras enfermedades inflamatorias, este estado de activación de bajo grado de la inflamación se ha implicado en un peor pronóstico de la esquizofrenia en relación con los síntomas psicóticos positivos46 y negativos46,47, la afectación cognitiva48 y la pérdida de volumen cerebral49. La asociación entre factores inflamatorios y un peor rendimiento cognitivo en primeros episodios psicóticos50 subraya la importancia de la inflamación en el peor pronóstico de los trastornos psicóticos en fases tempranas de la enfermedad. Se han descrito también niveles elevados de citoquinas proinflamatorias45 en las recaídas psicóticas, una reducción de los niveles de diferentes citoquinas proinflamatorias45 tras el tratamiento antipsicótico y la mejoría clínica, y aumentos de algunas citoquinas, como la IL-6, incluso antes de desarrollar una psicosis en poblaciones de riesgo51,52.
Como en otros trastornos, se ha propuesto que los efectos nocivos de la inflamación en la esquizofrenia se producirían mediante la participación del estrés oxidativo. Estudios realizados durante los últimos años han demostrado niveles anormales de metabolitos de estrés oxidativo tanto en tejido periférico53,54 como en tejido nervioso55,56, existiendo sinergias entre inflamación, mecanismos de excitotoxicidad, disfunción mitocondrial y agregación proteica anormal para inducir neurodegeneración. La activación o incremento de la densidad de la microglía puede conllevar la síntesis de prostaglandinas, citoquinas y especies reactivas del oxígeno, causando muerte celular57. A estos efectos hay que añadir el papel del eje HPA mediante la secreción mantenida de cortisol, pudiendo contribuir en cierto grado a la neurotoxicidad cerebral. De hecho, se ha descrito una asociación entre niveles elevados de cortisol y la reducción volumétrica de determinadas regiones cerebrales como el hipocampo58, región de gran relevancia en los procesos cognitivos, especialmente la memoria de trabajo, claramente afectada en pacientes con esquizofrenia. Esta reducción se ha vinculado a un peor funcionamiento social59 y una mayor duración de la enfermedad60.
Un aspecto planteado en estudios de pacientes con esquizofrenia y primeros episodios psicóticos es la posibilidad de que los factores inflamatorios y marcadores de estrés oxidativo puedan considerarse como marcadores de estado o de rasgo. A nivel de inflamación se ha sugerido que algunas citoquinas se comportarían como marcadores de estado (IL-1β, IL-6 o TGF-β), dado que aumentan en descompensaciones agudas y se normalizan con el tratamiento antipsicótico45. Otras citoquinas, en cambio, se podrían considerar marcadores de rasgo (IL-12, IFN-??, TNF-α, y sIL-2R), dado que el incremento de las mismas en los episodios agudos persiste tras iniciar el tratamiento antipsicótico45. Algo similar sucede con los marcadores de estrés oxidativo, considerándose algunos como marcadores de estado (estado antioxidante total, actividad de catalasa en glóbulos rojos y nitrito plasmático) y otros de estado (actividad superóxido dismutasa en glóbulos rojos)54.
Inflamación en otros trastornos neuropsiquiátricos
En el trastorno bipolar se ha asociado un estado proinflamatorio con el perfil clínico, incluyendo mayor severidad de síntomas maníacos62, depresivos63 y cognitivos64,65, antecedentes de tentativas suicidas y una mayor duración de la enfermedad66. Estudios de cohortes realizados en población infantil han demostrado que algunas citoquinas, como la IL-667, son predictoras de hipomanía en la edad adulta. Otros estudios han comparado los niveles de factores inflamatorios entre pacientes con trastorno bipolar y depresión unipolar, detectando niveles mayores en los primeros, lo que sugiere la existencia de una mayor disregulación inflamatoria en este trastorno68.
En el trastorno por estrés postraumático (TEPT) se ha descrito la existencia de un estado proinflamatorio que ha sido replicado en diferentes cohortes de veteranos de guerra69. En un metaanálisis de 20 estudios que exploraron la relación entre factores inflamatorios y el diagnóstico de TEPT respecto a controles sanos, se demostró un incremento de los niveles de IL-6, IL-1β e IFN-γ en el TEPT70, asociándose los niveles de IL-1β con la duración del trastorno y los de IL-6 con la severidad sintomática.
Niveles elevados de citoquinas han sido descritos también en otros trastornos de ansiedad, incluyendo el trastorno de ansiedad generalizada, el trastorno de pánico, las fobias o el TOC, sugiriendo que los hallazgos no son específicos de un trastorno concreto71,72. Así, se sugiere que la activación de la respuesta al estrés induce la secreción de citoquinas a nivel periférico y central, además de existir un tono simpático aumentado y una menor actividad parasimpática, lo que contribuiría a incrementar todavía más el grado de inflamación, conllevando efectos negativos en regiones cerebrales críticas para la regulación del miedo y la ansiedad, como el córtex prefrontal, la ínsula, la amígdala y el hipocampo.
En pacientes con trastornos de la conducta alimentaria también se han descrito niveles incrementados de citoquinas proinflamatorias y marcadores de estrés oxidativo73. Un metaanálisis de estudios en anorexia nerviosa74 sugiere que existe un aumento de los niveles de TNF-α, IL-6, IL-1β, y TNF-R-II y un descenso de los niveles de proteínaC-reactiva e IL-6R respecto a controles sanos.
Conclusiones
El sistema inmunitario es una pieza fundamental en la defensa del organismo y participa en el mantenimiento de la homeostasis. La interacción entre el sistema endocrinológico y el sistema nervioso autónomo explicaría en parte el impacto recíproco del sistema inmunitario en las funciones psicológicas y la conducta, así como del estrés psicológico en la respuesta inmunitaria.
Varias alteraciones del sistema inmunitario se han asociado a la presencia de trastornos mentales, destacando una disregulación de la respuesta inflamatoria del organismo con el predominio de un estado proinflamatorio. La exposición a situaciones de estrés crónico puede conllevar respuestas maladaptativas de diferentes mediadores hormonales, inflamatorios y cardiovasculares que estarían implicados en la patogenia de diferentes trastornos metabólicos y neuropsiquiátricos. Por otro lado, existe una asociación robusta entre enfermedades autoinmunes y síntomas psiquiátricos, entre los que se incluyen síntomas obsesivo-compulsivos, depresivos o psicóticos.
El desarrollo de este cuerpo de conocimiento puede aportar en los próximos años importantes avances en la identificación de poblaciones de riesgo, mecanismos etiopatogénicos, diagnóstico y tratamiento de algunos trastornos psiquiátricos. Sin embargo, por el momento no se ha alcanzado un consenso sobre el uso de biomarcadores del sistema inmunitario que permita extender su aplicación en el diagnóstico ni recomendar tratamientos inmunomoduladores para los trastornos mentales primarios en la práctica clínica diaria.

“Un 25 por ciento de los españoles sufre al menos una enfermedad mental a lo largo de su vida. Las enfermedades mentales abarcan un número importante de dolencias que van desde los trastornos neurológicos hasta el consumo de sustancias tóxicas. “Las enfermedades que más afectan a la población española, son la depresión y la ansiedad, tras las cuales aparecen otros trastornos graves como son la esquizofrenia, el trastorno bipolar o el trastorno obsesivo-compulsivo”.

La esquizofrenia es uno de los trastornos mentales más graves y de difícil diagnóstico. En el Congreso se estudiará el avance fundamental que está suponiendo la identificación de biomarcadores en las áreas de neuroimagen, genética y neurofisiología que están permitiendo afrontar las dificultades de diagnóstico y validar de una manera más objetiva el tratamiento a los pacientes en esta enfermedad.
Los tratamientos antiinflamatorios para paliar los efectos de los brotes de esquizofrenia así como mejorar su pronóstico a largo plazo se están mostrando eficaces.

“Sabemos que la inflamación está presente en estas enfermedades, especialmente en los episodios agudos o brotes, gracias a unos marcadores de inflamación que encontramos en el torrente sanguíneo”, explica María González-Pinto, presidenta electa de la SEPB y psiquiatra del Hospital Universitario de Álava. “Y estamos avanzando en el conocimiento del aporte de los fármacos anti-inflamatorios para paliar o aminorar los efectos de los episodios, buscando sustancias que han demostrado tener una capacidad para destruir la inflamación a largo plazo”. Su eficacia podría ser incluso preventiva, para personas que han presentado algún síntoma y están en riesgo de desarrollar alguna de estas enfermedades.

Los investigadores españoles saben que la inflamación juega un papel muy relevante en el origen físico de la enfermedad mental. “Hemos visto que las personas que tienen peor cognición en psicosis –es decir, peor atención, capacidad de memoria, capacidad ejecutiva a la hora de tomar decisiones o resolver problemas– son las que tienen mayor inflamación. Y cuantos más factores inflamatorios, más daño se produce en el sistema nervioso central, de ahí que las capacidades de esas personas sean peores. Esta relación es uno de los hallazgos que hemos tenido”. Y, al igual que se está estudiando en psicosis, se ha evidenciado un aumento de factores de inflamación en pacientes con autismo y trastorno bipolar.

Los psiquiatras también podrán formarse en otros avances como la alteración de la ‘cognición caliente’ en el desarrollo de trastornos afectivos; el efecto modulador del ambiente en la expresión genética del trastorno límite de personalidad y su manifestación; los avances en neuropsicofarmacología o la investigación en relación a la capacidad de predicción del comportamiento suicida mediante el desarrollo de modelos predictivos, entre otros.

La detección de la inflamación que provocan determinadas patologías psiquiátricas graves, como los trastornos esquizofrénico, esquizoafectivo y bipolar es posible gracias al cociente neutrófilos/linfocitos. Este ha sido el hallazgo de un grupo de investigadores del Departamento de Salud de Gandía y de los hospitales La Fe y Padre Jofré de Valencia. Con esta detección precoz es posible anticipar la descompensación en enfermedades mentales graves mediante una analítica sencilla y, por tanto, adelantarnos a sus consecuencias.
Una de las ventajas que se proponen, es una analítica de rutina donde se ve el cociente linfocitos/neutrófilos y se evitan procedimientos mas traumáticos, como la punción lumbar .
, así como en la comparativa de los valores de las inmunoglobulinas detectadas en los casos (todas valoradas
Para realizar el estudio se compararon análisis de sangre de personas sanas con los de personas diagnosticadas con enfermedades mentales graves (EMG). El estudio se realizó en el Hospital Francesc de Borja de Gandía, con la colaboración de la Unidad de Salud Mental y de los Centros Específicos de Enfermos Mentales (CEEM) de Xeraco, de Barx y de Ador y los médicos de los Centros de Salud de Corea y Raval, ambos de Gandía,
Se reclutaron 131 personas sanas (controles) y 81 pacientes diagnosticados de Trastorno Esquizofrénico, Esquizoafectivo o Bipolar (casos). Todos eran mayores de edad y firmaron el debido consentimiento informado”, explica a DM José Olcina, psiquiatra de la Unidad de Conductas Adictivas del Departamento de Salud de Gandía.
Los criterios de exclusión en los controles fueron el diagnóstico o los antecedentes de cualquier enfermedad psiquiátrica, bien sufrida por el propio paciente o por un familiar ascendente. En ambos grupos, se excluyeron los pacientes con enfermedades inflamatorias crónicas o infecciosas intercurrentes.

Se diseñó un perfil analítico acordado con el servicio de Análisis Clínicos y la sección de Microbiología del hospital, que denominaron “Perfil PSYTIS (Psychosis and encephalitis)”, y se recogieron una serie de variables y parámetros analíticos para todas las personas incluidas en el estudio:
Edad, sexo, glucosa (mg dL), urea (mg/dL), creatinina (mg/dL), tasa de filtrado glomerular (FGE) (mL/min/1.73m2), sodio (mEq/L), potasio (mEq/L), cloro (mEq/L), triglicéridos (mg/dL), colesterol (mg/dL), proteínas totales (g/dL), albúmina (g/dL), aspartato aminotransferasa (AST; U / L), alanina aminotransferasa (ALT;U/L), gama glutamil transpeptidasa (GGT;U/L), proteína C reactiva (mg/L), TSH (μU/mL), hemoglobina glicosilada (%), recuento de neutrófilos absolutos (109/L), recuento absoluto de linfocitos (109/L), recuento absoluto de monocitos (109/L), recuento plaquetario absoluto (109/L), cociente de neutrófilos linfocitos (CNL); cociente de plaquetas y linfocitos (CPL); y cociente de monocitos y linfocitos (CML); inmunoglobulina (IgA; IgM e IgG expresadas en mg/dL); anticuerpos antinucleares (ANA); anticuerpos IgG contra Toxoplasma gondii; anticuerpos IgM contra T. gondii; anticuerpos IgG contra CMV humano; anticuerpos IgM contra CMV humano; anticuerpos IgG contra la cápside viral de Epstein Barr-VCA; anticuerpos IgM al EBV-VCA; anticuerpos IgG al antígeno nuclear EBV-EBNA; y anticuerpos IgG al virus de la varicela zoster (VVZ).
El principal hallazgo es la asociación entre diferentes marcadores de inflamación y el hecho de sufrir una EMG. Entre ellos, el cociente neutrófilos/linfocitos (CNL) destaca especialmente, triplicando la probabilidad en pacientes con EMG por cada incremento de una unidad de este marcador. “por lo que creemos que puede ser un marcador inflamatorio accesible para iniciar la búsqueda clínica de la causa de esta inflamación en los pacientes afectados”.
BIBLIOGRAFÍA
[1]
W.B. Cannon.
The wisdom of the body.
Am J Med Sci., 184 (1932), pp. 864
[2]
H. Selye.
A syndrome produced by diverse nocuous agents.
J Neuropsychiatry Clin Neurosci., 10 (1936), pp. 230-231
http://dx.doi.org/10.1176/jnp.10.2.230a | Medline
[3]
H. Selye.
The stress of life.
Am Heart J., 66 (1963), pp. 721
http://dx.doi.org/10.1016/0002-8703(63)90335-1
[4]
R. Ader, N. Cohen.
Behaviorally conditioned immunosuppression.
Psychosom Med., 37 (1975), pp. 333-340
Medline
[5]
P.J. Delves, I.M. Roitt.
The immune system. First of two parts.
N Engl J Med., 343 (2000), pp. 37-49
http://dx.doi.org/10.1056/NEJM200007063430107 | Medline
[6]
M.D. Turner, B. Nedjai, T. Hurst, D.J. Pennington.
Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease.
Biochim Biophys Acta – Mol Cell Res., 1843 (2014), pp. 2563-2582
[7]
S. Najjar, D.M. Pearlman, K. Alper, A. Najjar, O. Devinsky.
Neuroinflammation and psychiatric illness.
J Neuroinflammation., 10 (2013), pp. 1-24
http://dx.doi.org/10.1186/1742-2094-10-1 | Medline
[8]
R. Dantzer, J.C. O’Connor, G.G. Freund, R.W. Johnson, K.W. Kelley.
From inflammation to sickness and depression: When the immune system subjugates the brain.
Nat Rev Neurosci., 9 (2008), pp. 46-56
http://dx.doi.org/10.1038/nrn2297 | Medline
[9]
F.R. Walker, M. Nilsson, K. Jones.
Acute and chronic stress-induced disturbances of microglial plasticity phenotype and function.
Curr Drug Targets., 14 (2013), pp. 1262-1276
Medline
[10]
J.C. Leza, B. Bueno, M. Bioque, C. Arango, M. Parellada, K. Do, et al.
Inflammation in schizophrenia: A question of balance.
Neurosci Biobehav Rev., 55 (2015), pp. 612-626
http://dx.doi.org/10.1016/j.neubiorev.2015.05.014 | Medline
[11]
R. Rieder, P.J. Wisniewski, B.L. Alderman, S.C. Campbell.
Microbes and mental health: A review.
Brain Behav Immun., (2017),
http://dx.doi.org/10.1016/j.bbi.2017.01.016
[12]
L. Desbonnet, L. Garrett, G. Clarke, B. Kiely, J.F. Cryan, T.G. Dinan.
Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression.
Neuroscience., 170 (2010), pp. 1179-1188
http://dx.doi.org/10.1016/j.neuroscience.2010.08.005 | Medline
[13]
L. O’Mahony, J. Mccarthy, P. Kelly, G. Hurley, F. Luo, K. Chen, et al.
Lactobacillus and Bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles.
Gastroenterology., 128 (2005), pp. 541-551
Medline
[14]
N.I. Eisenberger, E.T. Berkman, T.K. Inagaki, L.T. Rameson, N.M. Mashal, M.R. Irwin.
Inflammation-induced anhedonia: Endotoxin reduces ventral striatum responses to reward.
Biol Psychiatry., 68 (2010), pp. 748-754
http://dx.doi.org/10.1016/j.biopsych.2010.06.010 | Medline
[15]
C. Hoyo-Becerra, J.F. Schlaak, D.M. Hermann.
Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation.
Brain Behav Immun., 42 (2014), pp. 222-231
http://dx.doi.org/10.1016/j.bbi.2014.06.200 | Medline
[16]
H. Jeltsch-David, S. Muller.
Neuropsychiatric systemic lupus erythematosus: Pathogenesis and biomarkers.
Nat Rev Neurol., 10 (2014), pp. 579-596
http://dx.doi.org/10.1038/nrneurol.2014.148 | Medline
[17]
F.B. Karassa, A. Afeltra, A. Ambrozic, D.M. Chang, F. de Keyser, A. Doria, et al.
Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: An international meta-analysis.
Arthritis Rheum., 54 (2006), pp. 312-324
http://dx.doi.org/10.1002/art.21539 | Medline
[18]
S. Appenzeller, G.B. Pike, A.E. Clarke.
Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus.
Clin Rev Allergy Immunol., 34 (2008), pp. 361-366
http://dx.doi.org/10.1007/s12016-007-8060-z | Medline
[19]
M. Al-Obaidi, D. Saunders, S. Brown, L. Ramsden, N. Martin, E. Moraitis, et al.
Evaluation of magnetic resonance imaging abnormalities in juvenile onset neuropsychiatric systemic lupus erythematosus.
Clin Rheumatol., 35 (2016), pp. 2449-2456
http://dx.doi.org/10.1007/s10067-016-3376-9 | Medline
[20]
F. Graus, A. Saiz, J. Dalmau.
Antibodies and neuronal autoimmune disorders of the CNS.
J Neurol., 257 (2010), pp. 509-517
http://dx.doi.org/10.1007/s00415-009-5431-9 | Medline
[21]
J.N. Brenton, H.P. Goodkin.
Antibody-mediated autoimmune encephalitis in childhood.
Pediatr Neurol., 60 (2016), pp. 13-23
http://dx.doi.org/10.1016/j.pediatrneurol.2016.04.004 | Medline
[22]
S.E. Swedo, J. Seidlitz, M. Kovacevic, M.E. Latimer, R. Hommer, L. Lougee, et al.
Clinical presentation of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections in research and community settings.
J Child Adolesc Psychopharmacol., 25 (2015), pp. 26-30
http://dx.doi.org/10.1089/cap.2014.0073 | Medline
[23]
S. Perlmutter, S. Leitman, M. Garvey, S. Hamburger, E. Feldman, H. Leonard, et al.
Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood.
Lancet., 354 (1999), pp. 1153-1158
http://dx.doi.org/10.1016/S0140-6736(98)12297-3 | Medline
[24]
B.S. McEwen.
Stress, adaptation, and disease. Allostasis and allostatic load.
Ann N Y Acad Sci., 840 (1998), pp. 33-44
Medline
[25]
B.S. McEwen.
Protective and damaging effects of stress mediators: Central role of the brain.
Dialogues Clin Neurosci., 8 (2006), pp. 367-381
Medline
[26]
B.S. McEwen.
Mood disorders and allostatic load.
Biol Psychiatry., 54 (2003), pp. 200-207
Medline
[27]
F. Kapczinski, E. Vieta, A.C. Andreazza, B.N. Frey, F.A. Gomes, J. Tramontina, et al.
Allostatic load in bipolar disorder: Implications for pathophysiology and treatment.
Neurosci Biobehav Rev., 32 (2008), pp. 675-692
http://dx.doi.org/10.1016/j.neubiorev.2007.10.005 | Medline
[28]
K.L. Nugent, J. Chiappelli, L.M. Rowland, L.E. Hong.
Cumulative stress pathophysiology in schizophrenia as indexed by allostatic load.
Psychoneuroendocrinology., 60 (2015), pp. 120-129
http://dx.doi.org/10.1016/j.psyneuen.2015.06.009 | Medline
[29]
T.E. Seeman, B.S. McEwen, J.W. Rowe, B.H. Singer.
Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging.
Proc Natl Acad Sci U S A., 98 (2001), pp. 4770-4775
http://dx.doi.org/10.1073/pnas.081072698 | Medline
[30]
S. Virtue, A. Vidal-Puig.
Adipose tissue expandability, lipotoxicity and the metabolic syndrome – An allostatic perspective.
Biochim. Biophys. Acta – Mol Cell Biol Lipids., 1801 (2010), pp. 338-349
[31]
M. Udina, J. Moreno-España, L. Capuron, R. Navinés, M. Farré, E. Vieta, et al.
Cytokine-induced depression: Current status and novel targets for depression therapy.
CNS Neurol Disord Drug Targets., 13 (2014), pp. 1066-1074
Medline
[32]
E.P. Zorrilla, L. Luborsky, J.R. McKay, R. Rosenthal, A. Houldin, A. Tax, et al.
The relationship of depression and stressors to immunological assays: A meta-analytic review.
Brain Behav Immun., 15 (2001), pp. 199-226
http://dx.doi.org/10.1006/brbi.2000.0597 | Medline
[33]
M.R. Irwin, A.H. Miller.
Depressive disorders and immunity: 20 years of progress and discovery.
Brain Behav Immun., 21 (2007), pp. 374-383
http://dx.doi.org/10.1016/j.bbi.2007.01.010 | Medline
[34]
H. Anisman, V. Ravindran a, J. Griffiths, Z. Merali.
Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features.
Mol Psychiatry., 4 (1999), pp. 182-188
Medline
[35]
M.B. Howren, D.M. Lamkin, J. Suls.
Associations of depression with C-reactive protein IL-1, and IL-6: A meta-analysis.
Psychosom Med., 71 (2009), pp. 171-186
http://dx.doi.org/10.1097/PSY.0b013e3181907c1b | Medline
[36]
T.W.W. Pace, T.C. Mletzko, O. Alagbe, D.L. Musselman, C.B. Nemeroff, A.H. Miller, et al.
Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress.
Am J Psychiatry., 163 (2006), pp. 1630-1633
http://dx.doi.org/10.1176/ajp.2006.163.9.1630 | Medline
[37]
S. Lanquillon, J.C. Krieg, U. Bening-Abu-Shach, H. Vedder.
Cytokine production and treatment response in major depressive disorder.
Neuropsychopharmacology., 22 (2000), pp. 370-379
http://dx.doi.org/10.1016/S0893-133X(99)00134-7 | Medline
[38]
M. Maes, S. Scharpé, H.Y. Meltzer, E. Bosmans, E. Suy, J. Calabrese, et al.
Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression.
Psychiatry Res., 49 (1993), pp. 11-27
Medline
[39]
T.M. Michel, D. Pülschen, J. Thome.
The role of oxidative stress in depressive disorders.
Curr Pharm Des., 18 (2012), pp. 5890-5899
Medline
[40]
A. Nair, R.H. Bonneau.
Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation.
J Neuroimmunol., 171 (2006), pp. 72-85
http://dx.doi.org/10.1016/j.jneuroim.2005.09.012 | Medline
[41]
N. Salvat-Pujol, J. Labad, M. Urretavizcaya, A. de Arriba-Arnau, C. Segalàs, E. Real, et al.
Hypothalamic-pituitary-adrenal axis activity and cognition in major depression: The role of remission status.
Psychoneuroendocrinology., 76 (2017), pp. 38-48
http://dx.doi.org/10.1016/j.psyneuen.2016.11.007 | Medline
[42]
O.M. Wolkowitz, H. Burke, E.S. Epel, V.I. Reus.
Glucocorticoids: Mood, memory, and mechanisms.
Ann N Y Acad Sci., 1179 (2009), pp. 19-40
http://dx.doi.org/10.1111/j.1749-6632.2009.04980.x | Medline
[43]
M. Maes.
Evidence for an immune response in major depression: A review and hypothesis.
Prog Neuropsychopharmacol Biol Psychiatry., 19 (1995), pp. 11-38
Medline
[44]
F.E. Lotrich.
Inflammatory cytokine-associated depression.
Brain Res., 1617 (2015), pp. 113-125
http://dx.doi.org/10.1016/j.brainres.2014.06.032 | Medline
[45]
B.J. Miller, P. Buckley, W. Seabolt, A. Mellor, B. Kirkpatrick.
Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects.
Biol Psychiatry., 70 (2011), pp. 663-671
http://dx.doi.org/10.1016/j.biopsych.2011.04.013 | Medline
[46]
L. Garcia-Alvarez, M.P. Garcia-Portilla, L. Gonzalez-Blanco, P.A. Saiz Martinez, L. de la Fuente-Tomas, I. Menendez-Miranda, et al.
Biomarcadores sanguíneos diferenciales de las dimensiones psicopatológicas de la esquizofrenia.
Rev Psiquiatr Salud Ment (Barc)., 9 (2016), pp. 219-227
[47]
C. Garcia-Rizo, E. Fernandez-Egea, C. Oliveira, A. Justicia, M. Bernardo, B. Kirkpatrick.
Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features.
Psychiatry Res., 198 (2012), pp. 212-215
http://dx.doi.org/10.1016/j.psychres.2011.08.014 | Medline
[48]
A.M. Fineberg, L.M. Ellman.
Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia.
Biol Psychiatry., 73 (2013), pp. 951-966
http://dx.doi.org/10.1016/j.biopsych.2013.01.001 | Medline
[49]
V. Mondelli, A. Cattaneo, M. Belvederi Murri, M. di Forti, R. Handley, N. Hepgul, et al.
Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: A pathway to smaller hippocampal volume.
J Clin Psychiatry., 72 (2011), pp. 1677-1684
http://dx.doi.org/10.4088/JCP.10m06745 | Medline
[50]
B. Cabrera, M. Bioque, R. Penadés, A. González-Pinto, M. Parellada, J. Bobes, et al.
Cognition and psychopathology in first-episode psychosis: Are they related to inflammation?.
Psychol Med., 46 (2016), pp. 2133-2144
http://dx.doi.org/10.1017/S0033291716000659 | Medline
[51]
A. Stojanovic, L. Martorell, I. Montalvo, L. Ortega, R. Monseny, E. Vilella, et al.
Increased serum interleukin-6 levels in early stages of psychosis: Associations with at-risk mental states and the severity of psychotic symptoms.
Psychoneuroendocrinology., 41 (2014), pp. 23-32
http://dx.doi.org/10.1016/j.psyneuen.2013.12.005 | Medline
[52]
G.M. Khandaker, R.M. Pearson, S. Zammit, G. Lewis, P.B. Jones.
Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life.
JAMA Psychiatry., 71 (2014), pp. 1121-1128
http://dx.doi.org/10.1001/jamapsychiatry.2014.1332 | Medline
[53]
M. Fournier, C. Ferrari, P.S. Baumann, A. Polari, A. Monin, T. Bellier-Teichmann, et al.
Impaired metabolic reactivity to oxidative stress in early psychosis patients.
Schizophr Bull., 40 (2014), pp. 973-983
http://dx.doi.org/10.1093/schbul/sbu053 | Medline
[54]
J. Flatow, P. Buckley, B.J. Miller.
Meta-analysis of oxidative stress in schizophrenia.
Biol Psychiatry., 74 (2013), pp. 400-409
http://dx.doi.org/10.1016/j.biopsych.2013.03.018 | Medline
[55]
J.K. Yao, S. Leonard, R.D. Reddy.
Increased nitric oxide radicals in postmortem brain from patients with schizophrenia.
Schizophr Bull., 30 (2004), pp. 923-934
Medline
[56]
J.K. Yao, M.S. Keshavan.
Antioxidants, redox signaling, and pathophysiology in schizophrenia: An integrative view.
Antioxid Redox Signal., 15 (2011), pp. 2011-2035
http://dx.doi.org/10.1089/ars.2010.3603 | Medline
[57]
A. Monji, T.A. Kato, Y. Mizoguchi, H. Horikawa, Y. Seki, M. Kasai, et al.
Neuroinflammation in schizophrenia especially focused on the role of microglia.
Prog Neuropsychopharmacol Biol Psychiatry., 42 (2013), pp. 115-121
http://dx.doi.org/10.1016/j.pnpbp.2011.12.002 | Medline
[58]
V. Mondelli, C.M. Pariante, S. Navari, M. Aas, A. d’Albenzio, M. di Forti, et al.
Higher cortisol levels are associated with smaller left hippocampal volume in first-episode psychosis.
Schizophr Res., 119 (2010), pp. 75-78
http://dx.doi.org/10.1016/j.schres.2009.12.021 | Medline
[59]
A.K. Torgalsbøen, C. Mohn, B. Rishovd Rund.
Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia.
Psychiatry Res., 216 (2014), pp. 1-5
http://dx.doi.org/10.1016/j.psychres.2014.01.031 | Medline
[60]
F. Adriano, C. Caltagirone, G. Spalletta.
Hippocampal volume reduction in first-episode and chronic schizophrenia: A review and meta-analysis.
Neuroscientist., 18 (2012), pp. 180-200
http://dx.doi.org/10.1177/1073858410395147 | Medline
[61]
A.K. Wang, B.J. Miller.
Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons between schizophrenia bipolar disorder, and depression.
Schizophr Bull, (2017),
http://dx.doi.org/10.1093/schbul/sbx035
[62]
F. Dickerson, C. Stallings, A. Origoni, J. Boronow, R. Yolken.
Elevated serum levels of C-reactive protein are associated with mania symptoms in outpatients with bipolar disorder.
Prog Neuropsychopharmacol Biol Psychiatry., 31 (2007), pp. 952-955
http://dx.doi.org/10.1016/j.pnpbp.2007.02.018 | Medline
[63]
D.J. Miklowitz, L.C. Portnoff, C.C. Armstrong, D. Keenan-Miller, E.C. Breen, K.A. Muscatell, et al.
Inflammatory cytokines and nuclear factor-kappa B activation in adolescents with bipolar and major depressive disorders.
Psychiatry Res., 241 (2016), pp. 315-322
http://dx.doi.org/10.1016/j.psychres.2016.04.120 | Medline
[64]
J.D. Rosenblat, R. Kakar, M. Berk, L.V. Kessing, M. Vinberg, B.T. Baune, et al.
Anti-inflammatory agents in the treatment of bipolar depression: A systematic review and meta-analysis.
Bipolar Disord., 18 (2016), pp. 89-101
http://dx.doi.org/10.1111/bdi.12373 | Medline
[65]
F. Dickerson, C. Stallings, A. Origoni, C. Vaughan, S. Khushalani, R. Yolken.
Elevated C-reactive protein and cognitive deficits in individuals with bipolar disorder.
J Affect Disord., 150 (2013), pp. 456-459
http://dx.doi.org/10.1016/j.jad.2013.04.039 | Medline
[66]
B.I. Goldstein, F. Lotrich, D.A. Axelson, M.K. Gill, H. Hower, T.R. Goldstein, et al.
Inflammatory markers among adolescents and young adults with bipolar spectrum disorders.
J Clin Psychiatry., 76 (2015), pp. 1556-1563
http://dx.doi.org/10.4088/JCP.14m09395 | Medline
[67]
J.F. Hayes, G.M. Khandaker, J. Anderson, D. Mackay, S. Zammit, G. Lewis, et al.
Childhood interleukin-6 C-reactive protein and atopic disorders as risk factors for hypomanic symptoms in young adulthood: A longitudinal birth cohort study.
Psychol Med., 47 (2017), pp. 23-33
http://dx.doi.org/10.1017/S0033291716001574 | Medline
[68]
Y.-M. Bai, T.-P. Su, C.-T. Li, S.-J. Tsai, M.-H. Chen, P.-C. Tu, et al.
Comparison of pro-inflammatory cytokines among patients with bipolar disorder and unipolar depression and normal controls.
Bipolar Disord., 17 (2015), pp. 269-277
http://dx.doi.org/10.1111/bdi.12259 | Medline
[69]
D. Lindqvist, O.M. Wolkowitz, S. Mellon, R. Yehuda, J.D. Flory, C. Henn-Haase, et al.
Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress.
Brain Behav Immun., 42 (2014), pp. 81-88
http://dx.doi.org/10.1016/j.bbi.2014.06.003 | Medline
[70]
I.C. Passos, M.P. Vasconcelos-Moreno, L.G. Costa, M. Kunz, E. Brietzke, J. Quevedo, et al.
Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression.
Lancet Psychiatry., 2 (2015), pp. 1002-1012
http://dx.doi.org/10.1016/S2215-0366(15)00309-0 | Medline
[71]
V. Michopoulos, A. Powers, C.F. Gillespie, K.J. Ressler, T. Jovanovic.
Inflammation in fear- and anxiety-based disorders: PTSD GAD and beyond.
Neuropsychopharmacology., 42 (2017), pp. 254-270
http://dx.doi.org/10.1038/npp.2016.146 | Medline
[72]
N.P. Rao, G. Venkatasubramanian, V. Ravi, S. Kalmady, A. Cherian, J.R. Yc.
Plasma cytokine abnormalities in drug-naïve, comorbidity-free obsessive-compulsive disorder.
Psychiatry Res., 229 (2015), pp. 949-952
http://dx.doi.org/10.1016/j.psychres.2015.07.009 | Medline
[73]
K.S. MacDowell, M. Díaz-Marsá, I. Güemes, A. Rodríguez, J.C. Leza, J.L. Carrasco.
Inflammatory activation and cholinergic anti-inflammatory system in eating disorders.
Brain Behav Immun., 32 (2013), pp. 33-39
http://dx.doi.org/10.1016/j.bbi.2013.04.006 | Medline
[74]
M. Solmi, N. Veronese, A. Favaro, P. Santonastaso, E. Manzato, G. Sergi, et al.
Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies.
Psychoneuroendocrinology., 51 (2015), pp. 237-252
http://dx.doi.org/10.1016/j.psyneuen.2014.09.031 | Medline
[75]
B.J. Carroll.
Biomarkers in DSM 5: Lost in translation.
Aust N Z J Psychiatry., 47 (2013), pp. 676-681
http://dx.doi.org/10.1177/0004867413491162 | Medline
[76]
E. Vieta.
La medicina personalizada aplicada a la salud mental: la psiquiatría de precisión.
Rev Psiquiatr Salud Ment (Barc)., 8 (2015), pp. 117-118
[77]
O. Kohler, M.E. Benros, M. Nordentoft, M.E. Farkouh, R.L. Iyengar, O. Mors, et al.
Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials.
JAMA Psychiatry., 71 (2014), pp. 1381-1391
http://dx.doi.org/10.1001/jamapsychiatry.2014.1611 | Medline
[78]
I.E. Sommer, R. van Westrhenen, M.J.H. Begemann, L.D. de Witte, S. Leucht, R.S. Kahn.
Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: An update.
Schizophr Bull., 40 (2014), pp. 181-191
http://dx.doi.org/10.1093/schbul/sbt139 | Medline
Copyright © 2017. SEP y SEPB

Enrique Mezquita. Valencia

6 agosto, 2019

No hay comentarios »

No comments yet.

RSS feed for comments on this post. TrackBack URL

Leave a comment

Powered by WordPress